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QUOTIENTS
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Abstract. These are notes for a talk in the MIT-NEU Graduate seminar on Hecke Algebras and

Affine Hecke Algebras (AHAHA) held in Fall 2014. This talk is divided into three parts. In the first,

we introduce the affine Hecke algebras and describe a useful basis for the algebra over the ground
ring. We then give a complete description of the center of the affine Hecke algebra and prove Kato’s

Theorem regarding unique irreducibility of the Kato module in its central character block. The main

reference for this part of the talk is [Kle05, 3.1-3.4, 4.1-4.3].

The second part of the talk is related to cyclotomic Hecke algebras, also called Ariki-Koike
algebras in the references provided. We prove a basis theorem for these algebras and use the basis

theorem to show that the cyclotomic Hecke algebras are symmetric algebras. The main references for
this part of the talk is [GJ11, 5.1-5.2]. Auxilliary useful references include [AK94, BM97, MM98] and

[Mac95, 1, Appendix B].

In the final part of the talk, we construct an equivalence of categories between affine Hecke algebra

modules in the Kato block and modules over the center of particular character. The main references
for this part of the talk is [CR04, 3.1-3.2].
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Part A - Affine Hecke Algebra of Type A

1. Introduction and Notation

The Affine Hecke algebra (of Type An) is defined as a q-deformation of the group algebra of the affine
Weyl group (of Type An). In this section of the talk, our goal is to construct a basis for the affine hecke
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Algebra, describe the center of the algebra and then give the construction and proof of irreducibility of
Kato modules, which are modules induced from the Laurent polynomial subalgebra of the affine Hecke
algebra. At the end of the section, we prove the equivalence of categories given in [CR04]. We will only
discuss the nondegenerate affine Hecke algebra. There are analogous results with similar proofs in the
degenerate case which we will leave as an exercise (and which can be looked up in [Kle05, 3, 4].)

We fix some notation.

Notations and Conventions

(1) F denotes a commutative domain (most often a field), not necessarily of characteristic
0.

(2) For q a generic variable, A is the commutative ring F [q±] and K is its field of fractions.
(3) HF,n (and later Hn) denotes the affine Hecke algebra over F .
HA,n denotes the affine Hecke algebra over A with parameter equal to the polynomial
variable q.

(4) We let PF,n,PA,n,Pn be the respective Laurent polynomial subalgebras and let
ZF,n, ZA,n, Zn be the symmetric Laurent polynomials, which will turn out to be the
centers of the affine Hecke algebras.

(5) We define HTF,n,HTA,n,HTn to be the (regular) Hecke subalgebra of the affine Hecke
algebra.

(6) For s ∈ Sn, and f ∈ PF,n we define s · f to be f with the variables permuted via s.

2. Definition and Elementary Computations

Let F be a commutative domain. Let q ∈ F×. At some point, we will assume q is not 1 (Kato
Module Section) but as of now it is unimportant.

Definition 2.1. The affine Hecke algebra HF,n (over F ) is the unital associative F -algebra

generated by the elements T1, . . . , Tn−1, X
±
1 , . . . , X

±
n subject to

• The Eigenvalue Relations:

(Ti − q)(Ti + 1) = 0

• The Laurent Relations:

XiXj = XjXi

XiX
−1
i = X−1

i Xi = 1

• The Braid Relations:

TiTj = TjTi if |i− j| > 1

TiTi+1Ti = Ti+1TiTi+1

• The Action Relations:

TiXj = XjTi if i 6= j, j − 1

TiXiTi = qXi+1
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Note that the last relation also implies that TiX
−1
i+1Ti = qX−1

i .

We also define some useful subalgebras of HF,n.

Definition 2.2. The subalgebra generated by the Xi is denoted as PF,n.
The subalgebra of symmetric Laurent polynomials in the Xi is denoted as ZF,n.

The subalgebra generated by the Ti is denoted as HTF,n. In particular, if w is an element in
Sn, then since the braid relations hold in HF,n, we can unambiguously define the element

Tw ∈ HTF,n by taking any reduced word for w.

We end this section with the following useful computational tool. The proof is left as an
exercise.

Lemma 2.3. Let f ∈ PF,n. We have a standard action of Sn on PF,n by permutation of
variables. If si denotes the transposition (i, i+ 1), then we have

Tif = (si · f)Ti + (q − 1)
f − (si · f)

1−XiX
−1
i+1

Now, if w is a reduced expression of an element of Sn, then, using the above relation and
induction, we have

fTi = Ti(si · f) + (q − 1)
f − (s1 · f)

1−XiX
−1
i+1

and

Twf = (w · f)Tw + (q − 1)
∑
w′

fw′Tw′

and

fTw = Tw(w−1 · f) + (q − 1)
∑
w′

Tw′gw′

where the summation is over w′ is a reduced expression that is contained in w i.e. over w′

that are smaller than w in the Bruhat order on reduced words in Sn.

3. Basis Theorem - Bernstein Presentation

For α ∈ Zn, define Xα := Xα1
1 · · ·Xαn

n . Our goal for this section is to prove the following
theorem.

Theorem 3.1. The set

B := {XαTw : α ∈ Zn, w ∈ Sn}
is an F -basis for HF,n.

Proof. The above lemma shows us that FB is invariant under left multiplication by the
generators Ti, Xi and is hence all of HF,n. Thus, we need to show that B is linearly
independent over F . It suffices to show B is linearly independent in Hn, the affine Hecke
algebra with generic q defined over A = F [q, q−1], because non-trivial relations after
specializations of q can be lifted to non-trivial relations before specialization. In this case, we
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show that B is linearly independent by constructing an A-representation of Hn in which B
maps to a linearly independent set of operators. Secretly, this representation is induced from
the trivial representation of HTn but we do not know that until after the basis theorem is
proved.

Let Hn act on A[Y ±1 , . . . , Yn] via

(a)

X±i · f = Y ±i f

(b)

Ti · f = si · f + (q − 1)
f − si · f

1− YiY −1
i+1

We first show that actually defines a representation by checking that the defining relations are
satisfied. It’s immediate that the Laurent relations, the first action relation and the first braid
relations hold. Checking that the eigenvalue relations hold is an easy computation that we
leave as an exercise. So, we only need to show now that the last action relation holds and that
the second braid relations hold. We compute the action relations and leave the braid relations
as a similar exercise.

TiXiTi(f) = Ti

(
Yi(si · f) + (q − 1)YiYi+1

f − (si · f)

Yi+1 − Yi

)
= Yi+1f + (q − 1)Yi+1

(
Yi(si · f)− Yi+1f

Yi+1 − Yi
+ Yi

(si · f)− f
Yi − Yi+1

)
+ (q − 1)2 YiYi+1

Yi+1 − Yi
(
f − (si · f) + (si · f)− (s2

i · f)
)

= Yi+1f + (q − 1)Yi+1f = qYi+1f = qXi+1(f)

as desired.

We now check that the set B maps to A-linearly independent operators under this
representation. Suppose we have

M =
∑
i

ciBi = 0

with ci ∈ A, Bi = xαiTwi ∈ B. We claim inductively that ci ∈ (q − 1)j ⊆ A. The base case of
j = 0 is obvious. Assume the statement holds for j − 1. Then, for any f ∈ A[Y ±1 , . . . , Y ±n ], the
action of M (modulo (q − 1)j) is given by

0 =
∑
i

cix
αi(wi · f).

Now, if we let N be bigger than all the |αi| (which is the sum of the absolute value of its
components), then choosing f = XN

1 · · ·XnN
n , we see that the monomials

xαi(wi · f) = xαj (wj · f)⇔ i = j.

Hence, using both these relations, we see that ci ≡ 0 mod (q − 1)j , which completes the
induction step.
Hence, we have

ci ∈ ∩∞j=0(q − 1)j = 0.
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Thus, the set B is linearly independent over A, and hence forms a basis, as desired.
�

We have an obvious corollary of the above theorem.

Corollary 3.2. PF,n is isomorphic to the algebra of Laurent polynomials in n variables over
F .
HTF,n is isomorphic to the Hecke algebra of type An−1 over F .

This completes this section. We now move on to describing the center of the affine Hecke
algebra.

4. The Center of the Affine Hecke Algebra

Let ZF,n be the sualgebra of symmetric Laurent polynomials in the Xi. Then, we have the
following result.

Theorem 4.1. Z(HF,n) = ZF,n.

Proof. Note that ZF,n clearly commutes with each Xi and it also commutes with each Ti by
Lemma 2.3. Hence, ZF,n ⊆ Z(HF,n).

To get the reverse inclusion, we first show that Z(HF,n) ⊆ F [X±1 , . . . , X
±
n ]. We use the basis

theorem proved before. Suppose

f =
∑
i

ciX
αiTwi ∈ Z(HF,n).

Let w0 in the decomposition of f be an element of Sn that is maximal in the Bruhat order.
Suppose for contradiction that f /∈ PF,n. Then, w0 6= e. Let j ∈ {1, . . . , n} be such that
w0(j) 6= j. Then,

Xjf =
∑
i

ciXjX
αiwi,

which has w0 coefficient c0X0X
α0 , but by Lemma 2.3, the w0 coefficient of

fXj =
∑
i

ciX
αiwiXj

is c0Xw0(j)X
α0 which is not the same. Hence, by the basis theorem, Xjf 6= fXj , a

contradiction. Hence, Z(HF,n) ⊆ PF,n.

We now show that Z(HF,n) ⊆ ZF,n. By Lemma 2.3, for a Laurent polynomial f ,

Tif = (si · f)Ti + (q − 1)
f − (si · f)

1−XiX
−1
i+1

.

So, if f ∈ Z(HF,n), then, by the basis theorem,

fTi = (si · f)Ti
and hence f is symmetric (as i is arbitrary).

�

5



5. Kato Modules and Kato’s Theorem

From now on, let F be a field and let q ∈ F× not be 1. Let HF,n be denoted by Hn (analogous

convention for Pn,HTn , Zn). Let Pn-mod be the category of finite-dimensional (over F ) Pn
modules. We want to understand the Hn-modules of particular central character i.e. modules
in which Zn acts by each Xi acting as the same scalar. The last section of this talk will give a
complete description of such modules. In this section, we merely study the simple objects in
this subcategory of Hn-mod. Our goal of this section is thus to prove the following theorem.

Theorem 5.1. Let a ∈ F×. Take the one-dimension Pn-module L(a, . . . , a) in which Xi acts
as a and define L(an) to be the induced Hn-module

IndHnPn (L(a, . . . , a)).

Then, L(an) is the unique simple module in its central character block.

We first introduce the notion of formal characters on Pn-modules.

Definition 5.2. For a = (a1, . . . , an) ∈ (F×)n, we have a one-dimensional representation of
Pn in which Xi acts as ai. These form a complete list of irreducible Pn-modules.

For an arbitrary finite-dimensional Pn-module M , let Ma be the largest submodule whose
composition factors are L(a) or equivalently, the generalized eigenspace in M in which Xi has
eigenvalue ai.

We then have the obvious result.

Lemma 5.3. For any M ∈ Pn-mod, we have

M = ⊕a∈(F×)nMa.

We now define the formal character for a representation M ∈ Hn-mod.

Definition 5.4. For M ∈ Pn-mod, let [M ] be its image in the Grothendieck group. Then, for
M ∈ Hn-mod, we define the formal character of M , chM , to be [ResPnM ].

Since ResPn is an exact functor, ch is a homomorphism from the Grothendeick group of
Hn-mod to the Grothendeick group of Pn-mod. The following Lemma will be useful later.

Lemma 5.5. Let a = (a1, . . . , an) ∈ (F×)n. Then,

ch IndHnPn L(a) =
∑
w∈Sn

[L(w(a))]

where w(a)i = aw−1(i).
In particular, note that

ch IndHnPn (L(a, . . . , a)) = n!L(a, . . . , a).

Proof. Fix a = (a1, . . . , an). By the basis theorem, an F -basis for L(a) is given by
{Tq ⊗ 1 : w ∈ Sn}. Put a total order on this basis by refining the Bruhat order on Sn. Then,
for each i from 1 to n, we have by Lemma 2.3

Xi(Tw ⊗ 1) = (Tw ⊗Xw−1(i)(1)) +
∑
w′<w

Tw′ ⊗ gw′(1) = aw−1(i)(Tw ⊗ 1) +
∑
w′<w

Tw′ ⊗ gw′(1).
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Hence, every Xi acts as an upper triangular matrix in the given basis for L(an) with a’s on

the diagonals. Now, we have an ascending filtration {Ml} (as a Pn-mod) of IndHnPn L(a) where

Ml =

l⊕
i=1

F (Twi ⊗ 1).

Thus, since the filtration and its associated graded module give the same element in the
Grothendieck group, we have by the above computation,

ch IndHnPn (L(a)) =

n!⊕
i=1

ch(Mi/Mi−1) =

n!⊕
i=1

L(wi(a))

as desired.
�

We now define central characters of representations in Hn-mod.

Definition 5.6. Since Z(Hn) = Zn, for each a = (a1, . . . , an) ∈ (F×)n we can define a
homomorphism

χaZn → F

by sending the Laurent polynomial f(x1, . . . , xn) 7→ f(a1, . . . , an).
By elementary theory of symmetric functions, we have χa = χb if and only if b is in the orbit
of a in the action of Sn. We say that χa is a central character of Hn. If γ is the orbit in Fn of
α under the action of Sn, we also say that γ is a central character of Hn.

Now, in any irreducible in Hn-mod, Zn acts via a particular central character. Thus, Hn-mod
splits up as the direct sum of abelian subcategories corresponding to a particular central
character. This gives us the following definition.

Definition 5.7. The subcategory of Hn-mod in which every object has, as composition
factors, irreducibles in which the center Zn acts via the character γ is called the block in
Hn-mod corresponding to γ. We denote the block corresponding to γ by Hn-mod[γ].

We are now ready to define Kato modules and prove Kato’s theorem regarding these modules.
Kato modules are objects that are analogous to Verma modules in Lie theory.

Definition 5.8. For a ∈ F×, we define the Kato module (with central character
γa = (a, . . . , a)) to be

L(an) := IndHnPn (L(a, · · · a)).

By Lemma 5.5, we know that L(an) has central character γa and hence belongs to the block
corresponding to this character. Kato’s Theorem then states that L(an) is the unique
irreducible in its block.

We build up to Kato’s Theorem by first proving the following lemma.

Lemma 5.9. Let a ∈ F×. Let L = L(a, · · · , a) (and hence L(an) = Hn ⊗Pn L). The common
a-eigenspace of the operators X1, . . . , Xn−1 on L(an) is precisely 1⊗ L.
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Proof. By the basis theorem, L(an) = ⊕w∈SnTw ⊗ L. We prove by induction that the common
a-eigenspace for X1, . . . , Xi is ⊕

y∈〈si+1,...sn−1〉

Ty ⊗ L.

We denote 〈si+1, . . . , sn−1〉 as ∆i. We use the base case of i = 0, which is vacuously true. So,
now suppose that i ≥ 1 and suppose that the common a-eigenspace for X1, . . . , Xi−1 is⊕

y∈∆i−1

Ty ⊗ L.

Now, any Tw for w ∈ ∆i−1 can be written as Tw′TiTi+1 · · ·Tj with i− 1 ≤ j ≤ n− 1 and
w′ ∈ ∆i. Then, by Lemma 2.3 and some computation, we have for any v ∈ L,

(Xi − a)(Tw ⊗ v) = −(q − 1)aTw′Ti · · ·Tj−1 ⊗ v + (∗)
where (∗) stands for terms that belong to⊕

y′∈∆i,k<j−1

Ty′Ti · · ·Tk ⊗ L.

Now, suppose z is in the common a-eigenspace of X1, . . . , Xi. By the induction hypothesis, we
can write, for some fixed nonzero v ∈ L,

z =
∑

y∈∆i−1

cyTy ⊗ v =
∑

w′∈∆i,i−1≤j≤n−1

cw′,jTw′Ti · · ·Tj ⊗ v.

Choose maximal j for which cw′,j is nonzero (for some w′). But then, the above calculation
shows that, since q 6= 1 unless j = i− 1 (i.e. there are only the w′ terms), (Xi − a)z has a
nonzero Tw′ · · ·Tj−1 coefficient. Thus, by the basis theorem, we have z ∈

⊕
y∈∆i

Ty ⊗ L. This

completes the induction step. Since ∆n−1 = {1}, we have the desired result.
�

We finish the section by proving Kato’s Theorem.

Theorem 5.10. Let a ∈ F× and let µ = (µ1, . . . , µr) be a composition of n. We define
Hµ = Hµ1 ⊗ · · · ⊗Hµr and define Hn−1 to be the affine Hecke subalgebra generated by
X±1 , . . . , X

±
n−1 and T1, . . . , Tn−2. Then:

(1) L(an) is irreducible and it is the only irreducible in its block.

(2) All composition factors of ResHµ(L(an)) are isomorphic to

L(aµ1) � · · ·� L(aµr)

and the socle of ResHµ(L(an)) is irreducible.

(3) The socle (the sum of all simple submodules) of ResHn−1(L(an)) ∼= L(an−1).

Proof. As before, let L denote L(a, · · · a) ∈ Pn-mod.
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(1) Let M be a nonzero Hn-submodule of L(an). Since L(an) restricted to Pn has
composition factors all isomorphic to L, so does M by Lemma 5.5. Hence, ResPn(M)
contains a Pn-submodule N isomorphic to L. Now, Pn acts on L via scalars in which
each Xi acts as a. Thus, N is contained in 1⊗ L, the common a-eigenspace of
X1, . . . , Xn. But, we know that 1⊗ L is irreducible as a Pn-module. Hence, N = 1⊗ L
and hence

M ⊇ Hn(1⊗ L) = L(an).

Thus, L(an) is irreducible. Now, if M ′ is any other representation in the same block,
by central character considerations, ResPn(M ′) must contain a Pn-submodule
isomorphic to L and hence by Frobenius Reciprocity, M ′ contains an Hn-submodule
isomorphic to L(an).

(2) The fact that all composition factors of ResHµ(L(an)) are isomorphic to
L(aµ1) � · · ·� L(aµr) is immediate from unicity of irreducibility of L(aµi) and central
character considerations via Lemma 5.5. To see that the socle of ResHµ(L(an)) is
irreducible first note that the Hµ-submodule HµL ∼= Hµ ⊗ L of L(an) is isomorphic to
the irreducible

L(aµ1) � L(aµr).

Conversely if M is any irreducible Hµ-submodule of the restriction, then using the
same argument as in the proof of (1), we see that M contains L and hence must be
HµL. Thus, Hµ ⊗ L is the socle, which is hence irreducible.

(3) First note that by part 2, L(an) has a unique Hn−1,1 submodule
Hn−1,1 ⊗ L ∼= L(an−1) � L(a), which is the socle of the restriction of L(an). This gives
us a one-dimensional contribution of L(an−1) to the socle. However, if M is any other
irreducible Hn−1-submodule of L(an), then M must contain Hn−1 ⊗ L by the same
argument as in (1). Hence, the socle of ResHn−1(L(an)) is isomorphic to L(an−1).

�

Part B - Cyclotomic Hecke Algebras of Type A

6. Introduction and Notation

Cyclotomic Hecke Algebras, called Ariki-Koike algebras in the main reference [GJ11], are
defined as q-deformations of the group algebras of the complex reflection groups of type
G(m, 1, n). They can also be viewed as cyclotomic quotients of the affine Hecke algebra. We
begin Part B by briefly describing the construction and representation theory of these groups.

Additionally, we define some notation here that will be fixed for the section of the talk on
AK-Algebras. This list of notation is for the convenience of the reader. Terms used in the
notation section will be defined when introduced later.

Notations and Conventions
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(1) R denotes an arbitrary commutative domain with unity of characteristic 0, unless
specified otherwise. k is the field of fractions of R.

(2) For q, q1, . . . , qn−1 generic variables, A is the commutative ring R[q±, q1, . . . , qn−1] and
K is its field of fractions.

(3) We fix an m ∈ Z>0. Then, Wn denotes the complex reflection groups of type
G(m, 1, n).

(4) HR,n denotes the Ariki-Koike Algebra associated to G(m, 1, n) over the ring R.
HA,n denotes the Ariki-Koike algebra associated to G(m, 1, n) over the ring A, with
generic q, qi.
Hn denotes K ⊗A HA,n.

(5) For λ a partition of n, we write λ ` n.
For λ an m-partition of n, we write λ `m n.

7. Complex Reflection Groups of Type G(m, 1, n)

Definition 7.1. A complex reflection in GL(r,C) is a matrix whose 1-eigenspace has
dimension r − 1. In other words, a complex reflection is an automorphism of a complex vector
space which fixes some hyperplane pointwise. Note however, that a complex reflection does
not have to have order 2.
A complex reflection group is a subgroup of GL(r,C) for some r that is generated by complex
reflections.

Finite complex reflection groups have been completely classified by Sheppard and Todd. In
their classification, there are 34 exceptional groups and one infinite family of groups
G(m, p, n), where m, p, n are positive integers. In this talk, we will only care about the
complex reflection groups of type G(m, 1, n). We now give 3 realizations of this group:

1. G(m, 1, n) is the wreath product Z/mZ o Sn, which is the group (Z/mZ)n o Sn with
the symmetric group acting via permutation of coordinates.

2. We can also define G(m, 1, n) using generators and relations. There is a presentation
of G(m, 1, n) with generators S = {si : i = 0, . . . , n− 1} and relations
• sm0 = 1
• s2

i = 1 for i > 0.
• sisj = sjsi if |i− j| > 1.
• s0s1s0s1 = s1s0s1s0.
• sisi+1si = si+1sisi+1 if i ≥ 1.

The last 3 relations are called the braid relations in G(m, 1, n).

3. Finally, we can realize G(m, 1, n) inside GL(n,C) as the subgroup of monomial
matrices with entries that are mth roots of unity. Here, for some primitive mth root of
unity ζm, we have s0 = ζmE1,1 +

∑
j 6=iEjj and si = Ei,i+1 + Ei+1,i +

∑
j 6=i,i+1Ejj .

It is this last definition that makes it clear that G(m, 1, n) is a finite complex
reflection group.

From now on, fix a positive integer m and let Wn denote G(m, 1, n). As a useful fact, we note
that |Wn| = mnn!.

10



We now define some combinatorial objects that generalize the notion of a partition and that
will be useful in the representation theory of Wn and the associated AK-algebra.

Definition 7.2. We call λ = (λ1, . . . , λm) an m-partition of n, if each λi is a partition of
{λi−1 + 1, . . . λi−1 + λi} and

∑m
i=1 |λi| = n.

Note that in m-partitions, we allow some of the λi to have size 0.

Let R now be a commutative domain of characteristic 0 and let k be its fraction field. Assume
that R contains the mth roots of unity. Then, it turns out that k is a splitting field for Wn

and that the irreducible representations of Wn over k are indexed by m-partitions of n. We
give a brief description of these representations and leave the verification of the details as an
exercise that can be looked up in [Mac95, 1, Appendix B] if needed.

First, we define m 1-dimensional representations of Wn via the m irreducible characters of
Z/mZ. Let ζm be a fixed primitive mth root of unity. We then define the representation σk
by sending

s0 7→ ζkm ∈ k
and

si 7→ 1, i > 0.

Let λ = (λ1, . . . , λm) now be an m-partition of n and suppose ni = |λi|.. For each i, we can
use the natural projection Wni → Sni to extend the irreducible Specht module Eλi of Sni to
an irreducible representation of Wni . Then, since we have W λ

n = Wn1 × · · ·Wnm ⊆Wn, we can
define the representation

Eλ := IndWn

Wλ
n

((Eλ
1 ⊗ σ1) � (Eλ

2 ⊗ σ2) � · · ·� (Eλ
m ⊗ σm)).

We now have the following theorem:

Theorem 7.3. The above procedure gives a complete list of non-isomorphic simple Wn

representations, that is,

Irrk(Wn) = {Eλ : λ `m n}.

We next describe the branching rule for restriction of representations from Wn to Wn−1. To
do so, we generalize the notion of Young Tableaux to m-partitions.

Definition 7.4. For λ = (λ1, . . . , λm) `m n, we define the Young tableau [λ] of λ to be an
m-tuple of Young tableaux ([λ1], . . . , [λm]).
We define the set of addable (resp. removable) boxes, add(λ) (resp. rem(λ)), to be the union
of the set of addable (resp. removable) boxes in each component tableau.
For x ∈ add(λ) (resp. rem(λ)), we define [λ+ {x}] (resp. λ− {x}]) as the m-partition
obtained by adding (resp. removing) the box x.

Then, we have the following branching rule in Wn:

Theorem 7.5. For all λ `m n, we have

ResWn
Wn−1

(Eλ) = ⊕µEµ

where the sum is taken over all [µ] that are obtained by removing a box from [λ].
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This finishes our discussion of the representation theory of the complex reflection groups Wn.
We now move on to the associated Cyclotomic Hecke Algebra.

8. Cyclotomic Hecke Algebra: Definition and Examples

From now on, we fix the commutative domain R containing C and let k be its field of
fractions. We define the cyclotomic Hecke algebra HR,n as a deformation of the group algebra
R[Wn]. Let q, q1, . . . , qm ∈ R×. Then:

Definition 8.1. The CH-algebra HR,n = HR,n(q, q1, . . . , qm) is defined as the unital
associative R-algebra generated by the elements T0, . . . , Tn−1 subject to

• The Eigenvalue relations:

(T0 − q1) · · · (T0 − qm) = 0

(Ti − q)(Ti + 1) = 0 for i > 0.

• The Braid Relations:

TiTj = TiTj if |i− j| > 1

TiTi+1Ti = Ti+1TiTi+1 for i > 0

T0T1T0T1 = T1T0T1T0.

We give a few examples of HR,n for particular values of q, qi.

Example 8.2. We give 3 examples here and leave the verification of the details as an exercise.

1. Suppose R contains the primitive mth root of unity ζm. If q = 1 and qj = ζjm. Then,
HR,n

∼= R[Wn]. In particular, if instead of R, we use its field of fractions k, then the
corresponding Ariki-Koike algebra is split semisimple.

2. Suppose l = 1 and suppose q has a square root in R. Then, HR,n is the Hecke algebra
over R of type An−1.

3. Suppose l = 2 and suppose q, q1, q2 have square roots in R. Then, HR,n is the Hecke
algebra over R of type Bn.

So we see that many interesting algebras are simply special cases of HR,n, which gives us
enough reason to want to understand its structure and representation theory.

We end the section with the following important remark:

Remark. There is a very useful realization of the cyclotomic Hecke algebra as a quotient of
the affine Hecke algebra HR,n by the two sided ideal generated by (X1 − q1) · · · (X1 − qm).
From the definition of the defining relations for each algebra, it is not difficult to see that
there is a surjective algebra homomorphism

Φ : HR,n → HR,n

12



given by sending Ti to Ti for i > 0 and sending X1 to T0. This gives additional motivation to
the study of cyclotomic Hecke algebras because any finite dimensional representation of the
affine Hecke algebra factors through a cyclotomic quotient.

9. Jucys-Murphy Basis of Cyclotomic Hecke Algebras

We now define some special elements of HR,n that are called Jucys-Murphy elements. For
j = 1, . . . , n, define

Lj = q1−jTj−1 · · ·T1T0T1 · · ·Tj−1.

Remark. If we assume m = 1 and specialize at q = 1, then Hk,n
∼= k[Sn]. However, under

this specialization, the Jucys-Murphy elements defined here are not the same as the
Jucys-Murphy elements defined classically.

Remark. The Jucys-Murphy elements defined above can also be defined as Lj = Φ(Xj),
where Φ is the map defined in the terminal remark of the previous section. All of the
following identities for the Jucys-Murphy elements can thus be proved by proving them at the
level of the affine Hecke algebra.

We note down some useful properties of the Jucys-Murphy elements and leave the proofs as
an exercise (in applying the braid relations or using the affine Hecke algebra relations).

Proposition 9.1. For Li defined as above, we have:

1. Li commutes with Lj .
2. Ti commutes with Lj if j 6= i, i+ 1.
3. Ti commutes with LiLi+1 and Li + Li+1.
4. For all a ∈ R and i 6= j, Ti commutes with

∏
1≤l≤j(Ll − a).

Now, as the generators si for i > 1 satisfy the relations of the Hecke algebra of type An−1, we
can uniquely define Tw for any w ∈ Sn. Then, as a corollary of the proposition above, we have
the following Lemma.

Lemma 9.2. The following identities hold in HR,n:

(1) For i ≥ 1,

TiL
k
i+1 = qkLki Ti + (q − 1)

k∑
j=1

q1−jLj−1
i−1L

k−j+1
i .

(2) For i ≥ 1,

TiLi = q−kLki+1Ti + (q−1 − 1)

k∑
j=1

q1−jLk−ji Lji+1.

We leave the proof of the Lemma as an exercise. We note that the exact formulas are not very
important. The key idea is that Ti applied to either Lki+1 or Lki interpolates between Li+1 and
Li while keeping the total power constant.

We now define a distinguished set X ⊆ HR,n of size mnn! as follows.

Definition 9.3.
X := {Lc11 · · ·L

cn
n Tw : w ∈ Sn, 0 ≤ ci ≤ m− 1}.

13



Our goal in this section is to prove that X is a basis for HR,n over R. With Lemma 9.2 in
hand, we can prove the first part of this goal as the following theorem.

Theorem 9.4. The set X spans HR,n over R.

Proof. Since R〈X〉 contains the unit element, it suffices to show that this set is stable under
left multiplication by HR,n. For this, it suffices to show that R〈X〉 is stable under left
multiplication by each Ti. Fix some 0 ≤ c1, . . . , cn ≤ m− 1 and some w ∈ Sn. Let c be the
m-tuple (c1, . . . , cm) and let Lc,w denote the obvious Jucys-Murphy element. Then, we have

T0Lc,w = Lc+1,w.

For c < m− 1, this gives another element of X. For c = m− 1, we can use the Eigenvalue
relation to write this as a sum of La,w with 0 ≤ a ≤ m− 1. Hence, R〈X〉 is stable under left
multiplication by T0. Now, fix some 0 < i < n. Then, Proposition 9.1 implies that

TiLc,w = Lc11 · · · , TiL
ci
i L

ci+1

i+1 · · ·L
cn
n Tw.

Hence, again using the same proposition, it suffices to show that for arbitrary 0 ≤ u, v < l, we
can write TiL

u
i L

v
i+1 as a sum of LaiL

b
i+1Ti and La

′
i L

b′
i+1 with a, b, a′, b′ < l. We prove this fact

in the case with u > v. The proof in the other case follows very similarly. So, assume u > v.
Then, using Proposition 9.1 and Lemma 9.2, we have for X = (LiLi+1)v,

TiL
u
i L

v
i+1 = TiL

u−v
i X = Lu−vi+1 XTi +

u−v∑
j=1

Lu−v−ji Lji+1X

with the scalars suppressed in the above equation. Since Li, Li+1 commute, we have the
desired expression.

�

We can now state some corollaries of the above theorem.

Corollary 9.5. Over any field K, HK,n has dimension at most nmn!

Corollary 9.6. To prove that X is linearly independent over R, it suffices to show linear
independence in the generic case i.e. to prove that X is linearly independent in HA,n where

A = R[q±1 , . . . , q
±
m, q

±] is the polynomial ring in q±i , q
± over R and the parameters for the

cyclotomic Hecke algebra are chosen to be the generic variables.

Proof. Let q±, q1, . . . , qm now be indeterminate variables and let A = R[q±, q1, . . . , qm].
Suppose, for some X1, . . . , Xl ∈ X we have∑

i

ciXi = 0

with ci ∈ R not all 0, where we view R as an arbitrary specialization of A. Let bi be a lift of ci
in A. Then, if q, qj specialize respectively to ε, εj , then we have∑

i

biXi ∈ A(q − ε, qj − εj)A.

But since the elements of X span HA,n over A (since nothing special about R was used in the
previous theorem), we can rewrite the above relation as the equation∑

i

biXi =
∑
i′

di′Xi′

14



which gives us a nontrivial relation over A (it’s non-trivial because the di′ must map to 0
under specialization so they can’t all be the same as the bi.) Thus, it suffices to prove linear
independence in the generic case i.e. over A. �

Let A now be defined in the above corollary and let K be its field of fractions. Proving linear
independence of X over A is the same as proving linear independence of X over K. Thus, we
let Hn now denote HK,n and we prove the statement of linear independence by explicitly
constructing a large enough set of irreducible representations of Hn over K and then using a
dimension counting argument.

9.1. Irreducible Representations of Hn. The full details of the construction of the
irreducible representations of Hn is purely technical and is hence left to the appendix of the
notes. Here, we merely highlight the salient details of the construction.

Definition 9.7. Let λ `m n. We define a standard Young tableau of shape λ to be an
enumeration from 1 to n of the boxes of the Young diagram of λ such that each component
tableaux is enumerated in a standard manner i.e increasing in rows and columns. For a fixed
λ, define Vλ be the formal K-linear span of all standard Young tableaux of shape λ.

It is possible to define an action of Hn on Vλ. The full details of this action are left to the
appendix. The main properties that we will use are:

(1) For a standard Young tableau P of shape λ, T0 acts as the scalar ui where i the index
of the component of P in which 1 appears.

(2) Fix a standard Young tableau P of shape λ. For i > 1, if swapping i and i+ 1 in P
does not give a valid standard Young tableau, then Ti acts as a nonzero scalar.

If swapping i and i+ 1 in P gives a standard Young tableau Q, then Ti(P ) is a linear
combination of P and Q, with nonzero Q coefficient.

We now come to the main result of this section.

Theorem 9.8. The above action of Hn on Vλ gives Vλ the structure of an absolutely
irreducible representation of Hn. Additionally, if λ 6= µ, then Vλ 6∼= Vµ as representations of
Hn.

Proof. Verifying that each Vλ is actually a representation of Hn is a tedious exercise in
checking that the eigenvalue and braid relations hold. This can be looked up in [AK94, Thm
3.7]. We assume this fact here and just prove the absolute irreducibility and inequivalence of
Vλ for distinct λ. For this, we induct on n.

The base case of n = 1 is obvious. So, we assume the statement holds for n− 1. We first prove
absolute irreducibility of Vλ i.e. that Vλ ⊗K is irreducible. Note that T0, . . . , Tn−2 generate a
subalgebra Gn−1 of Hn that is isomorphic to a quotient subalgebra of Hn−1. Hence, via
restriction and pullback, we can view Vλ ⊗ k as a representation of Hn−1.

Now, suppose there are l removable boxes in the diagram corresponding to λ and let V
(i)
λ be

the subspace of Vλ whose basis is given by the standard Young tableaux in which n is in
removable box i. Then, as a representation of Hn−1, Vλ breaks up as

Vλ ⊗K =

l⊕
i=1

V
(i)
λ ⊗K

15



because T0, . . . , Tn−2 do not affect the position of n. But, if µ is the m-partition of n− 1
which is obtained by removing removable box i from λ, then, since the action of Ti for
i < n− 1 does not depend on the position of n, tha as representations of Hn−1, we have

V
(i)
λ
∼= Vµ.

Thus, by induction, each V
(i)
λ ⊗K is irreducible and for distinct i, j, the corresponding

irreducibles are nonisomorphic. So, now, let W be a nonzero Hn subrepresentation of Vλ ⊗K.

By restricting to Gn−1, we see that W must contain some V
(i)
λ ⊗K. We need to show that it

contains all V
(j)
λ ⊗K, and to do so, by distinct irreducibility over Gn−1 of the latter, we note

that it suffices to show that W intersects each V
(j)
λ ⊗K nontrivially.

Pick some standard Young tableau Tρ of shape λ such that n is in removable box i and such
that n− 1 is in removable box j 6= i. Let Tρ′ be the SYT with n, n− 1 swapped. Then,

Tn−1(Tρ ⊗ 1) = λ1Tρ + λ2Tρ′

with λ2 6= 0. This implies that Tρ′ ⊗ 1 ∈W . Hence, for each j, W intersects V
(j)
λ ⊗K

nontrivially and hence contains it. Thus, W = Vλ ⊗K, which is hence irreducible.

All that remains is to show that Vλ 6∼= Vη is λ 6= η. But this follows, after restricting to Gn−1,
from the fact that the diagrams obtained by removing one box from λ is not the same set as
the diagrams obtained by removing one box from η unless λ = η. �

This theorem now completes the basis theorem that we desired.

Theorem 9.9. The subset X of Hn defined above as

X = {Lc11 · · ·L
cn
n Tw : w ∈ Sn, 0 ≤ ci ≤ m− 1}

is Linearly Independent over K. Additionally, Hn is semisimple.

Proof. Since we know that X spans Hn over K, for the set to be linearly independent, it
suffices to show that the K-dimension of X is at least mnn!. If fλ is the dimension of the
irreducible Vλ, then we know that

dimHn ≥
∑
λ

f2
λ .

But, the term on the right is purely combinatorial, and hence is equal to the dimension of
C[Wn], since the irreducibles for that algebra can be constructed in exactly the same way by
Theorem 7.3. Hence,

dimHn ≥ mnn!

as desired. This shows that dimHn = mnn!, which implies that Hn is semisimple, as its
radical must then be trivial.

�

The proof of Theorem 9.8 and the basis theorem above also give us the branching rule for Hn.
We first have the following obvious corollary.

16



Corollary 9.10. The subalgebra of Hn generated by T1, . . . , Tn−1 is isomorphic to the Hecke
algebra of type An−1 and the subalgebra generated by T0, . . . , Tn−2 is isomorphic to Hn−2. In
fact, this works over any ring, and not just in the generic case.

Then, the branching rule from representations of Hn to representations of Hn−1 is given by

Corollary 9.11. As an Hn−1 representation, we have

Vλ ∼=
⊕
µ

Vµ

where the sum is taken over m-paritions µ of n− 1 that are obtained from λ by removing one
box.

We end the section with the following remark that describes a sufficient condition for
specializations of Hn to be semisimple. If we look at the construction of the irreducibles given
above, we see that as long as we specialize at values of q, qi such that for every d from −n to n
and for every i, j from 1 to m, we have

qd
qi
qj
6= 1

then the matrix given in the definition of the irreducible Vλ will be well-defined for any λ. In
this case, the specialization of Hn will be semisimple, and the irreducibles will be given by
specializations of the Vλ, with the same branching rule.

10. Symmetric Structure on Hn

In this section, we return to working over arbitrary C-algebras R and arbitrary unit values of
qi, q. From this section on, Hn denotes the cyclotomic Hecke algebra over R.
We let X be the Jucys-Murphy basis defined as before. For c ∈ Zn with 0 ≤ ci ≤ m− 1,
define Lc = Lc11 · · ·Lcnn . Then, we have an R-linear map τ : Hn → R determined by

τ(LcTw) =

{
1 if c = 0, w = 1

0 otherwise
.

We want to show that the R bilinear form ν on Hn defined by ν(x, y) = τ(xy) is symmetric,
nondegenerate and satisfies ν(x, zy) = ν(xz, y) for all x, y, z ∈ Hn. The third property is
obvious so we focus only on symmetry and non-degeneracy. To prove these properties, we will
first construct an alternative R basis for Hn based on reduced words in Wn and then
reformulate τ in that basis.

10.1. Reduced Words in Wn. We begin with the following definitions.

Definition 10.1. A word in Wn is just a word in the alphabet S = {s0, . . . , sn−1}.
We define the length of a word si1 . . . sin to be n and we say that a word representing w ∈Wn

is reduced if it has minimal length.
We say that two words are braid equivalent if one can be transformed into the other by using
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only the braid relations in Wn.
We sat that two words are weakly braid equivalent if one can be transformed into the other by
using the braid relations and one extra relation

s1s
a
0s1s

b
0 = sb0s1s

a
0s1

for each a, b ∈ Z.

It can be checked that the last relation holds in Wn but is not a consequence of just the braid
relations. We next define specific elements in Wn that will be useful in studying braid
equivalent and weak braid equivalence of reduced words.

Definition 10.2. For non-negative integers k, a, we define

lk,a =

{
sk−1 · · · s1s

a
0 a > 0

1 a = 0
.

The following Lemma is now an easy exercise in induction.

Lemma 10.3. (a) For any i from 1 to n and any a ≥ 0, we have up to braid equivalence

silk,a =


lk,asi i > k ora = 0

lk+1,a i = k, a 6= 0

lk−1,a i = k − 1, a 6= 0

lk,asi+1 i < k − 1, a 6= 0

.

(b) For a, b > 0, we have up to weak braid equivalence

lk,alk,b =

{
lk−1,blk,as1 k > 1

l1,a+b k = 1
.

(c) For a, b, k > 1 and m ≥ 0, we have up to weak braid equivalence

lk+m,alk,b = lk−1,blk+m,as1.

It turns out that unlike in Sn, two reduced words for the same element of Wn are not braid
equivalent. However, they are weakly braid equivalent. We prove this in the following
theorem, carefully marking where we use the weak braid relation because the weak relations
get deformed on passing to the cyclotomic Hecke algebra.

Theorem 10.4. Let

x = x1 · · ·xk, xi ∈ S
be a reduced word for x ∈Wn. Then, x is braid equivalent to an expression of the form

x = lk1,a1 · · · lkr,arw, w ∈ Sn, ai > 0.

and x is weakly braid equivalent to an expression of the form

l1,a′1 · · · ln,a′nw
′, w′ ∈ Sn, a′i ≥ 0

with
∑

j a
′
j =

∑
i ai.
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Proof. Note that it suffices to prove the first claim, as the consequence is immediate from (c)
in Lemma 10.3. We prove the statement by inducting on the length of x, with the base case
being trivial. Suppose the reduced expression for x is of the form

x = w1s
a1
0 · · ·wls

al
0 wl+1

for wi a reduced word in Sn. Then, by using the braid relations in Sn, we can assume

w1 = sk1−1 · s1w
′
1

with w′1 ∈ 〈s2, . . . , sn−1〉. Since w′1 commutes with s0, we have under braid equivalence

x ≡ lk1,a1x′.
Since l(x′) < l(x) (as a1 > 0), we are done by induction.

�

Corollary 10.5. The second set of expressions in the above theorem give us a complete set of
reduced expressions for Wn, with each representative corresponding to a different element.

We now connect reduced words in Wn with reduced words in HA,n.

Definition 10.6. For a reduced expression x = x1 · · ·xk of x ∈Wn, define Tk = Tx1 · · ·Txk .

Additionally, in analogy with the elements lk,a in Wn, define the elements

Lk,a =

{
Tk−1 · · ·T1T

a
0 a > 0

1 a = 0
.

In HA,n, the braid relations still hold but the weak braid relations, and hence the relations in
Lemma 10.3 are q-deformed as follows. Again, the proof is left as an exercise and is very
similar to the proof in the undeformed case.

Lemma 10.7. (a) For any a, b ≥ 0, we have

T1T
a
0 T1T

b
0 = T b0T1T

a
0 T1 + q(q − 1)

b∑
i=1

T a+b−i
0 T1T

i
0 − T i0T1T

a+b−i
0 .

(b) For any i from 1 to n− 1 and 1 ≤ k ≤ n,

TiLk,a =


Lk,aTi i > k, a = 0

Lk+1,a i = k, a 6= 0

qLk−1,a + (q − 1)Lk,a i = k − 1, a 6= 0

Lk, aTi+1 i < k − 1, a 6= 0.

(c) For a, b,m > 0, k > 1, we have

Lk+m,aLk,b = Lk−m−1,bLk,aT1 + (q − 1)

b∑
i=1

Lk−1,a+b−iLk+m,i − Lk−1,iLk+m,a+b−i.

The exact expression is unimportant. What is useful is that the sums of the second
index remains the same for each monomial term.
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Here’s the point of all these annoying calculations. Our goal here is to define a linear form on
Hn as the coefficient of Te when a complete set of reduced expressions is used as a basis for
Hn. There are, however, two obstructions for this form to be well defined.

(1) If x, x′ are two reduced expressions for the same word, then we need Tx − Tx′ to have 0
Te coefficient.

(2) For any complete representative set ∆ of reduced expressions of elements of Wn, we
need the set

X∆ := {Tx : x ∈ ∆}
to give us an R-basis for Hn.

We prove both these facts as corollaries of the following theorem.

Theorem 10.8. Let x, x′ be reduced expressions for the same element in Wn. Then,

Tx − Tx′ ∈
∑

y/∈Sn, 0<l(y)<l(x)

ATy

i.e. their difference involves expressions of smaller length that contain nonzero number of T0

terms.

Proof. If x is a reduced expression involving only the Sn generators, then x′ must also only
involve the Sn generators and hence this follows from Matsumoto’s lemma. So, we assume
x /∈ Sn. Now, since the braid relations still hold in Hn, by the proof of Theorem 10.4, we can
write

Tx = Lk1,a1 · · ·Lkr,arTw, w ∈ Sn, ai > 0

with r > 0 i.e. that there is a T0 term. Additionally, without loss of generality, we can assume
that

Tx′ = L1,a′1
· · ·Ln,a′nTw′

with
∑

i a
′
i =

∑
i ai. Now, to move Tx to the normalized Tx′ , we repeatedly use the relations

in Lemma 10.7 (c). But for any terms that appear in that Lemma, apart from Tx′ , we have

(1) Smaller length.
(2) Same total second L-index.

The second condition implies that since
∑

ai
> 0 to begin with, any term that appears in

Tx − Tx′
must involve a T0 term somewhere. Thus, none of these terms lie in TSn . Hence, we have the
desired result

Tx − Tx′ ∈
∑

y/∈Sn, 0<l(y)<l(x)

ATy.

�

Corollary 10.9. Let ∆ be a complete set of representatives of reduced expressions for
elements of Wn. Then, X∆ := {Tx : x ∈ ∆} is an R-basis for Hn.
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Proof. By dimension considerations, it suffices to prove that X∆ spans HA,n over A. We prove
by induction that AX∆ contains Ty for all words (not necessarily reduced) y of length n. For
n = 0, this is obvious, as X∆ must contain Te. Suppose it holds for all words of length n− 1
or less and let y be a word of length n.

Now, if y is not reduced, then using the braid and eigenvalue relations we can write Ty as a
sum of Ty′ ’s with y′ all of smaller length. Thus, we can assume that y is reduced. For reduced
y, if y ∈ Sn, then Ty is in X∆, as all reduced word representatives give the same element in
Hn (Matsumoto’s Lemma). If Ty is not in Sn, pick some Tx ∈ X∆ with x reduced
corresponding to y and then use the previous theorem.

�

Corollary 10.10. Let ∆ now be an arbitrary system of representatives and let X∆ be as
before. Note that Te ∈ X∆ necessarily. Then, the linear form τ ′ : HA,n → A determined by

τ ′(Tx) =

{
1 x = e

0 otherwise

is independent of the choice of ∆.

Our goal now is to show that τ ′ is symmetric, non-degenerate and that τ ′ = τ.. We prove
non-degeneracy only in the Hecke algebra defined over A = R[q±, q±i ]. Non-degeneracy holds
for arbitrary specializations of the cyclotomic Hecke algebra but the proof is purely technical
and can be looked up in [MM98].

Theorem 10.11. The bilinear form σ′(x, y) = τ ′(xy) from HA,n ×HA,n → A is
non-degenerate.

Proof. It suffices to show that σ′ is non-degenerate after specializing at particular values of
q, qi (by discriminant considerations). Pick q = 1 and qi = ζi, where ζ is a primitive mth root
of unity. Under this specialization, HR,n becomes the group algebra R[Wn] (we assume R is a
field by taking its field of fractions if necessary) and the form τ ′ becomes the standard form
on the group algebra that picks out the coefficient of the identity. This form is obviously
non-degenerate. Hence, τ ′ is non-degenerate over A. �

Symmetry requires a little more work.

Theorem 10.12. σ′ is a symmetric form.

Proof. Since σ′ is independent of the choice of ∆, we choose ∆ consisting of reduced words in
the normalized form described in the second part of Theorem 10.4. We need to show that for
every x ∈ ∆ and every word y,

τ ′(TxTy) = τ ′(TyTx).

By induction on the length of y, we can assume Ty = Ti. By induction on the length of x, we
can assume it holds for all Tx′ of smaller length. We now have two cases.

Case i ≥ 1: Write Tx as

Tx = L1,a1 · · ·Ln,anTw
for w ∈ Sn. Then, it is clear that
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τ ′(TxTi) 6= 0⇔ aj = 0 ∀j, w = si.

In the case where it is nonzero, Tx = Ti and hence

τ ′(TxTi) = τ ′(TiTx) = τ ′(T 2
i ).

So, suppose now that Tx 6= Ti. Then, by a similar proof to the proof of Theorem 10.4,
the word x is also weakly braid equivalent to a reduced word of the form

x′ = w′ln,a′n · · · l1,a′1 .
Hence, by Theorem 10.8

Tx = Tx′ + T

where T is in the span of elements in X∆ of smaller length that do not correspond to
words in Sn and x′ 6= si as x′ /∈ Sn. Thus, since τ ′(TTi) = 0 by the above argument,
and τ ′(TiTx′) = 0 by a similar argument, by the induction hypothesis, we have

τ ′(TxTi)− τ ′(TiTx) = τ ′(TxTi)− τ ′(TiTx′) + τ ′(TiT ) = τ ′(TTi) = 0.

This finishes case 1.

Case i = 0: Again, write

Tx = L1,a1 · · ·Ln,anTw.
Then, T0Tx ∈ X∆ unless a1 = m− 1. This gives us

τ ′(T0Tx) 6= 0⇔ Tx = Tm−1
0

and in the nonzero case, there is obvious symmetry. So now, suppose Tx 6= Tm−1
0 . We

want to show that τ ′(TxT0) = 0.

In Sn, w is braid equivalent to sk · · · s1w
′ for some w′ that commutes with s0. Hence,

since the braid relations still hold in Hn

TxT0 = L1,a0 · · ·Ln,anTk · · ·T1T0Tw′

which has trace τ ′ = 0 if Tw′ 6= 1 by the induction hypothesis. So, assume Tw′ = 1.
Then,

TxT0 = L1,a0 · · ·Ln,anLk,1
and using Lemma 10.7 (c) again, we see that this gives us a nonzero T1 coefficient if
and only if Tx = Tm−1

0 .

�

We finish this section by proving that τ = τ ′. This follows immediately from the following
Lemma.

Lemma 10.13. Let i ≥ 1 and let Li be the Jucys-Murphy element defined in the previous
sections. Then,
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(a) For 1 ≤ k ≤ m− 1, Lki is an A-linear combination of

L1,c1 · · ·Li,ciTw
with 0 ≤ cj ≤ m− 1 for j 6= i and 1 ≤ ci ≤ k.

(b) Let 1 ≤ bi ≤ m− 1. Then, Lb11 · · ·L
bi
i is an A-linear combination of

L1,c1 · · ·Li,ciTw
with ci 6= 0.

Proof. First prove (a) and then (b) using induction on i and Lemma 10.7 (c). �

This lemma tells us that Te coefficients in the word basis and the Jucys-Murphy basis agree.
Hence, τ = τ ′.

Part C - Affine Hecke Algebra Modules in the Kato Block

This is the last section of these notes in which we construct an equivalence of categories
between representations of HF,n of particular central character and representations of ZF,n of
particular formal character, for which the essential tool will be the unique irreducibility of a
Kato Module in its block. In this section, we fix F as an algebraically closed field (not
necessarily characteristic 0) and then omit the F from the notation for the various algebras.

Additionally, in this section, we fix an a ∈ F× and restrict ourselves to Hn-modules that are
in the block with central character corresponding to (a, . . . , a) i.e. in the block in which the
unique irreducible is the Kato Module L(an), which we now denote as Kn. We thus make the
following definitions in order to formulate the results better.

Definition 10.14. 1. Let mn be the maximal ideal in Zn that is the intersection of the
two sided ideal of Pn generated by (X1 − a, · · ·Xn − a). Let Ẑn denote the completion

of Zn at this maximal ideal and let P̂n, Ĥn be the completion of the respective algebras

at mn. Let ĤTn be the completion of HTn inside Ĥn.

2. Define Mn to be the category of Zn-modules on which mn acts locally nilpotently, or

equivalently as the category of Ẑn-modules. Similarly, define Nn to be the category of
left Hn-modules on which mn acts locally nilpotently, or equivalently as the category of

Ĥn-modules.

Our goal is to prove that Mn and Nn are equivalent and, moreover, to specify a pair of
functors that establish the equivalence of categories. Before we can state this precisely, we
need to define the following element in Hn:

Definition 10.15. Let τ be either the trivial or sign character on HT
n . Then, define the

elements cτn ∈ Z(HT
n ) as
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csgn
n :=

∑
w∈Sn

q−l(w)τ(Tw)Tw

and

c1
n :=

∑
w∈Sn

Tw.

For each τ , cτn has some nice properties.

Proposition 10.16. The following hold:

1. For any Tw ∈ HTn , we have

Twc
τ
n = cτnTw = τ(w)cτn.

and in particular, for n > 1,

c1
nc

sgn
n = 0.

2. For any projective HTn -module M ,

cτn(M) = {m ∈M : Tw(m) = τ(w)m ∀w ∈ Sn}.

3. For any projective HTn -module M , the multiplication map

cτnHTn ⊗HTn M → cτnM

is an isomorphism.

4. For any Hn-module M , the canonical map

cτnHTn ⊗HTn M → cτnHn ⊗HnM
is an isomorphism of Zn-modules.

Proof. 1 is direct computation. 2 follows by looking at the case where M is free which follows
from 1. 3 is straightforward from 2 and 4 follows from 3. �

Remark. Note that in characteristic 0, the above proposition implies that the two cτn are
mutually orthogonal simple central idempotents and in this case, the entire results of this
section follow from the theory of central idempotents. In the case of positive characteristic,
however, for large values of n, cτn will actually be nilpotent and hence the results proved below
are nontrivial.

We are now ready to state and prove the main theorem.

Theorem 10.17. Fix some τ ∈ {1, sgn}. Define the functor F :Mn → Nn as

M 7→ Ĥncτn ⊗Ẑn M
and the functor G : Nn →Mn as

M 7→ cτnĤn ⊗Ĥn M.

Then, F and G establish an equivalence of categories between Mn and Nn.
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Proof. We break the proof down into several steps.

Step 1: We show that F and G are exact functors.

F is exact because, by 1 in Proposition 10.16, Ĥncτn is free of rank 1 over Pn and is hence free
of rank n! over Zn and hence is flat over Zn.
Now, G is clearly right exact. To show that G is left exact, note that every module in Nn has
a filtration by the Kato module Kn, as it is the only irreducible in the category. But Kn is
free over HTn and hence every module in Nn is projective over HTn . Thus, by Proposition
10.16, the functor G is isomorphic to the functor

M 7→M τ := {m ∈M : h ·m = τ(h)m ∀h ∈ HTn}.
This functor is clearly left exact.

Step 2: We show that G is right adjoint to F . Note that F has an obvious right adjoint
F∗ : Nn →Mn which sends

M 7→ Hom
Ĥn

(Ĥnc
τ
n,M).

Now, Ĥnc
τ
n is isomorphic as a left module to Ĥn/I, where by Proposition 10.16 and the Basis

Theorem, I is the ideal P̂n ⊗ IT with IT the left ideal in ĤTn generated by (h− τ(h)). Then,
by the proof of left exactness of G, we have canonical isomorphisms

F∗(M) ∼= M I := {m ∈M : Im = 0} = M τ ∼= G(M).

Hence, G is right adjoint to F .
Step 3: We finish the proof of the theorem by showing that the counit and unit are
isomorphisms. Since the functors F ◦ G and G ◦ F are exact it suffices to show this fact for the
simple objects. In Nn, we have a unique simple Kn and in Mn, we have the unique one
dimensional simple corresponding to the central character (a, · · · , a), which we denote now by
Ln.

Now, as Ĥncτn = P̂ncτn is free of rank n! over Ẑn,

dimF F(Ln) = n!⇒ F(Ln) ∼= Kn

as F(Ln) must contain the Kato module and both have the same dimension. Conversely, since

the action of ĤTn on Kn is just the action of ĤTn on itself, we see that

dimF G(Kn) = dimF K
τ
n = 1⇒ G(Kn) ∼= Ln.

Thus, the unit and counit are both nonzero morphisms between the same simple objects and
are hence isomorphisms.

�

Remark. There is an alternative approach to proving the main theorem. We state this
approach here but do not carry it through. To show that F and G establish an equivalence of
categories, it suffices to prove that

cτnĤn ⊗Ĥn Ĥnc
τ
n
∼= Ẑn
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as a left Ẑn module and

Ĥncτn ⊗Ẑn c
τ
nĤn ∼= Ĥn

as a left Ĥn module. This is the approach taken in [CR04].

Appendix

Our construction of the irreducible representations of Hn is via a deformation of the Specht
module construction for Wn. We first define standard Young tableaux, content and axial
distances for m-partitions of n.

Definition 10.18. Let λ be an m-partition of n. Then, a standard Young tableau for the
l-tableau associated to λ is a filling in of the boxes of the m-tableau with the numbers 1, . . . , n
such that in each component tableau, the enumeration is standard.

Let a, b now be boxes in λ. Then, we define the content c(λ; a) of a to be the row index of a
minus the column index of a, in the component tableau in which a lives. Additionally, we
define the axial distance

r(a, b) = c(λ, a)− c(λ, b).
Finally, for an integer l and an indeterminate y, we first define

∆(l, y) = 1− qly ∈ A[y]

and then define the following 2× 2 matrix

M(l, y) =
1

∆(l, y)

(
q − 1 ∆(l + 1, y)

q∆(l − 1, y) −qly(q − 1)

)
.

Now, let λ `m n and let Vλ be the free K-vector space with basis the set of standard Young
tableaux of shape λ. For any i ∈ {1, . . . , n} and for any standard Young tableau Mρ of shape
λ, define τλ(i) to be the index of the component tableau of ρ that i appears in. We now define
a representation of Hn on Vλ as follows:

(1) T0Mρ = qτρ(i)tρ.

(2) For i > 0, we have 3 cases for the action of Ti on Mρ:
a. If i, i+ 1 lie in the same row of the same component diagram of Mρ, then
TiMρ = qMρ.

b. If i, i+ 1 lie in the same column of the same component diagram of Mρ, then
TiMρ = −1Mρ.

c. If neither of the above hold, let Mρ′ be the standard Young tableau with i and
i+ 1 swapped. Then,
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Ti〈Mρ,Mρ′〉 = 〈Mρ,Mρ′〉M

(
r(i+ 1, i),

qτρ(i)

qτρ(i+1)

)
.

This is well-defined because if i, i+ 1 lie in the same component diagram, then the
axial distance between them cannot be 0, 1,−1 unless they are in the same row or
column.

As an example, and also because it will be useful in proof of irreducibility , we compute the
matrix corresponding to the action of Tn−1 in case 2(c). We let d denote r(n, n− 1), a denote
τρ(n− 1) and b denote τρ(n). Then, the action of Tn−1 is given by the matrix

M

(
r(n, n− 1),

qτρ(n−1)

qτρ(n)

)
=

1

1− qd qaqb

 q − 1 1
1−qd+1 qa

qb
q

1−qd−1 qa
qb

−qd(q − 1)

 .

We denote this special matrix by N , and note that, since q is a unit, N21 is nonzero.
The proof of irreducibility now follows from what was discussed in the main section.
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