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1. Goals

The purpose of this document is to discuss the operation of tensoring with a finite dimensional module in
the category O associated to a finite-dimensional semisimple Lie algebra g. In particular we will investigate
the behaviour of certain functors between infinitesimal blocks of the category that arise from these tensor
products, and relations to projective objects in an infinitesimal block Oχ.

2. Review of Notation

We will use the following notation:

• A finite-dimensional semisimple Lie algebra g over C.
• A triangular decomposition g = n− ⊕ h ⊕ n+. In particular h is (a choice of) a Cartan subalgebra,

and b = h⊕ n+ is the (positive) Borel subalgebra.
• Simple roots αi, with roots R and positive roots R+ and negative roots R−. We write ρ =

1
2

∑
α∈R+ α.

• We write Λ for the weight lattice.
• We write W for the Weyl group associated to g, which acts on h∗ in the usual way, and also via the

dotted action: w · v = w(v+ ρ)− ρ (w ∈W ). We write StabW (λ) for the stabiliser of λ with respect
to the usual action. W is generated by the simple reflections si which correspond to the simple roots
αi.

• The category of finitely generated g-modules that are h-semisimple and locally nilpotent for the
action of n+ is denoted O. It has a duality operation M 7→M∨.

• Verma modules of highest weight λ, ∆(λ). These have unique simple quotient L(λ). Both of these
belong to O. We also have dual Verma modules ∇(λ) = ∆(λ)∨.

• There is a decomposition of categories O =
∑
λ∈h∗/W Oλ. The quotient is by the dotted action of W .

The summand Oλ has simple objects indexed by L(w · λ) for w ∈ W . There are |W/StabW (λ+ ρ)|
of them.
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3. Tensor Product with Finite-Dimensional Modules

Henceforth, V is a finite dimensional g-module.

Proposition 3.1. Tensoring with V defines a functor O → O. This functor is exact, and has left and right
adjoints both equal to tensoring with V ∗.

Proof. It was shown in the previous lecture that tensoring with a finite dimensional module takes modules
in category O to modules in category O.

To prove adjointness properties, we use the property that HomC(V,M) = V ∗ ⊗M (which requires V to
be finite dimensional). We argue that:

HomC(M ⊗C V,N) = HomC(M,HomC(V,N)) = HomC(M,N ⊗ V ∗)
HomC(N,M ⊗C V ) = HomC(N,HomC(V ∗,M)) = HomC(M ⊗ V ∗, N)

Certainly, the tensor-hom adjunction guarantees this equality for the underlying vector spaces. It remains
to check that this map respects g-module structure. This is well known and easy to check. �

Proposition 3.2. Let νi (i ∈ {1, 2, · · · ,dim(V )}) be the weights of V with multiplicity, ordered such that if
νi ≥ νj in the usual partial order on h∗, then i 6 j. Then M = ∆(λ)⊗ V has a filtration M = M0 ⊇M1 ⊇
· · · ⊇Mdim(V ) = 0 such that Mi/Mi+1

∼= ∆(λ+ νi).

Proof. We use the tensor-hom adjunction, and the fact that ∆(λ) = U(g) ⊗U(b) Cλ (where Cλ is the one
dimensional representation of b associated to the weight λ). Let N be a g-module.

Homg(V ⊗∆(λ), N) = Homg(V ⊗ (U(g)⊗U(b) Cλ), N)

= Homg(U(g)⊗U(b) Cλ, V ∗ ⊗N)

= Homb(Cλ, V ∗ ⊗N)

= Homb(V ⊗ Cλ, N)

= Homg(U(g)⊗U(b) (V ⊗ Cλ), N)

Now we observe that V ⊗Cλ is filtered as a b-module by Wj = Span({v1, v2, · · · , vj}) (j = 1, 2, · · · ,dim(V )).
Note that Wj/Wj+1 is one dimensional of weight νj . Since U(g) is free over U(b) (by the PBW theorem),
tensoring up to U(g) is an exact functor, so the filtration of V ⊗ Cλ passes to a filtration of V ⊗∆(λ) with
subquotients U(g)⊗U(b) Cλ+νi = ∆(λ+ νi). This proves the proposition. �

Remark 3.3. Recall that O = ⊕χ∈h∗/WOχ (decomposition into infinitesimal blocks). It was shown in the
previous talk that Oχ has enough projectives, and that projectives admit a filtration by Verma modules. This
makes Oχ into a highest-weight category, where the standard objects are Verma modules.

4. Projective Functors, Translation Functors, and Equivalences of Categories

Definition 4.1. Let µ ∈ h∗/W and prµ : O → Oµ be the functor projecting onto the summand Oµ. A
projective functor is a functor of the form prµ(V ⊗ ιλ(−)) : Oλ → Oµ, where ιλ is the inclusion Oλ ↪→ O.

Remark 4.2. Observe that prµ(V ⊗ ιλ(−)) is biadjoint to prλ(V ∗⊗ ιµ(−)). This is immediate from Propo-
sition 3.1.

These functors will allows us to prove equivalences of infinitesimal blocks associated to dominant integral
weights, and describe the structure of the categories in the non-dominant integral case.

Proposition 4.3. If M 7→ M∨ is the duality operation defined in the previous lecture, then we have that
prµ(V ⊗ ι(M∨)) = prµ(V ⊗ ιλ(M))∨.

Proof. Firstly, note that duality preserves infinitesimal blocks. To see this, it is enough to know that simple
objects are self dual under duality (shown last lecture), then the infinitesimal blocks are generated by
successive extensions of the simple objects in the infinitesimal block. Then, the claim reduces to showing
that V ⊗M∨ = (V ⊗M)∨. It is easy to see that (V ⊗M)∨ = V ∨ ⊗M∨, so it is enough to show that
finite dimensional representations are self-dual. The category of finite-dimensional representations of g is
semisimple, so it is enough to see that V and V ∨ have the same character, which is trivial. �
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The following statement is immediate from the Proposition 3.2 and the characterisation of the infinitesimal
blocks Oµ.

Corollary 4.4. The object prµ(V ⊗∆(w · λ)) admits a filtration by ∆(w · λ+ νi), where w · λ+ νi ∈W · µ
(each with multiplicity 1).

Remark 4.5. In view of Proposition 4.3, Corollary 4.4 holds with Verma modules replaced by dual Verma
modules.

Proposition 4.6. Let λ, µ ∈ P be such that λ, µ + ρ, λ − µ are all dominant, and w ∈ W . Let V be the
finite dimensional simple g-module of highest weight λ − µ. We have that prµ(V ∗ ⊗∆(w · λ)) = ∆(w · µ),
and also that prλ(V ⊗∆(w ·µ)) is filtered by modules of the form ∆(w′ ·λ), where w′ ∈ wStabW (µ+ρ) (each
with multiplicity 1).

Proof. We consider prµ(V ∗⊗∆(w ·λ)), using the Proposition 3.2 to find all candidates for terms arising in a
filtration by Verma modules. The weights of V ∗ are precisely the negatives of those in V . For each i, obtain
a Verma module of highest weight w ·λ− νi provided that w ·λ− νi ∈W ·µ (and none otherwise). We must
find w and νi such that w ·λ− νi = w′ ·µ (where w′ ∈W ). We write the dotted action in terms of the usual
one, and act by w−1 to get λ+ρ−w−1νi = w−1w′(µ+ρ). Since λ−µ is dominant, λ−µ ≥ w−1νi (recall that
νi is a weight of V , which has highest weight λ− µ), and equality holds if and only if w−1νi is a the highest
weight λ−µ. Similarly, µ+ ρ ≥ w−1w′(µ+ ρ), and equality holds if and only if w−1w′ ∈ StabW (µ+ ρ). We
use these inequalities to get:

λ+ ρ− w−1νi ≥ λ+ ρ− (λ− µ) = µ+ ρ ≥ w−1w′(µ+ ρ)

The condition λ + ρ − w−1νi = w−1w′(µ + ρ) holds if and only if both inequalities were equalities. This
gives νi = w(λ− µ) and w′ ∈ wStabW (µ+ ρ). Note that the highest weight space of V is one-dimensional,
and therefore the weight space of weight w(λ − µ) is also one-dimensional as it is in the same Weyl group
orbit as the highest weight space; this means that there is exactly one choice of i satisfying the condition.
We obtain a one-term filtration by ∆(w · λ− w(λ− µ)) = ∆(w · µ). Hence, prµ(V ∗ ⊗∆(w · λ)) = ∆(w · µ).

To see the filtration statement, we perform an analogous analysis, but with −νi replaced by νi. We need to

consider w·µ+νi = w′ ·λ, which becomes w′
−1
w(µ+ρ)+w′

−1
νi = λ+ρ. The inequalities w′

−1
w(µ+ρ) ≤ µ+ρ

and w′
−1
νi ≤ λ− µ give:

w′
−1
w(µ+ ρ) + w′

−1
νi ≤ µ+ ρ+ w′

−1
νi ≤ µ+ ρ+ (λ− µ) = λ+ ρ

We have equality only when w′
−1
w ∈ StabW (µ+ ρ) and νi = w′(λ− µ). The first condition is equivalent to

w−1w′ ∈ StabW (µ+ρ), so w′ ∈ wStabW (µ+ρ). The second condition determines the terms in the filtration:

∆(w · µ+ νi) = ∆(w · µ+ w′(λ− µ)) = ∆(w′ · µ+ w′(λ− µ)) = ∆(w′ · λ)

Conversely, each w′ ∈ wStabW (µ+ ρ) gives rise to a term corresponding to νi = w′(λ− ν). This proves the
claim about multiplicity. �

Theorem 4.7. Suppose λ1, λ2 ∈ P are dominant integral weights. There is an equivalence Oλ1

∼−→ Oλ2
that

takes ∆(w · λ1) to ∆(w · λ2). Similarly, it takes ∇(w · λ1) to ∇(w · λ2) and L(w · λ1) to L(w · λ2).

Proof. Firstly, we reduce to the case λ1−λ2 is dominant. This implies the general case, for it would imply that
Oλ1 and Oλ2 are each equivalent to Oλ1+λ2 . Now we apply proposition 4.6 with λ = λ1 and µ = λ2. If λ is the
finite dimensional irreducible of highest weight λ1−λ2, we obtain functors ϕ = prλ1(V ⊗ιλ2(−)) : Oλ2 → Oλ1

and ϕ∗ = prλ2
(V ∗ ⊗ ιλ1

(−)) : Oλ1
→ Oλ2

. Recall that by Remark 4.2, ϕ and ϕ∗ are mutually adjoint (on
both sides).

Note that proposition 4.6 implies that ϕ(∆(w·λ2)) = ∆(w·λ1). In fact, we also have ϕ∗(∆(w·λ1)) = ∆(w·λ2).
This is because λ2 + ρ is strictly dominant, so StabW (λ2 + ρ) = {1}; thus w′ = w. In the notation of the
proof of the proposition, this means that vi = λ− µ (the highest weight, of which there is only one). Thus
there is only one term in the filtration, ∆(w′ ·λ2) = ∆(w ·λ2). Hence, the module is isomorphic to ∆(w ·λ2).

Now, let G = ϕ∗ ◦ ϕ, an endofunctor of Oλ1
. Since ϕ and ϕ∗ are adjoint, there is a adjunction unit: a
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natural transformation η : Id → G. We obtain a map η∆(w·λ1) : ∆(w · λ1) → ϕ∗ ◦ ϕ(∆(w · λ1)). This
map is nonzero for the following reason. Consider the following composition, which is required to be Idϕ by
adjunction properties:

ϕ
ϕ◦η−−→ ϕ ◦ ϕ∗ ◦ ϕ ε◦ϕ−−→ ϕ

Here ε is the adjunction counit. The first arrow is ϕ ◦ η, which must therefore be a monomorphism for each
object M (it has a right inverse). In particular, ϕ(η∆(w·λ1)) is injective, and hence nonzero. This means
that η∆(w·λ1) must be nonzero. Since Endg(∆(ν)) = C (for any ν ∈ h∗), it follows that a nonzero map is an
isomorphism; in particular ϕ∗ ◦ϕ defines an isomorphism on Verma modules. We now show that this implies
we have an equivalence of categories.

The functor G must be an isomorphism on any object that admits a standard filtration. This can be
proved by induction on the length of the filtration (the base case being length 1), by considering a short
exact sequence coming from the filtration. Suppose we have 0 → F → M → ∆(ν) → 0 for some weight ν
and module F with standard filtration. We obtain the following diagram by applying G:

0 F M ∆(ν) 0

0 G(F ) G(M) G(∆(ν)) 0

ηF ηM η∆(ν)

The diagram commutes because η is a natural transformation. By induction we know that G is an iso-
morphism on the first and last terms, and it is exact. Therefore the five-lemma allows us to conclude that
the middle map is an isomorphism; this completes the induction. Since projective objects admit standard
filtrations (as Oλ is a highest-weight category), G is an isomorphism on projective objects.

It now follows that G is an isomorphism on all objects, by applying a similar argument to a truncated
projective resolution of an arbitrary object (recall that Oλ has enough projectives), P1 → P0 → M → 0.
This means that η defines a natural isomorphism between ϕ∗ ◦ ϕ and the identity functor. The same proof
works in the opposite direction (i.e. for ϕ ◦ ϕ∗), as ϕ and ϕ∗ are biadjoint. Thus ϕ and ϕ∗ define an
equivalence of categories.

To check the behaviour on dual Verma modules, we simply use Proposition 4.3. The statement about
behaviour on simples follows by taking maximal quotients of Verma modules (which are unique). �

Even in the case where λ2 is not dominant, we can say some things.

Theorem 4.8. Take λ1, λ2 to satisfy the conditions of Proposition 4.6 with λ = λ1 and µ = λ2. We have
that prµ(V ∗⊗L(w ·λ1)) is zero unless w is equal to the (unique) longest element in the coset wStabW (λ2 +ρ),
in which case it is L(w · λ2).

Proof. We continue to write ϕ(−) = prµ(V ⊗ ιλ(−)). We choose a coset wStabW (λ2 + ρ). Let u be the
longest element of this coset, and assume w 6= u. Then ϕ(∆(w · λ1)) = ∆(u · λ2) = ϕ(∆(u · λ1)). We also
have (by the results of the first lecture) that ∆(u · λ1) ↪→ ∆(w · λ1). Let C be the cokernel of this inclusion,
so that we have a short exact sequence:

0→ ∆(u · λ1)→ ∆(w · λ1)→ C → 0

Applying the exact functor ϕ gives:

0→ ∆(u · λ2)→ ∆(w · λ2)→ ϕ(C)→ 0

But the first two objects are the same (u · λ2 = w · λ2), and an injective endomorphism of a Verma module
is an isomorphism. This means that the first map is an isomorphism (it is injective by exactness). This in
turn forces ϕ(C) = 0. Hence, ϕ annihilates any subquotient of C, including L(w · λ2).
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On the other hand, every ϕ(∆(w · λ1)) = ∆(w · λ2) so that every Verma module is in the image of ϕ.
The classes of Verma modules span K0(Oλ2

), so the exact functor ϕ induces a surjection of Grothendieck
groups [ϕ] : K0(Oλ1

)� K0(Oλ2
). By rank considerations, it follows that ϕ(L(u ·λ1)) must be nonzero when

u is the longest element in its coset; K0(Oλ2
) has rank equal to the number of such simples, and the images

of the other simples are zero. It remains to determine ϕ(L(u · λ1)).

In view of Remark 4.5, the costandard objects ∇(w · λ1) behave similarly to ∆(w · λ1) under tensoring
with V . Analogously to ∆(u · λ2) � ϕ(L(u · λ1)), we have ϕ(L(u · λ1)) ↪→ ∇(u · λ2). Composing these
two maps, and using the fact from the previous lecture that dim(HomO(∆(λ),∇(µ))) = δλ,µ, we see that a
(nonzero) map must be (a scalar multiple of) projection onto L(u · λ2) followed by inclusion into ∇(u · λ2).
It immediately follows that ϕ(L(u · λ1)) = L(u · λ2). �

Corollary 4.9. Let λ+ ρ be dominant, and w be the longest element in the coset wStabW (λ+ ρ). We have
the following equality of multiplicities:

[∆(w′ · λ) : L(w · λ)] = [∆(w′ · 0) : L(w · 0)]

Proof. This follows by exactness of ϕ and the characterisation of the action of ϕ on simple objects in the
previous theorem (we take λ1 = 0, λ2 = λ). �

Remark 4.10. The projection functors satisfy the following transitivity property. Suppose that λ1, λ2, λ3

are all dominant weights such that λ1−λ2 and λ2−λ3 are dominant. Assume further that StabW (λ1 + ρ) ⊆
StabW (λ2 +ρ) ⊆ StabW (λ3 +ρ). For i, j ∈ {1, 2, 3} with i < j, let ϕi,j : Oλj → Oλi be the projection functor
prλi(Vi,j ⊗ ιλj ()), where Vi,j is the finite-dimensional irreducible g-module of highest weight λi − λj. Then
we have ϕ1,2 ◦ ϕ2,3

∼= ϕ1,3. This is left as an exercise.

5. Projections to the Walls and Reflection Functors

In this section we assume that λ1 and λ2 satisfy the conditions of Proposition 4.6 with λ = λ1 and µ = λ2,
but we further require that there is a unique i such that 〈αi, λ2 + ρ〉 = 0 (the inner products with other
simple roots are positive). This means that λ2 + ρ is on the wall of the dominant Weyl chamber associated
to αi.

Proposition 5.1. Let ϕ : Oλ2
→ Oλ1

and ϕ∗ : Oλ2
→ Oλ1

be as in Proposition 4.6. Then we have
ϕ ◦ ϕ∗ : Oλ1 → Oλ1 . If w · λ1 � wsi · λ1, we have the following short exact sequence:

0→ ∆(w · λ1)→ ϕ ◦ ϕ∗(∆(w · λ1))→ ∆(wsi · λ1)→ 0

Otherwise we have:

0→ ∆(wsi · λ1)→ ϕ ◦ ϕ∗(∆(w · λ1))→ ∆(w · λ1)→ 0

Proof. This immediately follows from Proposition 4.6, noting that StabW (λ2 + ρ) = {1, si}, and that weight
spaces in the same Weyl group orbit have the same dimension (so the si(λ1 − λ2) weight space is one
dimensional). Note that the Verma with lower weight is the quotient, and the Verma with larger weight is
the submodule, because extensions can only exist in one direction. �

Definition 5.2. The functor ϕ∗ ◦ ϕ is an endofunctor of O0. We call this Pi (the subscript i corresponds
to the simple root αi). Note that it is a self-adjoint exact functor.

Proposition 5.3. The Grothendieck group of O0 can be identified with ZW . The functor Pi induces an
endomorphism of K0(O0) which is given by right multiplication by 1 + si in ZW .

Proof. We may take ∆(w · 0) to be a Z-basis of K0(O0) (this follows from the highest-weight structure
discussed in the previous lecture). This provides the identification with ZW (as abelian groups). An exact
functor respect the relations of the Grothendieck group, and therefore defines an endomorphism of the
Grothendieck group (as an abelian group). Proposition 5.1 implies that the image of the endomorphism
associated to the functor Pi evaluated on ∆(w · 0) is [∆(w · 0)] + [∆(wsi · 0)]. Under our identification, this
becomes w 7→ w + wsi = w(1 + si). �
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6. Projective Objects in Category O

Proposition 6.1. The object ∆(0) is projective in the category O0.

Proof. This was in the preceding lecture (it is a consequence of the fact that 0 is maximal in W · 0, so any
vector of weight 0 is automatically a singular vector; this implies HomO0

(∆(0),−) is an exact functor). �

Definition 6.2. For w ∈W , choose a reduced expression w = si1si2 · · · sil . Let Pw = Pil◦· · ·◦Pi2◦Pi1(∆(0)).

The following theorem was proved in the previous lecture, but we include a slightly different proof, which
will be important later.

Theorem 6.3. The category O0 has enough projectives. The object Pw is the projective cover of L(w · 0)
plus a direct sum of projective covers of L(w′ · 0) with w′ smaller than w in the Bruhat order.

Proof. Firstly, since Pi is self-adjoint and exact, it takes projectives to projectives. This is because if P
is a projective object, M 7→ HomO0

(P,Pi(M)) is the composition of two exact functors, hence exact. But
adjointness makes this equal to M 7→ HomO0

(Pi(P ),M). The exactness of this functor is precisely the
statement that Pi(P ) is projective. It immediately follows that each Pw is projective.

By iterating Proposition 5.1, we find that Pw is filtered by subquotients equal to Verma modules. Moreover,
the Verma modules that appear can be described using the Proposition in the following way. Inductively,
we expand (1 + si1)(1 + si2) · · · (1 + sil) =

∑
w∈W mww, the coefficients mw are precisely the multiplici-

ties of the Verma modules ∆(w · 0) in this filtration. We observe that we have one instance of ∆(w · 0)
(which is in fact a quotient of Pw, as its highest weight is the lowest among modules appearing in the
filtration). Note also that all other terms correspond to elements of W that can be written by removing
simple reflections from a reduced expression for w, i.e. lower in the Bruhat order. If P is a projective mod-
ule, dim(HomO(P,L(w ·0))) is the multiplicity of the projective cover of L(w ·0) in P . We use this as follows.

Using the fact that in the Grothendieck group, [P (λ)] equals [∆(λ)] plus higher order terms, the only
possible projective covers arising in Pw are P (µ), where µ = w′ · 0, with w � w′. Since ∆(w · 0) occurs
exactly once in the filtration, we have exactly one summand isomorphic to P (w · 0). �
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