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Abstract. These are notes for a talk in the MIT-Northeastern Spring 2015

Geometric Representation Theory Seminar. The main source is [G02]. We

discuss baby Verma modules for rational Cherednik algebras at t = 0.
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1. Background

1.1. Definitions. Let h be a finite dimensional C-vector space and let W ⊂ GL(h)
be a finite subgroup generated by the subset S ⊂ W of complex reflections it
contains. Let c : S → C be a conjugation-invariant function. For s ∈ S we denote
cs := c(s). For each s ∈ S choose eigenvectors αs ∈ h∗ and α∨s ∈ h with nontrivial
eigenvalues ε(s)−1, ε(s), respectively. Recall that for t ∈ C we have the associated
rational Cherednik algebra Ht,c(W, h), denoted Ht,c when W and h are implied,
which is defined as the quotient of

CW n T (h⊕ h∗)
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by the relations

[x, x′] = 0 [y, y′] = 0 [y, x] = t(y, x) +
∑
s∈S

(ε(s)− 1)cs
(y, αs)(x, α

∨
s )

(αs, α∨s )
s

for x, x′ ∈ h∗ and y, y′ ∈ h. Note that this definition does not depend on the choice
of αs and α∨s . This algebra is naturally Z-graded, setting degW = 0, deg h∗ = 1,
and deg h = −1. One may also view the parameters t, c as formal variables to
obtain a universal Cherednik algebra H, of which Ht,c is a specialization.

1.2. PBW Theorem. For any parameters t, c we have the natural C-linear mul-
tiplication map

Sh∗ ⊗ CW ⊗ Sh→ Ht,c.

The PBW theorem for rational Cherednik algebras states that this map is a vector
space isomorphism. This is very important.

1.3. t = 0 vs. t 6= 0. For any a ∈ C× we have Ht,c
∼= Hat,ac in an apparent way.

Thus the theory of rational Cherednik algebras has a dichotomy with the cases t = 0
and t 6= 0 (the latter may as well be t = 1). As important special specializations,
we have the isomorphisms

H0,0
∼= CW n S(h⊕ h∗) H1,0

∼= CW nD(h)

where S denotes symmetric algebra and D(h) denotes the algebra of differential
operators on h. These isomorphisms give some flavor of the distinctions between
the theory for t = 0 and t 6= 0. In the case t = 1 one may define and study a certain
category Oc of H1,c-modules analogous to the BGG category O for semisimple Lie
algebras. Today we focus instead on the case t = 0 and introduce and study a
certain class of finite-dimensional representations of H0,c called the baby Verma
modules.

2. Restricted Cherednik Algebras

2.1. A Central Subalgebra.

Proposition 1. The natural embedding

ShW ⊗C Sh
∗W → H0,c

by multiplication factors through the center Zc := Z(H0,c).

Proof. This was seen last week as an immediate consequence of the Dunkl operator
embedding. �

Let A ⊂ Zc denote the image of this embedding.

2.2. Coinvariant Algebras. The coinvariant algebra for the action of W on h is
the quotient

ShcoW := Sh/ShW+ Sh

where ShW+ is the augmentation ideal of the invariants ShW . This is a Z-graded
algebra. It also has the structure of a W -module inherited from the W -action on
Sh since ShW+ Sh is a W -stable ideal.

Proposition 2. ShcoW and Sh∗coW afford the regular representation of W .
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Proof. Let π : h → h/W denote the projection. Then π∗Oh is a coherent sheaf
with W -action, and Sh∗coW is its fiber at 0. By Chevalley’s theorem, Sh∗W is
a polynomial algebra on dim h homogeneous elements of Sh∗, so by a theorem
of Serre Sh∗ is a free module over Sh∗W . For v ∈ hreg this the fiber at π(v) is
C[Wv] ∼= CW as W -modules. But the multiplicity of the irreducible representation
L of W in the fiber at a point u ∈ V/W is the fiber dimension at u of the coherent
sheaf HomW (L, π∗Oh), which is hence upper-semicontinuous. But if mL(x) is this
multiplicity of L at x, since π∗Oh is free of rank |W | we see

∑
L(dimL)mL(x) = |W |

and so that the mL are continuous, hence constant. It follows that the zero fiber is
the regular representation too, as needed. �

So we see Sh∗coW is a graded version of the regular representation of W . This
allows us to define a related family of polynomials, the fake degrees of W . In
particular, if T is an irreducible W -representation, and T [i] denotes its shift to
degree i, we have the polynomial

fT (t) :=
∑
i∈Z

(Sh∗coW : T [i])ti

where the notation (Sh∗coW : T [i]) means the multiplicity of T [i] in Sh∗coW in
degree i. Note fT (1) = dimT . These have been computed for all finite Coxeter
groups, where we have no preference for h vs. h∗, and for many complex reflection
groups as well.

2.3. Restricted Cherednik Algebras. A is a Z-graded central subalgebra of
H0,c. Viewing A = ShW⊗Sh∗W , let A+ denote the ideal of A consisting of elements
without constant term. Then we can form the restricted Cherednik algebra as the
quotient

Hc :=
H0,c

A+H0,c
.

As A is Z-graded this inherits a Z-grading from H0,c. It follows immediately from
the PBW theorem that we have an isomorphism of vector spaces given by multi-
plication

ShcoW ⊗ CW ⊗ Sh∗coW → Hc

which we view as a PBW theorem for restricted Cherednik algebras. In particular
we see dimHc = |W |3.

Some motivation for considering this algebra is the following. H0,c is a countable-
dimensional algebra so by Schur’s lemma its center acts on any irreducible repre-
sentation through some central character, corresponding to a closed point in the
Calogero-Moser space Spec(Zc). In particular, since H0,c is finite over its center
Zc, it follows that any irreducible representation of H0,c is finite-dimensional. By

considering representations of the algebra Hc we are specifying that we only want
to consider representations whose central characters lie above 0 ∈ h∗/W × h/W
with respect to the map

Spec(Zc)→ Spec(ShW ⊗ Sh∗W ).

These are the most important central characters to consider, as for central charac-
ters above other points in h∗/W ×h/W one can reduce to the representation theory
of Hc for some parabolic subgroup W ′ ⊂W .
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3. Baby Verma Modules for Hc

In the presence of the PBW theorem for restricted Cherednik algebras, it is
natural to define an analogue of Verma modules in this setting. Let Λ denote

the set of isomorphism classes of irreducible C-representations of W . Let H−c =
CW n ShcoW , a subalgebra of Hc of dimension |W |2. We have a natural map of

algebras H−c → CW , f⊗w 7→ f(0)w, and via this map we may view any W -module

as a H−c -module. For S ∈ Λ, let M(S), the baby Verma module associated to S, be
the induced module

M(S) := Hc ⊗H−
c
S.

Placing S in degree 0, M(S) is then non-negatively graded with M(S)0 = S. As a
graded Sh∗coW oCW -module we have

M(S) = Sh∗coW ⊗C S

and hence dimM(S) = |W |dimS and in the Grothendieck group of graded W -
modules we have

[M(S)] =
∑
T∈Λ

fT (t)[T ⊗ S]

where fT (t) is the fake degree of W associated to T defined earlier.
Let Hc−mod denote the category of Hc-modules, Hc−modZ denote the category

of Z-graded Hc-modules with graded Hc-maps, and let F : Hc−modZ → Hc−mod
denote the forgetful functor. We view M(S) as an object in Hc−modZ as explained
above.

Proposition 3. Let S, T ∈ Λ. Then we have
(1) The baby Verma M(S) has a simple head. We denote it by L(S).
(2) M(S)[i] is isomorphic to M(T )[j] if and only if S = T and i = j.
(3) {L(S)[i] : S ∈ Λ, i ∈ Z} forms a complete set of pairwise non-isomorphic

simple objects in Hc −modZ.
(4) F (L(S)) is a simple Hc-module and {F (L(S)) : S ∈ Λ} is a complete set of

pairwise non-isomorphic simple Hc-modules.
(5) If P (S) is the projective cover of L(S), then F (P (S)) is the projective cover

of F (L(S)).

Proof. (1) Any vector of M(S) in degree 0 generates M(S), so a proper graded
submodule is positively graded. Thus M(S) has a unique maximal proper graded
submodule, so a unique irreducible graded quotient.

(2) If M(S)[i] ∼= M(T )[j] then clearly i = j as otherwise they are not sup-
ported in the same degrees. But then any isomorphism as graded Hc-modules is an
isomorphism as graded W -modules, and by inspecting lowest degrees we see S = T .

(3) Identical analysis to the above shows the modules in question are pairwise
non-isomorphic. By Frobenius reciprocity any nonzero N ∈ Hc − modZ admits a
nonzero map from some M(S)[i], so every simple L ∈ Hc −modZ is isomorphic to
some L(S)[i].

(4) To see F (L(S)) is simple it suffices to check that F (M(S)) has a unique max-
imal proper submodule, equal to its unique maximal proper graded submodule. For
any vector v ∈M(S), let v =

∑
i≥0 vi be its decomposition into graded components.

If v0 6= 0, then for each i > 0 there exists ai ∈ Hc
i

such that vi = aiv0. It follows
by induction on the number of nonzero homogeneous components that v0 ∈ Hcv,
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and hence Hcv = M(S) as M(S) is generated by any nonzero vector of degree 0.
Thus any proper Hc-submodule of F (M(S)) has nonzero graded components only
in positive degree, so F (M(S)) has a unique maximal proper submodule. A similar
argument shows that the submodule generated by all homogeneous components of
vectors from this module is again proper, so this maximal proper submodule is
graded and we see F (L(S)) is simple. To see that every simple is isomorphic to
some F (L(S)), note that if N is any finite-dimensional Hc-module then the space

{n ∈ N : hn = 0}
is nonzero (Sh+ is nilpotent in Hc) and W -stable. So we can find a copy of some
S ∈ Λ in this space, and hence N admits a nonzero Hc-homomorphism from M(S)
by Frobenius reciprocity. It follows that any simple is isomorphic to some F (L(S)).

(5) Projective objects in Hc − modZ are direct summands of direct sums of
shifts of Hc, and hence F maps projective objects to projective objects. Cer-
tainly F (P (S)) admits a surjective map to F (L(S)), so we need only check that
F (P (S)) is indecomposable. For this, note HomHc

(F (P (S)), F (L(S))) is naturally

Z-graded. If it were not isomorphic to C[0] as a Z-graded C-vector space then P (S)
would admit a nonzero graded homomorphism to some simple object L(S)[i] of
Hc −modZ with i 6= 0. So we see HomHc

(F (P (S)), F (L(S))) = C[0] and similarly

HomHc
(F (P (S)), F (L(T ))) = 0 for T 6= S. It follows that F (P (S)) is indecompos-

able. �

4. Decomposition of Hc

4.1. The morphism Υ. Recall that we have the inclusion A→ Zc of the algebra
A := ShW ⊗ Sh∗W into the center Zc := Z(H0,c). This induces a map on spectra

Υ : Xc = Spec(Zc)→ h∗/W × h/W = Spec(ShW ⊗ Sh∗W )

where Xc is the Calogero-Moser space we saw last week. We will be concerned with
the schematic fiber Υ∗(0) above 0. We have

Υ∗(0) = Spec(Zc/A+Zc)

and as Zc is finite over A we see Zc/A+Zc is a finite-dimensional algebra, Υ∗(0) is
a finite discrete space. We denote this underlying space by Υ−1(0). We denote the
local ring of Υ∗(0) at M ∈ Υ−1(0) by OM , and it is given by

OM = (Zc)M/A+(Zc)M .

We refer to the Spec(OM ) as the (schematic)components of Υ∗(0). In particular,
we see

Zc
A+Zc

=
∏

M∈Υ−1(0)

OM .

4.2. OM is naturally Z-graded. Zc inherits a grading from H0,c, and A ⊂ Zc is a
graded subalgebra, and so it follows that Υ : Xc → h∗/W×h/W is a C∗-equivariant
morphism. In particular, since 0 ∈ h∗/W × h/W is a fixed point for the C∗-action,
it follows that Υ∗(0) inherits a C∗-action. Since Υ−1(0) is a discrete space, this
action fixes each point, and hence the components Spec(OM ) inherit a C∗-action,
and hence OM inherits a Z-grading from H0,c in this way.
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4.3. Blocks of Hc. We have the natural map

Zc
A+Zc

=
∏

M∈Υ−1(0)

OM → Hc =
H0,c

A+H0,c
.

In particular, since Zc is central in H0,c, the idempotents on the left side map to

a set of commuting idempotents with sum 1 in Hc on the right side. In fact this
map is injective. This follows from the observation that Zc is a summand of the
A-module H0,c, which follows from the corresponding statement for c = 0, which
was proven last week, and a standard argument involving filtered deformations.
This gives rise to a corresponding direct sum decomposition of the algebra Hc:

Hc =
⊕

M∈Υ−1(0)

BM .

It is proved by Brown and Gordon in [BG01] that these summands BM are inde-
composable algebras. We refer to the BM as the blocks of the restricted Cherednik
algebra Hc. From last week, we know that if M ∈ Spec(Zc) is a smooth point that

BM ∼= Mat|W |(OM ).

4.4. The map Θ. Recall that for any S ∈ Λ irreducible representation of W , we
have the associated baby Verma module M(S) for Hc. This module has a simple
head, so is indecomposable, so in particular is a nontrivial module for a unique
block BM . This defines a map

Θ : Λ→ Υ−1(0).

Any simple module of BM is a simple module of Hc via the projection Hc → BM ,
and we have seen already that the simple modules of Hc are precisely the simple
quotients of the baby Verma modules, so we conclude Θ is surjective. When M ∈
Spec(Zc) is a smooth point, we have BM ∼= Mat|W |(O(M)), so in particular BM is
Morita equivalent to the local ring OM and hence has a unique simple module, and
so in this case we have M = Θ(S) for a unique S ∈ Λ. In particular, if Spec(Zc) is
smooth, Θ is a bijection.

4.5. Poincare polynomial of OM . Recall that the local ring OM is Z-graded and
finite-dimensional. It is therefore natural to ask about its Poincare polynomial

PM (t) :=
∑
i∈Z

dimOiM ti.

This is computed via the following theorem of Gordon. We will write pS for pΘ(S).

Theorem 4. Suppose M ∈ Υ−1(0) is a smooth point of Spec(Zc). Then M =
Θ(S) for a unique simple W -module S ∈ Λ. If bS denotes the smallest power of t
appearing in the associated fake degree fS(t), and similarly for bS∗ , then we have

pS(t) = tbS−bS∗ fS(t)fS∗(t−1).

In particular, if W is a finite Coxeter group so that S ∼= S∗, we have

pS(t) = fS(t)fS(t−1)

5. The Symmetric Group Case

We now specialize to the case of W = Sn and nonzero parameter c 6= 0. In
this case Spec(Zc) is smooth, so the previous theorem applies to all M ∈ Υ−1(0).



BABY VERMA MODULES FOR RATIONAL CHEREDNIK ALGEBRAS 7

Recall in this case the irreducible representations of Sn are labeled in a natural way
by the partitions λ ` n of n. We will denote the irreducible representation of Sn
corresponding to λ by Sλ. Stembridge [S89] proved the following formula for the
fake degree fSλ in terms of the principal specialization of the Schur function sλ:

fSλ(t) = (1− t) · · · (1− tn)sλ(1, t, t2, ...).

In case this looks like a proper power series to you, don’t worry: from Stanley [S99]
we have the following combinatorial description of this expression. In particular,
if T is a standard Young tableau of shape λ, then we define its descent set D(T )
to be the set of all i ∈ {1, ..., n} such that i appears in a row lower than the row
containing i+ 1. We then define the major index maj(T ) by

maj(T ) =
∑

i∈D(T )

i.

We then have the formula

fSλ(t) = (1− t) · · · (1− tn)sλ(1, t, t2, ...) =
∑
T

tmaj(T )

where the sum is over all standard Young tableaux T of shape λ. Clearly this is
a polynomial, and we have a combinatorial description of the coinvariant algebra
ShcoSn as a graded Sn-module. We thus have the description of the Poincare
polynomial pSλ(t) of OΘ(Sλ) in terms of specializations of Schur functions:

pSλ(t) =

n∏
i=1

(1− ti)(1− t−i)sλ(1, t, t2, ...)sλ(1, t−1, t−2, ..).

In terms of the Kostka polynomials

Kλ(t) := (1− t) · · · (1− tn)
∏
u∈λ

(1− thu(λ))−1 ∈ Z[t]

where hλ(u) is the hook length of u in λ, and the statistic

b(λ) :=
∑
i≥1

(i− 1)λi

we have
(1− t) · · · (1− tn)sλ(1, t, t2, ...) = tb(λ)Kλ(t).

In particular, we see
pSλ(t) = Kλ(t)Kλ(t−1).
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