KAZHDAN-LUSZTIG CELLS

SIDDHARTH VENKATESH

ABSTRACT. These are notes for a talk on Kazhdan-Lusztig Cells for Hecke Algebras. In this talk, we
construct the Kazhdan-Lusztig basis for the Hecke algebra associated to an arbitrary Coxeter group,
in full multiparameter generality. We then use this basis to construct a partition of the Coxeter group
into the Kazhdan-Lusztig cells and describe the corresponding cell representations. Finally, we
specialize the construction to the case of the symmetric group. The main references for the talk are
[Lusl4, GJ11, Wil].
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1. Hecke Algebra associated to a Weighted Coxeter Group
We begin by defining the notion of a weighted Coxeter group.

Definition 1.1. Let W, S be a Coxeter system. Let [ : W — Z be the length function of the Coxeter
group. Then, a weight function on W is a map L : W — Z such that

l(ww") =l(w) +(w") = Llww") = L(w) + L(w").
We call the pair (W, L) a weighted Coxeter group.

Remark. Note that the additivity condition on the weight function is equivalent to the statement
that a weight function is additive on reduced decompositions in W and is hence determined by its
values on S. In fact, a weight function can be specified by giving arbitrary weights to elements in S
subject to the sole condition that if mg; is odd, then L(s) = L(t).

Remark. Because reduced decompositions for w!

for w, we have L(w) = L(w™1).

are obtained by reversing reduced decompositions

Throughout the rest of the talk, let us fix a weighted Coxeter group W, L. Fix some field k of
characteristic 0. We now define the generic Iwahori-Hecke algebra associated to W, L.

Definition 1.2. Let A = k[g,¢~!] be the algebra of Laurent polynomials over k and for s € S, let
¢s = q*®). Then, the (generic) Iwarhori-Hecke algebra # associated to W, is the A-algebra with
generators {T; : s € S} and relations

1. Eigenvalue Relation: (Ts — ¢5)(Ts +¢5') =0
2. Braid Relation: TsT; - =TTy - - - (with mg many factors on each side).

As a consequence of the defining relations we have
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Proposition 1.3. H is free over A with basis T,,. In this basis, the multiplication formula can be
described as follows. For s € S,w € W

Tow it i(sw) > l(w)
T.T, = X . .
Tow + (gs — q; )T i l(sw) < l(w)

2. The Bar Involution and the Kazhdan-Lusztig Basis
Let a — @ : A — A be the k-algebra involution defined by sending ¢ to ¢~ !. a — @ extends to a

semilinear involution on H as follows:

Proposition 2.1. There is a unique (A,)-semilinear ring homomorphism = + z : X — H defined by
sending T +— Ts’l. This homomorphism is involutive and sends T, to Tl;,ll for each w € W.
This map is known as the bar involution on H.

Definition 2.2. For w,y € W we define 7, € A by
To=> Fyuly.
yeWw

Remark. Note that ry ,, = 1.

Using the bar involution, we can now construct the Kaszhdan-Lusztig basis for H.
Definition 2.3. For an integer n, define

A<y = B kg™

m<n

Similarly define As,, A<y, Asy. With this definition in hand, define

Heo =P A<oTo

and

Heo =P AT

Theorem 2.4. (Kazhdan-Lusztig Basis) Let w € W. There exists a unique element C,, € H<( such
that

Cy=Cyand Cp =T, mod Hp.

Additionally, C\, € T, + Zy <w A<0Ty (where y < w is in the Bruhat-Chevalley order on W) and
{Cy : w € W} is an A-basis for H.

Proof. To prove the theorem, we need to prove the following Lemma regarding r, ,. Before stating the
lemma, recall the Bruhat-Chevally order on W: z < y if x can be obtained from a reduced expression
for y by removing some of the elements of S. Note that <y implies that I(x) < I(y) with equality if
and only if z = y. Now,

Lemma 2.5. The following two properties hold:



1. For any =,z € W,

E , ToyTy,z = Og,z-

yeWw

2. For any z,y € W, let s € S be such that y > sy. Then,

Tsx,sy if st <z
Twy = o " .
Tsw,sy + (vs Vg )Tm,Sy sy>y

3. If rpy #0, then z < y.

Proof of Lemma. Property 1 follows from the fact that~is an involution. Property 2 follows from the
formula for TsT,, using the fact that~is multiplicative. To prove property 3, we induct on the length of
y. The case of I(y) = 0 is obvious. So suppose I(y) > 0. Choose some s such that sz < x. Suppose first
that sx < x. Then, by property 2,

Tsx,sy = Tx,y #0
and hence by induction sz < sy which implies that z < y. On the other hand, if sz > x, then by
property 2, either rg; oy 7 0 or 74,4y 7# 0. In the first case, by induction, x < sz < sy < y and in the

second case x < sy < y. This proves the Lemma.
O

We now return to the proof of the existence and uniqueness of the Kazhdan-Lusztig basis. We first
prove existence. Fix w € W. For any = < w, we construct an element u, € A<( such that

1. u, =1.

2. for x < w, u, € Ay and

Uy — Uy = E T,yUy-

yir<y<w
We induct on [(w) —I(z) > 0. For 0, x = w and hence u, = u,,. By the inductive hypothesis, u, is
defined for all y < w such that I(y) > I(x) and satisfies the above properties. Hence, the term

Ay = E Ty, yly

yir<y<w
is defined. We show that a, + a, = 0. This follows from the previous Lemma and the following
computation:

Qg + Gz = E Toyly + Toy(uy + E , Ty,zUz)

yrr<y<w ziy<z<w

- § Ty,zUz + § fw,zuz + E E fw)y’l“%zuz
zix<z<w zix<z<w zix<z<w y:x<y<z

= E Ty,zUz + § Fm,zuz + § 6:6,2“2’ —Tg,zUsz + 'Fa:,zuz =0
ziz<z<w ziz<z<w ziz<z<w

Hence, a, = Z cnq" where ¢, + c_,, = 0. Define

nez
. n
Uy = — g cnq".

Then, u, satisfies properties 1 and 2, as desired. Now, define the Kazhdan-Lusztig element associated
to w as



Cuw:= Y uyT, € Heo.
yiy<w
Clearly, C,, satisfies the properties stated in the theorem, apart perhaps from invariance under the bar
involution. This we verify with the following calculation:

Co= D wTy= Y ty Yy TuyTo= ) D Taly | o

yry<w yry<w <y rx<w \y:xly<w
= Z (Gz +ug)T: = Z ug Ty = Cy
rx<w r:x<w

This completes the proof of existence. To prove uniqueness, it suffices to prove that if h € H satisfies
h = h, then h = 0. Since h € H, we can write h uniquely as Eyew fyTy, where f, € Ay. Suppose
for contradiction that not all f, = 0. Choose yo with f,, # 0 maximal among such in the
Bruhat-Chevalley order. Then, since h is bar invariant, we have

Z fuTy = Z FuTwyTe.
Y Y

Since ry,,y, = 1 and ry, , = 0 for all y < yo, we see that the coefficient of T, on the left is f, and on the
right is f,, which are not equal. This gives us a contradiction. Hence, h = 0 and we have uniqueness.

The last statement of the theorem is obvious. By construction and uniqueness, C,, has the desired
form and by upper triangularity (with respect to the Bruhat-Chevally order), {C,, : w € W} is a basis
for H over A.

|

3. Cells and Cell Representations

The Kazhdan-Lusztig basis of a Hecke algebra can be computed recursively but is difficult to compute.
However, we can now use this basis to construct cells on the Coxeter group which has a much nicer
description. We begin with an abstract definition of cells.

Definition 3.1. Let A be an associative algebra with a basis {a, : w € W} indexed by a weighted
Coxeter group W, L. We say that an ideal in A is based if it is spanned by basis elements a,,. For,

x € W we define three ideals I, 1, I, r, I, r Which are respectively the left, right and two-sided based
ideals generated by a..

Define the preorder <j, (resp. <g,resp. <pr)asx <p yif a, € I, 1 (vesp. ay € I, g, resp. a; € I, Lr.)
Let ~p, (resp. ~g,resp. ~r) be the corresponding equivalence relations. Then, we call the
corresponding equivalence classes the left cells (resp. right cells, resp. two-sided cells) of W (with
respect to A and its chosen basis).

Remark. Note that « ~p, y if and only if they generate the same based left ideal (and similarly for the
other two relations).

We now apply this definition to A = H. If we use the standard basis, however, we only get one left,
right or two sided cell (because the basis elements T,, are all invertible). Instead, we apply the
definition to the Kazhdan-Lusztig basis of H. The resulting cells are called the (left, right, two-sided)
Kazhdan-Lusztig cells, which we will abbreviate as KL cells. In the case of H, we will also use H<, . to
denote I, ; and similarly for the right and two-sided ideals.
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Remark. The map w — w™! carries left cells to right cells and vice versa. This is because the map

Cy +— C-1 defines an anti-involution on #.

From now on, the preorders and cells are defined with respect to the Kazhdan-Lusztig basis. We now
use cells to construct representations of 7. We begin by introducing some notation:

Definition 3.2. Let w € W. Define

H<Lw = @ AC’I‘

r<w

and define similar notions for the right and two-sided relations.

Note that all of the above constructions depend only on the cell of w and hence we also use the
notation H<, ¢ where C is the cell corresponding to w. Additionally, both H<, ¢ and H, ¢ are left
ideals in H. Hence, we have the following defintion:

Definition 3.3. Define the left cell module associated to C as L¢ = H<,¢/H <, c. Similarly, define R¢
and LR¢. Note that the above proposition shows that these are respectively left, right and two-sided
H-modules.

Finally, note that the definition of cells immediately implies the following decomposition.

Proposition 3.4. As a left #-module (after base changing to k(q)), we have

H = PBeLe.
We have similar decompositions over R¢ and LRc.

Proof. This follows from the fact that L¢ has {C, : w € C} as a basis and that W = UC with disjoint
union taken over all cells. g

4. Examples of Cells: The case of Type A

We end the talk by describing the left, right and two-sided cells (and the corresponding modules) in
Type A i.e. when W = S,, for some n. Before giving this description, we have to recall the RSK
algorithm.

Definition 4.1. (Row Bumping Algorithm) Let T be a semistandard Young tableau and let ¢ be a
positive integer. We describe a new semistandard Young tableau denoted T <+ i as follows:

If 7 is greater than or equal to every element in row 1, then ¢ is added in a new box at the end of row 1.
Otherwise, i replaces the leftmost number greater than 7. This new number, io, is then added to row 2
in the same manner. The process continues until one of the numbers is added at the end of a row
(which may have been of length 0 in T')

This algorithm is called the Row Bumping Algorithm.

Definition 4.2. (RSK Correspondence) Let w € S,, and let the one-line notation of w be w; - - - wy,
where w; = w(i). The RSK algorithm inductively defines a pair of standard Young tableau, P;, Q; as
follows:

1. Pp=Qo= 9.

2. PiJrl =P, « Wi41-

3. Qi+1 adds a box labelled with ¢ + 1 in the location of P, 1\ P;.

Let P(w) = P, Q(w) = Q. Then the map w — (P(w), @(w)) is called the RSK correspondence.
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Remark. It is well-known that the RSK correspondence establishes a bijection between S,, and the
set of pairs of standard Young tableau of the same shape.

The RSK correspondence can now be used to describe the left, right and two sided cells in S,,. We
omit the details and simply give the description. Details can be found in [Wil].

Proposition 4.3. For z,y € S,
1. x ~gpy < P(x) = P(y).
2. v~y e Qz) = Qy)

3. & ~Lr y < P(z) has the same shape as P(y).

We finish by describing the cell modules.

Proposition 4.4. Let C be a cell (left, right or two-sided determined by context). Then,

1. The left cell module associated to C is the Specht module associated to the Young diagram
determined by P(x) for any x € C.

2. The corresponding right cell module is the dual of the Specht module (viewed as a right
module over the algebra ).

2. The corresponding two sided cell module is the endomorphism algebra of the Specht module.
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