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Abstract. These are notes for a talk at the MIT-Northeastern Fall 2017 seminar on cat-
egory O and Soergel bimodules. This talk covers the first three sections of the paper [EW]
of Elias-Williamson with the same title and is entirely based on it. These notes contain no
original material.
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1. Introduction

In the first section we’ll give an outline of the structure of the Elias-Williamson proof of
Soergel’s conjecture appearing in [EW]. Soergel’s conjecture makes some statement S(x)
for every element x of a Coxeter group W . In particular, it lends itself to an inductive
proof. However, the inductive proof is quite complicated and involves several auxiliary
statements, again indexed by elements or subsets of W , having to do with certain invariant
forms on Soergel bimodules. If you’ve seen Kashiwara’s grand loop argument for the existence
of crystal bases at some point, it’s of a similar flavor (the inductive structure, not the
mathematical content). We will view the content of the paper [EW] as the material to be
discussed, taking (as [EW] does) Soergel’s previous work (e.g. [S2]) for granted. OK, let’s
get to it:

2. Navigating the Proof

In order to motivate discussing “Lefschetz linear algebra”, “Hodge-Riemann bilinear rela-
tions”, etc., it is useful just to have a roadmap of where we’re going. This section provides
that roadmap and can be viewed as an extended abstract. In order to make certain state-
ments I’ll need to be at least halfway precise, and as I’ll need to be fully precise later I will
just be fully precise now and include all the new definitions and statements.

Date: November 11, 2017.
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2.1. Soergel’s Conjecture vs. the Kazhdan-Lusztig Positivity Conjecture. Through-
out this talk, fix a Coxeter system (W,S). Crucially, we will not assume that W is a Weyl
group, or even finite. Recall that attached to (W,S) we have the Hecke algebra H, a Z[v±1]-
algebra defined in previous lectures. Recall in particular that there are(at least) two natural
bases for H: the standard basis {Hx}x∈W and the Kazhdan-Lusztig basis {Hx}x∈W [KL1].
The standard basis is elementary, while the Kazhdan-Lusztig basis is in general quite com-
plicated. In fact, it is complicated enough that the following statement about the transition
matrix and structure constants for the multiplication went unanswered for general W for
decades:

Conjecture 2.1.1 (Kazhdan-Lusztig Positivity Conjecture [KL1]). For any Coxeter system
(W,S):

(1) If we write Hx =
∑

y≤x hy,xHy then hy,x ∈ Z≥0[v],

(2) If we write HxHy =
∑
µzx,yHz then µzx,y ∈ Z≥0[v±1].

A common approach to prove such positivity statements, and the approach we are dis-
cussing in this seminar, is to identify the quantities that are supposed to be positive with
quantities that are manifestly positive: dimensions of vector spaces, multiplicities in more
general algebraic contexts, enumeration of some kind of objects, etc. This is typically
achieved by producing an “enriched” version of the problem at hand, recast in geomet-
ric or category-theoretic terms (a categorification). For an elementary example, consider the
algebra of symmetric functions and its basis of Schur functions. That the structure constants
for the multiplication are positive is obvious once one realizes that the algebra of symmetric
functions is categorified by representations of the symmetric groups (Schur functions corre-
spond to the irreducible representations, and the multiplication corresponds to the induction
product).

In the case that W is a finite or affine Weyl group, one has the entire kitchen sink of
geometric representation theory to throw at the problem. In particular, shortly after making
their positivity conjecture, Kazhdan and Lusztig proved it [KL2] in the case that W is a
finite or affine Weyl group by relating the polynomials hy,x to the Poincaré polynomials of
the intersection cohomology of Schubert varieties. However, it is unclear how to generalize
this approach to general W : one doesn’t have the Schubert varieties to work with in that
case!

A decade later, Soergel [S1] gave an alternative proof for Weyl groups, nearly entirely
algebraic in nature except at one point again using the (equivariant) intersection cohomology
of Schubert varieties. It is this algebraic framework (Soergel bimodules) that Elias and
Williamson used to prove the Kazhdan-Lusztig positivity conjecture for general W ; the
main (and very nontrivial!) hurdle is to find a way to circumvent the geometric arguments
used by Soergel.

In fact, Elias-Williamson proved a stronger conjecture (whatever it means for one true
statement to be stronger than another), Soergel’s conjecture, that implies the Kazhdan-
Lusztig positivity conjecture. In particular, recall the category B of Soergel bimodules
associated to the Coxeter system (W,S) and real reflection representation h (one needs to take
care with the choice of reflection representation, it should be “reflection faithful” - a bit more
on this later). The category B is the full additive monoidal Karoubian subcategory of graded
R-bimodules generated by the bimodules Bs := R ⊗Rs R(1) for all s ∈ S, where R = R[h]
is the algebra of polynomial functions on h graded with deg h∗ = 2. In particular, we may
consider its split Grothendieck group [B]. As B is also monoidal and its objects are graded, [B]
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is a Z[v±1] algebra, with the product reflecting the monoidal structure [B1][B2] := [B1⊗B2]
and the grading reflected in v[B] := [B(1)]. Typical objects in B are the Bott-Samelson
bimodules BS(x) attached to any expression (= finite sequence of simple reflections) x =
(s1, ..., sn):

BS(x) := Bs1 · · ·Bsn ,

where juxtaposition denotes the tensor product over R.
Soergel’s categorification theorem then makes several assertions (see Boris’ talk for a de-

tailed discussion). First, for any x ∈ W and any reduced expression x for x, there is a unique
(up to isomorphism) indecomposable bimodule Bx appearing as a direct summand in BS(x)
but not appearing as a shifted direct summand of any BS(y) for a shorter expression y,
and Bx only depends on the element x ∈ W , and not on the choice of reduced expression
x, up to isomorphism. Furthermore, the bimodules Bx for x ∈ W give a nonredundant set
of representatives of the isomorphism classes of indecomposable objects in B up to shift.
The bimodule Bx is cyclic and generated in degree −l(x). Furthermore, [B] is isomorphic to
the Hecke algebra H via the assignments Hs 7→ [Bs] for s ∈ S. The inverse isomorphism,
ch : [B] → H, sends a Soergel bimodule B to a Z≥0[v±]-linear combination of the standard
basis elements Hy, where the coefficient of Hy records the graded multiplicity of certain
standard bimodules (which are *not* typically Soergel bimodules!) in a certain canonical
filtration. In particular, for every x ∈ W we can define the R-bimodule Rx which is the free
rank 1 R left R-module R with right R-module structure twisted by x, i.e. m.r = x(r)m for
all m ∈ Rx and r ∈ R. This is just the R-bimodule structure on the regular functions on
the linear subspace (“twisted graph”)

Gr(x) = {(xv, v)|v ∈ h} = {(v, x−1v)|v ∈ h} ⊂ h× h.

For any subset A ⊂ W we can consider the subspace

Gr(A) =
⋃
x∈A

Gr(x).

For any R-bimodule B we can then define the submodule

ΓAB := {m ∈ B|Supp(m) ⊂ Gr(A)},
and in particular for any x ∈ W we define Γ≥xB and Γ>xB in the obvious way. It’s a
theorem of Soergel that for any Soergel bimodule B there is a finite subset A ⊂ W such that
B = ΓA(B) and that for all x ∈ W we have an isomorphism

Γ≥xB/Γ>xB ∼= Rx(−l(x))⊕hx(B)

for some polynomial hx(B) ∈ Z≥0[v±1]. The character ch(B) ∈ H is then defined by

ch(B) =
∑
x∈W

hx(B)Hx.

Conjecture 2.1.2 (Soergel’s Conjecture). For all x ∈ W we have ch(Bx) = Hx.

The Kazhdan-Lusztig positivity conjecture clearly follows immediately from Soergel’s con-
jecture, and it is the latter proved in [EW]. The Kazhdan-Lusztig conjecture about the BGG
category O follows as well.

2.2. Some Background. For a Soergel bimodule B, let B := B ⊗R R, where R = R/R+

and R+ is the (graded) ideal of polynomials on h vanishing at 0. Clearly, B retains the
structure of a graded left R-module. Let (B)i denote its degree i component. Notice that
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any Bs for simple s is isomorphic to R(1)⊕R(−1) as a right and left R-bimodule. It follows

that dimRBS(w) = 2l(w), its graded dimension is given by binomial coefficients, and it is
zero in degrees d with |d| > l(w).

Throughout, we’ll fix the reflection representation h and linearly independent elements
{αs}s∈S ⊂ h∗ (“simple roots”) and {α∨s }s∈S ∈ h (“simple coroots”) such that

s(αs) = −αs, s(α∨s ) = −α∨s , and αs(α
∨
t ) = −2 cos(π/mst)

where mst is the order of st in W (and π/∞ := 0). We’ll assume that h is minimal with these
properties. (Technical point: such a reflection representation exists, is reflection faithful as
discussed above, the results of Soergel [S2] apply, and by results of Libedinsky [Li] it suffices
to prove Soergel’s conjecture for such an h.) The action of W on h is given by

s · v = v − αs(v)α∨s .

That the coroots α∨s are linearly independent means that the corresponding map R|S| → h is
injective. Taking duals, the corresponding evaluation map h∗ → R|S| is surjective; considering
the preimage of (R>0)|S|, we see that the intersection of half spaces⋂

s∈S

{v ∈ h∗ : v(αs) > 0}

is nonempty. We’ll fix an element ρ ∈ h∗ in this intersection of half spaces throughout.

Definition 2.2.1. A graded R-valued form 〈−,−〉 : B ×B → R on a graded R-bimodule B
is called invariant if it satisfies

(1) 〈rb, b′〉 = 〈b, rb′〉
(2) 〈br, b′〉 = 〈b, b′r〉 = 〈b, b′〉r.

Notice the right-left asymmetry - this asymmetry corresponds to the arbitrary decision to
quotient by R+ on the right rather than on the left. That the form is graded is the statement
that deg〈b, b′〉 = deg(b) + deg(b′).

Definition 2.2.2. Let M,N be graded R-bimodules. Define the graded hom by

Hom•(M,N) :=
⊕
i∈Z

Hom(M,N(i)).

Define the graded hom Hom•−R(M,N) similarly. Define the dual bimodule DM of M by

DM := Hom•−R(M,R),

with the structure of an R-bimodule by (r1fr2)(b) = f(r1fr2). Call M self-dual if M ∼= DM .

Recall the following: ([S2, Satz 6.14]):

Theorem 2.2.3 (Soergel). Every indecomposable Soergel bimodule Bx is self-dual.

Obviously, definitions 2.2.1 and 2.2.2 were made for each other. An invariant form on a
graded R-bimodule B is the same thing as a graded R-bimodule map

B → DB,
b 7→ 〈b, •〉. Such an invariant form is called non-degenerate if it induces an isomorphism
B ∼= DB (this is stronger than saying the form has a trivial radical). Clearly, an invariant
form 〈−,−〉B on B induces a graded R-valued form on B, denoted 〈−,−〉B, that is invariant
for the left R-action.
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Corollary 2.2.4. For all x ∈ W , ch(Bx) is fixed by the bar involution v = v−1, Hx = H−1x−1

on H, has coefficient 1 for Hx in the standard basis, and all other standard basis elements
Hy appearing with nonzero coefficient satisfy y < x.

Proof. (Included for completeness and to be omitted in the talk itself.) The proof is by
induction l(x). Clearly this is true for l(x) ≤ 1. For general x, assume ch(By) is fixed by bar
for all y ≤ x. Pick a reduced expression x for x. Then ch(BS(x)) is a product of elements
Hs for simple reflections x, and so is fixed by bar. Writing BS(x) = Bx⊕

⊕
y<x py(v)By for

various polynomials py(v) ∈ Z≥0[v±1] by Soergel’s theorem, by the self-duality of the Bz we
see that the polynomials py(v) satisfy py = py. Writing ch(Bx) = ch(BS(x))−

∑
y<x pych(By)

the claim follows. �

Definition 2.2.5. If V =
⊕

i V
i is a graded finite-dimensional R-vector space, then we

define

dimV :=
∑

(dimV i)v−i ∈ Z≥0[v±1].
If M is a finitely generated graded R-module M , set

rk M := dim(M ⊗R R).

This looks funny (v−i rather than vi) but is rigged so that dim(V ⊕p) = pdimV for p ∈
Z≥0[v±1].

For one last detour, let’s recall a couple trivial facts about the bar involution and an
important bilinear form on the Hecke algebra H. For p ∈ Z[v±1], we define p(v) = p(v−1).
This is extended to the bar (ring) involution H, h 7→ h on H by Hx = H−1x−1 . Recall that

the elements Hx are fixed by this involution (by definition). Let (−,−) denote the bilinear
Z[v±1]-valued form on H determined by (Hx, Hy) = δx,y (standard basis here). A trivial but
important property, used below, is that

(Hx, Hy) ∈ δxy + vZ[v].

This form is very important for Soergel bimodules due to the following result of Soergel,
which we will take for granted:

Theorem 2.2.6 (Soergel’s Hom Formula). Suppose B,B′ are Soergel bimodules. Then
Hom•(B,B′) is a graded free right R-module rank

rk Hom•(B,B′) = (ch(B), ch(B′)).

For example, when Soergel’s conjecture holds for x, i.e. when ch(Bx) = Hx, it follows
from Soergel’s hom formula that Hom•(Bx, Bx) is concentrated in positive degrees and
dim Hom(Bx, Bx) = 1 (*wakefulness test*: why did we already know this?). In particu-
lar:

Lemma 2.2.7. Suppose ch(Bx) = Hx holds. Then Bx admits an invariant form which is
unique up to a scalar. Moreover, any nonzero invariant form is non-degenerate.

Proof. By Theorem 2.2.3, Bx admits a nondegenerate invariant form. The rest follows im-
mediately from Theorem 2.2.6. �

2.3. Proof Outline. We now will start defining various statements involved in the inductive
proof. The proof will be by induction on the Bruhat order.
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Definition 2.3.1. For x ∈ W , let S(x) be the statement that Soergel’s conjecture holds for
x. Similarly, if X ⊂ W is a subset, let S(X) be the statement that S(x) is true for all x ∈ X.
Let S(< x) be the statement that S(y) holds for all y < x, S(≤ x) is similar, etc.

Definition 2.3.2. Let for x ∈ W , let hL(x) (“hard Lefschetz for x”) be the statement that
for all i ≥ 0 the operator of left multiplication by ρi induces an isomorphism

ρi : (Bx)
−i ∼= (Bx)

i.

Notations like hL(X), hL(< x), hL(≤ x), etc., are defined similarly.

When S(x) is known, we will fix a nondegenerate invariant form 〈−,−〉Bx on Bx, chosen
so that the associated form 〈−,−〉Bx

on Bx satisfies

〈c, ρl(x)c〉Bx
> 0

for any generator c ∈ B
−l(x)
x . By Lemma 2.2.7, this form is unique up to a positive real

multiple. It will be called the intersection form on Bx. Note that it is a symmetric form
(**asks wakefulness test**).

Definition 2.3.3. For x ∈ W , let HR(x) (“Hodge-Riemann” for x) be the statement that

S(x) holds and that for all i ≥ 0 the “Lefschetz” form on Bx
−i

defined by

(α, β)ρ−i := 〈α, ρiβ〉Bx

is (−1)(−l(x)+i)/2-definite when restricted to the primitive subspace

P−iρ := ker(ρi+1) ⊂ (Bx)
−i.

The statements HR(X), HR(< x), etc. are defined similarly.

It is annoying that we have to assume S(x) to talk about HR(x). So we’ll also introduce
related statements HR(x), where x is a reduced expression for x, as follows. We’ll see later
by an inductive argument/explicit construction that each Bott-Samelson bimodule BS(x) is
equipped with a symmetric non-degenerate intersection form coming from the natural ring
structure and a certain trace function.

Definition 2.3.4. For x ∈ W and x a reduced expression for x, let HR(x) denote the
statement that the obvious analogue of HR(x) holds when one replaces the intersection form
on Bx (which requires S(x), which we are *not* requiring here!) with the restriction of the
intersection form on BS(x) to Bx (for any embedding of Bx in BS(x) as a direct summand).

Lemma 2.3.5. If S(x) holds, then HR(x) and HR(x) are equivalent for any reduced ex-
pression x for x.

We’ll prove this lemma later in Section 3.
ASSUMPTION: Fix x ∈ W and s ∈ S with xs > x and assume S(< xs) holds.

Lemma 2.3.6. S(< xs) implies that End(By) = R for all y < xs.

Proof. Immediate from Soergel’s hom formula. �

The following statements are needed for the inductive argument.
Consider the form given by composition

(−,−)x,sy : Hom(By, BxBs)× Hom(BxBs, By)→ End(By) = R.
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Soergel [S2, Lemma 7.1(2)] showed that S(xs) is equivalent to the non-degeneracy of (−,−)x,sy
for all y < xs. As we will see later, By and BxBs are naturally equipped with nondegenerate
symmetric invariant bilinear forms, so there is a canonical identification

Hom(By, BxBs) = Hom(BxBs, By)

given by taking adjoints. We will therefore view (−,−)x,sy as a bilinear form on Hom(By, BxBs).

Definition 2.3.7. S±(y, x, s) (“Soergel’s conjecture for (y, x, s) with signs”) is the statement
that (−,−)x,sy is (−1)(l(x)+1−l(y))/2-definite.

In particular, by Soergel’s result [S2, Lemma 7.1(2)], we have

Lemma 2.3.8. S(< xs) and S±(< xs, x, s) imply S(xs).

Definition 2.3.9. hL(x, s) (“hard Lefschetz for (x, s)”) is the statement that for all i ≥ 0

ρi : (BxBs)
−i → (BxBs)

i

is an isomorphism

Lemma 2.3.10. hL(x, s) implies hL(xs). If hL(< xs) is known, they are equivalent.

Proof. The first statement holds because Bxs is a summand of BxBs. The second statement
follows similarly from the standing assumption S(< xs). �

Given a reduced expression x for x and an embedding (always as a direct summand) of Bx

in BS(x), then Bx inherits an invariant form from BS(x). Similarly, BxBs is a summand of
BS(xs) and inherits an invariant form that we’ll denote 〈−,−〉BxBs .

Definition 2.3.11. HR(x, s) (“Hodge-Riemann for (x, s)”) is the statement that for any
embedding Bx ⊂ BS(x) the Lefschetz form

(α, β)−iρ := 〈α, ρiβ〉BxBs

is (−1)(l(x)+1−i)/2-definite on the primitive subspace

P−iρ := ker(ρi+1) ⊂ (BxBs)
−i.

Lemma 2.3.12. HR(x, s) (defined right above) implies HR(xs) (here xs denotes an expres-
sion).

Proof. This follows from the fact that if V • is a finite-dimensional graded vector space with a
graded nondegenerate form and Lefschetz operator L satisfying the hard Lefschetz theorem
and Hodge-Riemann bilinear relations as in Xiaolei’s talk, then any L-stable graded subspace
W ⊂ V with symmetric Betti numbers also satisfies Hodge-Riemann (the restriction of a
definite form is definite with the same sign). �

Definition 2.3.13. HR(x, s) is the statement that HR(x, s) holds for all reduced expressions
x for x.

In a later talk, we will prove the following ([EW, Theorem 4.1]):

Theorem 2.3.14. There exists an embedding

ι : Hom(By, BxBs)→ P−l(y)ρ ⊂ (BxBs)
−l(y)

that is an isometry (up to a positive scalar) with respect to the local intersection form (−,−)x,sy
on the source and the Lefschetz form (−,−)

−l(y)
ρ on the target.
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As the restriction of a definite form is definite, and hence non-degenerate, by Lemma 2.3.8
we have

Lemma 2.3.15. S(< xs) and HR(x, s) imply S±(< xs, x, s).

Combining Lemmas 2.3.8 and 2.3.15 and the uniqueness of invariant forms on indecom-
posable Soergel bimodules Bz in the presence of S(z), we have

Lemma 2.3.16. S(< xs) and HR(x, s) imply S(≤ xs) and HR(xs).

This is the core statement of the induction. What remains to show is that S(≤ x) and
HR(≤ x) implies HR(x, s). In particular, this reduces Soergel’s conjecture to a statement
about the modules BxBs and their intersection forms, motivating the rest of this talk. In
a later talk, we will need to consider a deformation of the Lefschetz operator ρ in order to
complete the proof.

3. Invariant Forms on Soergel Bimodules

3.1. Review and More Definitions. Throughout this section, we’ll fix a Coxeter system
(W,S) and all the associated definitions from previous talks. In particular, mst will be the
order of st in W for simple reflections s, t ∈ S, the length function will be denoted l, we all
know what expressions and reduced expressions are, Bruhat order is denoted ≤. As in the
introduction, we’ll fix a real reflection representation h together with linearly independent
subsets {αs}s∈S ⊂ h∗ (“roots”) and {α∨s }s∈S ⊂ h (“coroots”) such that

αs(α
∨
t ) = −2 cos(π/mst) for all s, t ∈ S,

and we’ll assume h is minimal with respect to these properties. Remember that s ∈ S acts
on h by

s.v = v − αs(v)α∨s
and that this extends to an action of W that is reflection faithful : it is faithful and induces
a bijection between the “reflections” {wsw−1 : w ∈ W, s ∈ S} in W and the codimension 1
fixed spaces in h. We also fix ρ ∈ h∗ as in the introduction, satisfying

ρ(α∨s ) > 0 for all s ∈ S.
We also have the Hecke algebra H of W over Z[v±1] as recalled in the introduction, with its

standard basis {Hx}x∈W , its Kazhdan-Lusztig basis {Hx}x∈W , its bar involution p(v)Hx :=
p(v−1)H−1x−1 , and form (Hx, Hy) = δx,y.

Remember that Bs := R ⊗Rs R(1) for s ∈ S and for any expression x = (s1, ..., sn) we
have the associated Bott-Samelson bimodule

BS(x) := Bs1 · · ·Bsn := Bs1 ⊗R · · · ⊗R Bsn .

Recall that Bs is graded free of rank 2 as a left OR right R-module with a basis for either
action given by

cid := 1⊗ 1 ∈ Bs cs :=
1

2
(αs ⊗ 1 + 1⊗ αs).

By induction, it follows that BS(x) is graded free of rank 2l(x) with a basis given by the
elements

cε := cεs1 · · · cεsn
for all possible choices of εsi ∈ {1, si}.
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Definition 3.1.1. Let cbot ∈ BS(x) denote the basis element

cbot := c1 · · · c1
and let ctop ∈ BS(x) denote the basis element

ctop := cs1 · · · csn .
Let

Tr : BS(x)→ R

be the trace defined by taking the coefficient of ctop.

Remember that we have the relations

(1) rcs = csr

(2) rcid = cid(sr) + ∂s(r)cs

where ∂s : R→ R is the Demazure operator given by

∂s(r) :=
r − sr
αs

∈ R.

Recall that BS(x) = (R⊗Rs1 R⊗Rs2 · · · ⊗Rsn R)(d). In particular, BS(x)(−d) is a graded
commutative ring with term-wise multiplication. We have the multiplication rules:

(3) cid · cid = cid

(4) cid · cs = cs

(5) cs · cs = csαs = αscs

Definition 3.1.2. The intersection form 〈−,−〉BS(x) on BS(x) is the invariant symmetric
form defined by

〈b, b′〉BS(x) = Tr(b · b′).
Denote the associated form on BS(x) by 〈−,−〉BS(x). If TrR denotes the composition of Tr

with the map R→ R/R+ = R, then this latter form is given by

〈b, b′〉BS(x) = TrR(b · b′).

Notice that any element x ∈ h determines a Lefschetz operator (by left multiplication) on

BS(x), because the form is invariant:

〈xα, β〉 = 〈α, xβ〉.
Now let’s define some operators on the BS bimodules (no offense to the bimodules [Lo]).

Definition 3.1.3. Some definitions:
(1) For s ∈ S, let

µ : Bs → R µ(f ⊗ g) = fg

be the multiplication operator.
(2) For an expression x = (s1, ..., sm) and index i, 1 ≤ i ≤ n, let

xî := (s1, ..., ŝi, ..., sm)

where the hat denotes omission
(3) Let

Bri : BS(x)→ BS(x)(2) b1 · · · bm 7→ b1 · · · (bicsi) · · · bm



10 SETH SHELLEY-ABRAHAMSON

(note that bicsi = csibi because rcs = csr for all r ∈ R)
(4) Let

ϕi : BS(x)→ BS(xî) b1 · · · bm 7→ b1 · · ·µ(bi) . . . bm
(5)

χi : BS(xî)→ BS(x) b1 · · · bi−1bi+1 · · · bm 7→ b1 · · · bi−1csibi+1 . . . bm.

Remark 3.1.4. By Equation (1) we have Bri = χi ◦ ϕi.

We’ll need the following lemma:

Lemma 3.1.5. As endomorphisms of BS(x), x = (s1, ..., sm), we have

ρ · (−) =
m∑
i=1

(si−1 . . . s1ρ)(α∨si)χi ◦ ϕi + (−) · x−1ρ.

Proof. This follows immediately from Equation (2) *draws nice diagram on the board*. �

3.2. Construction and Properties of Invariant Forms. Now we’ll see how to induc-
tively equip some R-bimodules with invariant forms. For an R-bimodule B, consider the two
maps

α, β : B → BBs = B ⊗R Bs

α(b) = bcid
β(b) = bcs.

WARNING: β is a morphism of bimodules, but α is only a morphism of left R-modules. By
Equation (2) one has:

α(br) = α(b)(sr) + β(b)∂s(r).

Lemma 3.2.1. Suppose that B is an R-bimodule, finitely generated graded free as a right R-
module, and is equipped with an invariant form 〈−,−〉B. Then BBs is also finitely generated
graded free as a right R-module (in fact BBs

∼= B ⊕ B as right or left R-modules - but not
necessarily as bimodules!) and there is a unique invariant form 〈−,−〉BBs on BBs, which
we call the induced form, satisfying

〈α(b), α(b′)〉BBs = ∂s(〈b, b′〉B)

〈α(b), β(b′)〉BBs = 〈b, b′〉B and 〈β(b), α(b′)〉BBs = 〈b, b′〉B
〈β(b), β(b′)〉BBs = 〈b, b′〉Bαs

for all b, b′ ∈ B. If 〈−,−〉B is nondegenerate, then so is 〈−,−〉BBs. If 〈−,−〉B is symmetric,
then so is 〈−,−〉BBs.

Furthermore, the intersection form on BS(x) is obtained in precisely this way, starting
with the canonical multiplication form on R and iterating the induced form procedure.

Proof. If e1, ..., em is a basis for B as a right R-module, then α(e1), ..., α(em), β(e1), ..., β(em)
is a basis for BBs as a right R-module, so formulas above fix the form 〈−,−〉BBS

on this
basis, giving uniqueness. Extending by right-R-linearity, it is then easy to see that the
formulas above hold for all b, b′ ∈ B; for example, the final formula is right-R-biliinear in
b, b′ so if it holds on a basis it holds everywhere; for the third one it’s right-R-linear in b, so
we just need to check if b, b′ were in our basis and r ∈ R we have

〈β(b), α(b′r)〉BBs = 〈β(b), α(b′)(sr) + β(b′)∂s(r)〉BBs

:= 〈b, b′〉B(sr) + 〈b, b′〉Bαs∂s(r) = 〈b, b′〉Br = 〈b, b′r〉
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where we used at some point that

sr + αs∂s(r) = r

which follows immediately from the definition of the Demazure operator. Similar calculations
show that the other formulas hold and that the form is invariant. That the induced form is
symmetric when the initial form is is clear.

For non-degeneracy, suppose the form is non-degenerate. Then let e∗1, ..., e
∗
m be the dual

basis for e1, ..., em. Then
α(e1), ..., α(em), β(e1), ..., β(em)

and
β(e∗1), ..., β(e∗m), α(e∗1), ..., α(e∗m)

are right-R-bases for BBs, and in these bases the form is represented by the matrix(
I αsI
0 I

)
(the zero block in the lower left arises because ∂s(1) = 0), which is visibly invertible, so
〈−,−〉BBs is non-degenerate.

That the intersection form on BS(x) arises by an iteration of this procedure is proved by
induction and is straightforward (look at the cε-basis). �

Corollary 3.2.2. The intersection form on a Bott-Samelson bimodule is non-degenerate.

Lemma 3.2.3. The Lefschetz form (−,−)
−l(x)
ρ on BS(x)

−l(x) ∼= R is positive definite, when
x is a reduced expression.

Proof. Recall that cbot := cid · · · cid spans BS(x)−l(x). We claim that

ρl(x)cbot = Nctop ∈ BS(x)

for some N > 0, which will imply the result. The proof of this is by induction on l(x). The
case l(x) = 0 is clear.

By Lemma 3.1.5 we have

ρ · cbot =
∑
i

(si−1 · · · s1ρ)(α∨si)χi(cbot) + cbot · (x−1ρ)

(notice that the cbot in the sum lives in BS(xî)). Notice that (si−1 · · · s1ρ)(α∨si) is positive
for all i by our assumption on ρ and the fact that x is a reduced expression. The last term
cbot · (x−1ρ) is obviously zero in BS(x), so it suffices to know that ρl(x)−1χi(cbot) = Nictop in

BS(x) for some Ni ≥ 0 and that at least one Ni is strictly positive.
There are two cases:
Case 1: xî is a reduced expression. Then by induction

ρl(x)−1cbot = Nictop ∈ BS(xî)

for some Ni > 0. Clearly χi(ctop) = ctop, so ρl(x)−1χi(cbot) = Nictop ∈ BS(x).
Case 2: xî is not a reduced expression. In this case we have

BS(xî)
∼=
⊕

B⊕pzz

with all z appearing on the righthand side satisfying l(z) < l(x) − 1 and pz ∈ Z≥0[v±1].
For degree reasons ρl(x)−1 vanishes on any such Bz (remember that ρ is a degree 2 operator
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and that Bz is supported in degrees d with |d| ≤ l(z) < l(x) − 1), and therefore vanishes

identically on BS(xî). In particular, ρl(x)−1χi(cbot) = 0 for such i.
Therefore we have

ρl(x)cbot =

(∑
i

(si−1 · · · siρ)(α∨i )Ni

)
ctop ∈ BS(x)

with ∑
i

(si−1 · · · siρ)(α∨i )Ni > 0

as needed. �

Finally, we make the following observation as promised in the introduction:

Lemma 3.2.4. If S(x) holds, then HR(x) and HR(x) are equivalent, for any reduced ex-
pression x for x.

Proof. When S(x) holds, then by definition the intersection form on Bx is a non-degenerate
invariant form that gives a positive Lefschetz form in the lowest graded space. But from
the previous lemma, we see that the restriction of the intersection form on BS(x) to Bx ⊂
BS(x) (embedding as summand) is also such a form. As the space of invariant forms is
1-dimensional, we see that these forms agree up to a positive scalar multiple. So then the
Hodge-Riemann bilinear relations are clearly equivalent for the two forms. �
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