
QUOT SCHEMES

SIDDHARTH VENKATESH

Abstract. These are notes for a talk on Quot schemes given in the Spring 2016 MIT-NEU graduate

seminar on the moduli of sheaves on K3-surfaces. In this talk, I present the construction of Quot

schemes given in [Nit]. I give a definition of the moduli functor represented by the Quot scheme and
show that this functor is a closed subfunctor of a relative Grassmanian, whose construction I describe

as well.
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1. Introduction

Throughout this talk S will be a Noetherian scheme, X will be a projective scheme of finite type over
S, E will be a coherent sheaf on X and L will be a relatively very ample line bundle on X, unless
specified otherwise. Also, vector bundle will be used to mean locally free sheaf in this talk. Finally, if
T is a scheme over S and F is a sheaf on S, then FT will denote the pullback of F .

The Hilbert scheme of X over S parametrizes closed subschemes of X. Alternatively, you can view the
Hilbert scheme as parameterizing (flat) quotients of the structure sheaf of X. The Quot scheme is a
generalization of the Hilbert scheme, where we replace OX by E , a coherent sheaf on X. The goal of
this talk is to show that the Quot “scheme”, which we will define via a moduli functor, is indeed
representable by a projective scheme over S. To do so, I will show that the Quot functor is a closed
subfunctor of a relative Grassmanian over S.

These notes are organized as follows. First, I will define the notion of a representable functor.
Subsequently, I will recall the construction of the Grassmanian and describe the moduli functor that it
represents by constructing the universal quotient over the Grassmanian. Following this, I will define
the moduli functor that the Quot scheme is supposed to represent and use the notion of Hilbert
polynomial to get a stratificaton on the Quot scheme. As an example, I will also show that the
Grassmanian is an example of such a subfunctor.

Next, I will state a corollary of Castelnuovo-Mumford regularity and use it to embed the Quot functor
as a subfunctor of a relative Grassmanian over S. Using, without proof, the construction of the
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flattening stratification, I will then show that Quot is a locally closed subfunctor of the Grassmanian,
which will finish the proof of representability. Projectivity will follow from showing that the Quot
satisfies the valuative criterior for properness. Finally, I will end the talk with a discussion of
Castelnuovo-Mumford regularity.

2. Representable Functors

Let F be a contravariant functor from the category of schemes over S to sets.

Definition 2.1. We say that F is representable if there exists some scheme Y/S such that F is
isomorphic to HomS(−, Y ).

Note that by the Yoneda lemma, the scheme Y can be recovered up to unique isomorphism from the
functor F .

Example 2.2. Here are some well known examples of representable functors.

1. Projective space: The functor represented by PnS sends T/S to the set

{(F , l0, . . . , ln) : F is an invertible sheaf on T , li are generating sections of F}
up to isomorphisms of invertible sheaves. Morphisms go to pullbacks of invertible sheaves. The
data of n+ 1 generating global sections of F is the same as the data of a surjection

⊕n+1OT → F .
However, the set Hom(T,Pn) shouldn’t just consist of all such surjections because if we replace
F by an isomorphic line bundle F ′ and the sections li by the corresponding sections on F ′,
then the morphism to Pn is unchanged. This is the same as having a commutative diagram

⊕n+1OT F

F ′

q

q′ ∼

But such a diagram exists if and only if ker q = ker q′. Hence,

Hom(T,Pn) = {(F , q) : F an invertible sheaf on T , q : V → F an epimorphism}/ ∼
where the equivalence relation is equality of kernels.

2. Relative projective space: Let V be a vector bundle (locally free sheaf) on S. Then, the
functor represented by P(V ) sends T/S to the set

{(F , q) : F an invertible sheaf on T , q : V → F an epimorphism}/ ∼
with (F , q) ∼ (F ′, q′) if ker q = ker q′.

3. Grassmanians: We will elaborate on the Grassmanian later. Here, we just state the moduli
functor represented by the Grassmanian. The grassmanian functor GrassS(n, r) sends T/S to
the set

{(F , q) : F a locally free sheaf of rank r on T , q : OnT → F an epimorphism}/ ∼
with the same equivalence relation as before. Again, we can also define relative Grassmanians.
Given a locally free sheaf V on S an an integer r, we can define Grass(V, r) by replacing OnT
with VT in the above definition.
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Since the relative Grassmanian is of critical importance to the proof of representability of the Quot
functor, we give a detailed construction of the projective scheme that represents it. However, in the
following section, we merely give a construction of the Grassmanian for V a trivial vector bundle. The
general case can be constructed either in a completely analogous manner or by using the fact that the
relative Grassmanian is locally the same as the ordinary Grassmanian and then using its universal
property to patch the local Grassmanians together.

3. Grassmanians

Construction of the Grassmanian over Z. The construction of the Grassmanian is motivated by
the identification of the Grassmanian as the quotient Mr×n/GLr but we give an elementary
description of the construction via gluing together of affine patches.

Let I be a subset of {1, . . . , n} of size r. For any r × n matrix M , let MI denote the r × r minor of M
consisting of the columns labeled by I. Let XI be the r × n matrix defined by setting XI

I as the
identity and letting the remaining entries be independent variables xIp,q over Z. Let Z[XI ] be the

polynomial ring in the xI and let U I = SpecZ[XI ]. (This is supposed to be the affine subspace of the
Grassmanian represented by matrices whose Ith minor is invertible.)

The Grassmanian is constructed by gluing together the U I . Let J now be any size r subset of
{1, . . . , n}. Let P IJ be the polynomial in the variables xI obtained by taking the determinant of XI

J and
let U IJ be the open subset of U I where P IJ is nonzero. We define the gluing map

ΘI,J : U IJ → UJI
via the ring homomorphism

θI,J : Z[XJ
I , 1/P

J
I ]→ Z[XI

J , 1/P
I
J ]

where the images of xJp,q are given by the entries of the matrix

(XI
J)−1XI .

This is well-defined because the only polynomials appearing in the denominators in (XI
J)−1 are P IJ

(think Cramer’s rule), and because this map sends

P JI = det(XJ
I ) 7→ det(XI

J)−1 det(XI
I ) = 1/P IJ .

Exercise Show that the maps ΘI,J satisfy the cocyle condition.
The idea is that at the level of points ΘI,J sends an element of the Grassmanian represented by a
matrix whose Ith minor is the identity to the unique matrix whose Jth minor is the identity and which
also represents the same element of the Grassmanian.
Hence the affine patches glue together to give a scheme over S which we will denote as the
Grassmanian Grass(n, r).

Some Properties of the Grassmanian. The above construction of the Grassmanian allows us to
immediately see some of its properties, which we state here without proof.

1. Grass is smooth of relative dimension r(n− r).
2. Grass is separated: This follows because the intersection of the diagonal with U I × UJ is the

vanishing locus defined by the entries of the matrix formula

XJ
I X

I −XJ = 0.

3. Grass is proper: This can be checked using the valuative criterion for properness.
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The Universal Quotient. To show that the Grassmanian we constructed represents the functor we
mentioned earlier, we construct a universal rank r vector bundle U over the Grassmanian equipped
with a canonical map OnGrass → U , and the correspondnce with the aforementioned functor sends
morphisms to pullbacks of this data. This universal vector bundle and quotient map will be
constructed using the same affine patches we used to construct Grass(n, r). The main idea is that on
each patch, elements of the Grassmanian are naturally represented by a unique matrix.

Let U|UI be ⊕rOUI and define the map

q|UI : ⊕nOUI → ⊕rOUI

via the matrix XI .
Define the transition isomorphisms

ρI,J : ⊕rOUI
J

= U|UI
J
→ U|UJ

I
= ⊕rOUJ

I

via the matrix (XI
J)−1 ∈ GLd(U IJ ).

Exercise: Check that the ρI,J satisfy the cocyle condition and hence the U|UI glue together to give a
rank r vector bundle U on Grass . Additionally, check that q|UI glue together to give a morphism
⊕nOGrass → U .

We can now see that Grass represents the functor described in the previous section. Let Y be a scheme
over S and let f : Y → Grass(n, r) be a morphism. Then, we get a locally free sheaf of rank r on Y by
taking f∗U and, since f∗ is a right-exact functor, we get an epimorphism f∗q : OnY → f∗U . This gives
us a map from Hom(−,Grass)→ Grass (where the second Grass is the functor described before). We
now describe a map in the reverse direction.

Suppose we have a surjection q : OnY → F with F of rank r. This is given by choosing n (ordered)
global sections of F which generate F at each point. Let Y I be the open subset of Y where the I
global sections of F generate. Then, over Y I , F ∼= OrY I . Thus, over Y I , the map q is given by an r × n
matrix M I valued in H0(Y I ,OY ).
We define the map Y I → U I by sending xIp,q to the entries of the matrix M I . This map glues together

to give a map from Y to Grass(n, r) because the transition matrix in Y I ∩ Y J is precisely (M I
J )−1 (as

we are switching from the basis of the I-th global sections to the basis of the J-th global sections.) This
gives us a map in the reverse direction and it is easy to see that the two maps are mutually inverse.

Projectivity. We end our discussion of the Grassmanian by describing the Plucker embedding.
Grass(n, r) embeds into P(detU), where detU is the determinantal line bundle of U whose transition
functions are given by det ρI,J = 1/P IJ . For each I define a global section σI ∈ H0(Grass,detU) as

σI |UJ = P JI .

Exercise: Check that each σI |UJ glues together to give a global section σI . Check that the collection
of all σI defines a linear system which is base point free and separates points relative to SpecZ.

Thus, we have an embedding, necessarily closed, of Grass(n, r) into P(n
r)−1. In particular, detU is a

relatively very ample line bundle on Grass(n, r) over Z.

Remark. All the above constructions work if we replace OnZ with any rank n vector bundle V . We
will get a Grass(V, r) with a universal quotient U which satisfies the universal property mentioned in
the previous section. Additionally, Grass(V, r) will embed into P(π∗U), where π is the projection
Grass(V, r)→ Z.

Additionally, we can go further and replace the vector bundle V with any coherent sheaf E over SpecZ.
In this case, the functor represented by Grass(E , r)S sends T/S to the set

{(F , q) : F a locally free sheaf of rank r over T , q : ET → F an epimorphism}
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up to the same equivalence relation as before. But we will not need this and hence will not go into the
details.

4. The Quot Functor and the Hilbert Polynomial Stratification

In a way, the Quot functor is a generalization of the Grassmanian. Recall that S is a Noetherian
scheme, X is a projective scheme over S and E is a locally free sheaf over X. We first begin with a
notion of flatness.

Definition 4.1. If f : X → S is a scheme of finite type over S and F is a quasi-coherent sheaf on X,
then we say that F is flat over S if for each x ∈ X, Fx is flat over Sf(x).

We now define the moduli functor represented by the Quot scheme.

Definition 4.2. The functor QuotE/X/S sends T/S to the set of all equivalence classes 〈F , q〉, where:

1. F is a coherent sheaf on XT flat over T and with proper scheme theoretic support over T .
2. q is an epimorphism EXT

→ F .
3. The equivalence relation is equality of kernels (F , q) ∼ (F ′, q′) if ker q = ker q′. Equivalently,

(F , q) ∼ (F ′, q′) if there exists an isomorphism F → F ′ compatible with q and q′.

If E = OX , then QuotOX/X/S is also denoted by HilbX/S . In this case, HilbX/S can be seen as the
moduli space parameterizing all closed subschemes of X that are flat and proper over S.

Before we give some examples, we need to describe a decomposition of the Quot scheme into a
(possibly infinite) disjoint union of subschemes that comes from the notion of Hilbert polynomial.
Let X be a finite type scheme over a field k and let L be a line bundle over X. If F is a coherent sheaf
over X, let F(m) denote F ⊗ L⊗m.

Definition 4.3. If the support of F is proper over k, then define the Hilbert polynomial Φ ∈ Q[t] of F
as

Φ(m) = χ(F(m)) =

dimF∑
i=0

(−1)ihi(X,F(m)).

The fact that Φ(m) is polynomial in m we leave unproven. If L is a very ample line bundle, then this
notion of Hilbert polynomial coincides with ordinary notion of the Hilbert polynomial of a sheaf on a
projective scheme.

Now, if X is a finite type scheme over S, L is a line bundle over X and F is a coherent sheaf with
proper support over S, then, applying the definition above to F|Xs and L|Xs for s ∈ S, we get a family
of Hilbert polynomials parameterized by the points of S, which we denote as Φs.

Key Fact: If F is flat over S, then Φs is locally constant on S.

Thus, we see that for connected T/S, every quotient sheaf in QuotE/X/S(T ) has a unique Hilbert

polynomial (it depends on the particular quotient sheaf but is the same above all points in T ). Hence,
we see that for a fixed L,

QuotE/X/S =
∐

Φ∈Q[t]

QuotΦ,L
E/X/S

where QuotΦ,L
E/X/S is the functor that only allows F with Hilbert polynomial Φ. A few remarks on this

decomposition are in order.

Remark. 1. Note that the coproduct of contravariant functors from schemes to sets is given by
taking disjoint unions in the image when evaluating at connected schemes. If we have
disconnected schemes, then we take the disjoint union in the image on each connected
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component and then take the product. This is exactly what is going on above in the
decomposition of Quot .

2. The decomposition depends in a fundamental manner on the line bundle L that we choose. For
example, if we choose L = OX , then the only polynomials for which the Quot is nonempty are
the constant ones. In particular,

Quotm,OX

E/X/S

consists of the quotients whose global sections along each fiber are of rank m. If X = S, then

global sections along fiber correspond just to the fiber of the sheaves and hence, Quotm,OX

E/S/S
parameterizes locally free quotients of E of rank m.

3. The decomposition above need not be into connected components.

Here is an example.

Example 4.4. The functor Quotr,OS

On
S/S/S

sends T to the equivalence classes 〈F , q〉 where F is a locally

free sheaf on T of rank r and q is an epimorphism OnT → F (up to the standard equivalence relation).
Thus, we see that this Quot functor is represented by Grass(n, r). More generally, replacing OnS with
some vector bundle E on S gives us Grass(V, r).

Our goal is to show that for any choice of L, Φ, QuotΦ,L
E/X/S is representable by a closed subscheme of

the Grassmanian of some vector bundle over S. This will immediately imply representablity of
QuotE/X/S as a whole. To do so, we will work with the moduli functor represented by the Grassmanian,
rather than the geometric space directly. Here is an outline of the proof of representability:

1. We will begin by embedding QuotΦ,L
E/X/S as a subfunctor of a Grassmanian functor. To do so,

we will need a uniform vanishing result on cohomology which we will obtain from a technical
result known as Castelnuovo-Mumford regularity (we will go into this in detail).

2. We then show that QuotΦ,L
E/X/S is a locally closed subfunctor of Grass (a formal definition of

what this means will be given in the relevant section). This will prove that the Quot scheme is
representable by a locally closed subscheme of the Grassmanian. For this result, we will use,
without proof, an important techincal result known as the flattening stratification (the proof is
too technical for this talk).

3. Finally, to show that Quot is a closed subscheme, we will use the valuative criterion for
properness.

5. The Reprsentability Theorem

In this talk, the representability theorem we will prove is due to Altman and Kleiman.

Theorem 5.1. Let S be a Noetherian scheme, X a closed subscheme of P(V ) for some vector bundle
V on S, L = OP (V )(1)|X , E a coherent quotient sheaf of π∗(W )(n) (π being the projection X → S)

where W is some vector bundle on S and n is an integer. Let Φ ∈ Q[t]. Then, the functor QuotΦ,L
E/X/S is

representable by a closed subscheme of Grass(V ′, n′) where V ′ is a vector bundle over S that is an
exterior power of the tensor product of W with symmetric powers of V .

This theorem is a little less general than that of Grothendeick’s, in which E can be taken to be any
coherent sheaf and V can be replaced by any coherent sheaf and the Grassmanian is now the
Grassmanian of a coherent sheaf and not necessarily a vector bundle, but the more general theorem
can be proved in a similar manner (see [Nit, pp. 27-28]) and we will not go into the details.
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Let us begin the proof of the theorem by reducing to the case of QuotΦ,L
π∗W/P(V )/S . We first need the

notion of (locally) closed subfunctors.

Definition 5.2. Let G be a contravariant functor from schemes over S to sets and let F be a
subfunctor (i.e. there exists a natural transformation F → G that is injective when evaluated at any
scheme T/S). We say that F is a (locally) closed subfunctor of G if for every T/S, there exists a
(locally) closed subscheme T ′/S such that the functor F ×G HomS(−, T ) is represented by T ′.

The key fact is that if G is represented by some scheme Y/S and F is a (locally) closed subfunctor of
G, then F is represented by a (locally) closed subscheme of Y . To find this subscheme, just apply the

above definition to Y in the place of T . We use this to do the necessary reduction to QuotΦ,L
π∗W/P(V )/S .

Lemma 5.3. (a) Tensoring by L−n gives an isomorphism QuotΦ,L
E/X/S → QuotΨ,L

E(−n)/X/S where

Ψ(m) = Φ(m− n).

(b) Let ψ : E → G be an epimorphism of coherent sheaves on X. Then, the corresponding natural
transformation

QuotΦ,L
G/X/S → QuotΦ,L

E/X/S

is a closed embedding.

Proof. (a) is obvious. We just prove (b). For this we need the construction of the vanishing scheme
V (φ) of a morphism of coherent sheaves φ : F → F ′ on an arbitrary scheme Y/S. This scheme will
have the universal property a morphism f : Z → Y factors through V (φ) if and only if f∗φ = 0. The
construction is a little involved so we leave the proofs to [Nit, pp. 16-17] and simply state the result we
need here.

Proposition 5.4. Let S be a Noetherian scheme and π : X → S a projective morphism. Let F and
F ′ be coherent sheaves on X with F ′ flat over S. Then, the contravariant functor hom(F ,F ′) which
assigns to each T/S the set Hom(FXT

,F ′XT
) is represented by some Z = Spec(SymQ) where Q is a

coherent sheaf on S. In addition, the closed subscheme Z0 defined by the vanishing of the ideal sheaf
generated by Q is the closed subscheme where the universal homomorphism vanishes (which represents
the identity on Z).

As a result of this proposition, the vanishing scheme of a particular morphism φ : F → F ′ is given by
the preimage g−1(Z0) where g : Y → Z is the morphism determined by φ.

Getting back to the proof of (b), we note that what we need is the following result: given any scheme

T over S and given 〈F , q〉 ∈ QuotΦ,L
E/X/S(T ) defining a morphism HomS(−, T )→ QuotΦ,L

E/X/S by the

Yoneda lemma, there exists a closed subscheme T ′ of T that represents

QuotΦ,L
G/X/S ×QuotΦ,L

E/X/S
HomS(−, T ).

Let us see what this functor gives us when evaluated at Y/S. We get the set

{(〈F ′, q′〉, f) : f ∈ HomS(Y, T ),F ′ = f∗F , q′ = f∗q s.t. ker q′ ⊇ kerψ}.
Thus, we need to show that there exists a closed subscheme T ′ of T such that a morphism f : Y → T
factors through T ′ if and only if f∗q is 0 on kerψ i.e. if and only if f∗q|kerψ = 0. Thus, T ′ does in fact
exist as it is the vanishing scheme of q|kerψ.

�

Embedding into Grassmanian via Castelnuovo-Mumford Regularity. Hence, to prove

Theorem 5.1, we can now assume X = P(V ) and E = π∗W . The next step is to embed QuotΦ,L
E/X/S into

the Grassmanian of an exterior power of the tensor product of W and a symmetric power of V . To do
so, we will use the following result which we later prove using Castelnuovo-Mumford regularity.
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Proposition 5.5. There exists some integer m that depends only on the rank of V , the rank of W
and Φ such that for all r ≥ m, for all schemes T/S and for all T -flat coherent quotients F of EXT

with
kernel G, the following facts hold:

1. πT∗(F(r)), πT∗(G(r)), πT∗(EXT
(r)) are locally free sheaves of ranks determined by the rank of

V , rank of W , r and Φ, with π∗T (F(r)) of rank Φ(r) in particular. In addition, all higher direct
image sheaves vanish.

2. In the following commutative diagram of locally free sheaves on XT ,

0 π∗TπT∗(G(r)) π∗TπT∗(EXT
(r)) π∗TπT∗(F(r)) 0

0 G(r) EXT
(r) F(r) 0

the rows are exact and the vertical maps are surjective.

The proof of this proposition uses a flat base change result applied to F and some cohomological
vanishing results which will be given to us by Castelnuovo-Mumford regularity. Since this result is a
little technical, it is left to the end of the talk. For now, we use this proposition to embed the Quot
functor into the Grassmanian.

This embedding is done as follows. Fix some positive integer r ≥ m and consider some scheme T/S.

Suppose we have some 〈F , q〉 in QuotΦ,L
E/X/S(T ). Then, twisting by Lr and applying πT∗ gives us an

epimorphism

πT∗(q(r)) : πT∗(EXT
(r))→ πT∗(F(r))

because all the higher direct images vanish. If 〈F ′, q′〉 is some other element of QuotΦ,L
E/X/S(T ) with

ker(q) = ker(q′), then we will also have

kerπT∗q = πT∗ ker q = πT∗ ker q′ = kerπT∗q
′.

Hence, π∗ gives us a natural transformation

QuotΦ,L
E/X/S → Grass(π∗(π

∗(W )⊗ Lr),Φ(r)) = Grass(W ⊗ Symr V,Φ(r)).

We can show that this natural transformation is injective. To do so, we need to be able to recover q
from πT∗(q(r)). It suffices to recover q(r) from πT∗(q(r)). Note that q(r) is the cokernel of the map
from G(r)→ EXT

(r). Since the vertical maps in the commutative diagram above are surjective, this is
the cokernel of the composite map

π∗TπT∗(G(r))→ G(r)→ EXT
(r)

which is the same as the composite map

π∗TπT∗(G(r))→ π∗TπT∗(EXT
(r))→ EXT

(r).

Thus, to recover q from πT∗(q(r)) it suffices to recover the first map in the above composition. This
follows from the fact that the first map is π∗T of the inclusion of the kernel of πT∗(q(r)). Hence, we see
that we can embed

QuotΦ,L
E/X/S → Grass(W ⊗ Symr V,Φ(r))

for some r sufficiently large.
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Locally Closedness via Flattening Stratification. Our next goal is to show that this embedding

actually presents QuotΦ,L
E/X/S as a locally closed subfunctor of Grass(W ⊗ Symr V,Φ(r)). This will

require a technical result known as the flattening stratification which we state now without proof. A
reference for the local case can be found in [Nit, Theorem 4.3]. Gluing issues are handled by the
universal property in the theorem.

Proposition 5.6. Let S be a Noetherian scheme and let F be a coherent sheaf on X/S, where X is a
closed subscheme of P(V ) for some vector bundle V on S. Then, the set I of Hilbert polynomials of
restrictons of F to the fibers of the map from X to S is finite. Moreover, for each Φ ∈ I, there exists a
locally closed subscheme SΦ of S such that the following three properties hold:

1. Point Set: The underlying set |SΦ| consists of all points s ∈ S above which the Hilbert
polynomial of F is Φ.

2. Universal Property: Let S′ be the scheme theoretic disjoint union of the SΦ over all Φ in I
and let f : S′ → S be the natural surjection. Then, the sheaf f∗F on P(f∗V ) is flat on S′.
Moreover f : S′ → S has the universal property that a moprhism g : T → S factors through f
if and onlny if g∗F is flat over T (we use g to denote the base changed morphism on the
projective space as well). The subscheme SΦ is thus uniquely determined by Φ.

3. Closure of Strata: Let the set I be given the total order by putting Φ < Φ′ if this holds for
sufficiently large n ∈ Z. Then, the closure of SΦ consists of the union of all SΦ′ for Φ′ ≥ Φ.

Let us now use this proposition to show that QuotΦ,L
E/X/S is a locally closed subfunctor of

Grass(W ⊗ Symr V,Φ(r)). Again, if we look at the definition, what we need to show is that given T/S
and some 〈F , q〉 ∈ Grass(W ⊗ Symr V,Φ(r))(T ), there exists a locally closed subscheme T ′ of T
representing

QuotΦ,L
E/X/S ×Grass(π∗(E(r)),Φ(r)) HomS(−, T ).

We define T ′ as follows. Define G as the kernel of

q : πT∗(EXT
(r)) = π∗(E(r))T → F

and let h be the composite map

π∗TG → π∗TπT∗(EXT
(r))→ EXT

(r).

Let J be the cokernel of h and define T ′ to be the subscheme obtained in the flattening stratification
for J corresponding to the polynomial Φ. We claim that T ′ represents the above functor.

Let Y be a scheme over S. By the universal property of the flattening stratification, a morphism
f : Y → T factors through T ′ if and only if f∗J is flat with Hilbert polynomial Φ (in the second half,
f denotes that base changed morphism between XY → XT ). Let us reframe this latter property. First,
we note that

f∗J = f∗(cokerh) = coker(f∗h).

Writing h out, we see that

f∗J = coker(f∗π∗T ker q → f∗π∗TπT∗(EXT
)→ f∗EXT

).

Because πT∗ and πY ∗ have no higher direct images on the relevant sheaves by the
Castelnuovo-Mumford regularity result stated before,

f∗π∗T = π∗Y f
∗

and

f∗πT∗ = πY ∗f
∗.

Hence, we see that

f∗J = coker(π∗Y f
∗ ker q → π∗Y πY ∗f

∗EXT
→ f∗EXT

).
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On the other hand, f lives in the image of the above functor if and only if f∗q comes from some

〈F ′, q′〉 ∈ QuotΦ,L
E/X/S(Y ). By looking at how we recovered Quot from Grass, this is true if and only if

coker(π∗Y ker(f∗q)→ π∗Y f
∗πT∗(EXT

(r))→ f∗EXT
)

is flat. Again, using the same identities as before, we can rewrite this as

coker(π∗Y ker(f∗q)→ π∗Y πY ∗f
∗(EXT

(r))→ f∗EXT
).

The only difference between this sheaf and f∗J is that one has ker(f∗q) and the other has f∗ ker q.
While these are not the same sheaf for general f , replacing one by the other does not change the
cokernel (by right exactness of f∗). Hence, we see that the sheaf above is f∗J . Hence, a morphism
f : Y → T ′ factors through T ′ if and only if f∗J is flat and has Hilbert polynomial Φ which is true if
and only if

(〈f∗F , f∗q〉, f) ∈ QuotΦ,L
E/X/S(Y )×Grass(π∗(E(r)),Φ(r)) HomS(Y, T ).

Hence, QuotΦ,L
E/X/S is a closed subfunctor of Grass(π∗E ,Φ(r)) and is thus represented by the T ′

obtained by taking T to be the latter scheme with the morphism given by the universal quotient.

Valuative Criterion for Properness. To finish the proof of Theorem 5.1, we need to show that

QuotΦ,L
E/X/S is actually represented by a closed subscheme of the Grassmanian. For this, we just need to

show that it satisfies the valuative criterion for properness. Namely, if R is a dvr over S with field of
fractions K, we need to show that the restriction map

QuotΦ,L
E/X/S(SpecR)→ QuotΦ,L

E/X/S(SpecK)

is bijective. So, suppose we have some coherent quotient map

q : EXK
→ F .

Let j be the map from SpecK to SpecR and let F be the image of the composition of

EXR
→ j∗EXK

with j∗q. Let q : EXR
→ F be the epimorphism obtained by looking only at the image. Surjectivity of

the map will follow if we show F is flat over R because applying j∗ makes the first map in the
composition the identity and the second map q. But on a dvr, flatness is the same as being torsion free
(all higher tor is trivial by dimension reasons). Now, F is a torion free sheaf over K and hence j∗F is a
torsion free sheaf over R. Thus, so is F . To prove inectivity, note that the morphism between the
functors is given by tensoring F , q with K. Injectivity of the above map follows from the valuative

criterion for separatedness: QuotΦ,L
E/X/S is already known to be separated as locally closed subschemes

of separated schemes are separated. Hence, QuotΦ,L
E/X/S is proper.

This finishes the proof of the theorem, up to the proof of Proposition 5.5. For this proposition, we will
need to use some results that are collectively known as Castelnuovo-Mumford regularity.

6. Castelnuovo-Mumford Regularity

Let k be a field and let F be a coherent sheaf on Pn over k. Let m be an integer.

Definition 6.1. We say that F is m-regular if for all i ≥ 1,

Hi(Pn,F(m− i)) = 0.
10



This is a strange definition but it works quite well in practice as it inducts well on dimension of Pn.
More precisely, we have the following lemma.

Lemma 6.2. Let F be m-regular on Pn and let H by a hyperplane that contains no associated point
of F (which always exists if k is infinite). Then, F|H is also m-regular.

Proof. Since H has no associated points of F , the ideal sheaf of H is locally generated by elements
that have no zerodivisors on F . Hence, for each i, we get a short exact sequence

0→ F(m− i− 1)→ F(m− i)→ FH(m− i)→ 0.

Taking cohomology gives us a long exact sequence

· · · → Hi(Pn,F(m− i))→ Hi(Pn,FH(m− i))→ Hi+1(Pn,F(m− i− 1))→ · · ·
which proves the claim.

�

This inductive approach allows us to conclude extremely strong consequences of m-regularity. The
following lemma is due to Castelnuovo.

Lemma 6.3. If F is an m-regular sheaf on Pn, then the following statements hold:

(a) The canonical map H0(Pn,O(1))⊗H0(Pn,F(r))→ H0(Pn,F(r + 1)) is surjective for r ≥ m.
(b) We have Hi(Pn,F(r)) = 0 for all i ≥ 1 whenever r ≥ m− i.
(c) The sheaf F(r) is generated by global sections for all r ≥ m.

Proof. Since these properties can be tested after base changing to a field extension we can assume
without loss of generality that k is infinite. Let us induct on the dimension of Pn. These properties
hold trivially if n = 0 so the base case holds. Now, assume these statements hold for all m ≤ n. Choose
some hyperplane H that contains no associated point of F . Then, FH is also m-regular and hence all
three properties hold for FH .
Let us now prove (b). For r = m− i, by the definition of m-regularity Hi(Pn,F(r)) = 0. We now prove
(b) by inducting on r ≥ m− i+ 1. Again, look at the same long exact sequence as before. We have an
exact sequence

Hi(Pn,F(r − 1))→ Hi(Pn,F(r))→ Hi(Pn−1,FH(r))

The first term is 0 by the induction hypothesis for all i ≥ 1. The second term is 0 by the inductive
hypothesis. Hence, the induction step follows. This proves (b).

For the proof of (a) and (c), we use (b) already proven and look at the following commutative diagram

H0(Pn,F(r))⊗H0(Pn,O(1)) H0(H,FH)⊗H0(H,O(1))

H0(Pn,F(r)) H0(Pn,F(r + 1)) H0(H,FH(r + 1))

σ

α νr+1

µ τ

By induction, τ is surjective. By part (b), H1(Pn,F(r − 1)) = 0 for r ≥ m and hence νr, νr+1 are
surjective. Since σ is νr ⊗ ρ, where ρ is restriction to H, it is also surjective. Hence, νr+1 ◦ µ is
surjective. This implies that H0(Pn,F(r)) = ker νr+1 + imµ. Now, since the bottom row is exact, we
see that

H0(Pn,F(r)) = imα+ imµ.

But the image of α is contained inside the image of µ, since α is obtained from µ by considering only
those elements of H0(Pn(O(1))) that are contained in the ideal of H. Hence, µ is surjective which
proves (a).

(c) now follows from the fact that for some r′ sufficiently large F(r′) is globally generated and the map
from H0(Pn,F(r))⊗H0(Pn,O(r′ − r))→ H0(Pn,F(r′)) is surjective by (a) (if there was some point x
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such that every global section of F(r) was contained in pxF(r), then the same would hold for F(r′) by
surjectivity of the above map).

�

Remark. There is another useful result that can be seen from the diagram in the Lemma. Suppose νr
as in the diagram is surjective and also suppose FH is r-regular. Then, by (a) in the Lemma, the map
τ is surjective and hence νr+1 is also surjective.

From the above Lemma, we see that Castelnuovo-Mumford regularity has some very useful
consequences. It remains to see when this property actually holds. The following is a theorem of
Mumford.

Theorem 6.4. For any non-negative integers p and n, there exists a polynomial Fp,n in Z[x0, . . . , xn]
with the following property:

Let k be any field and let F be a coherent sheaf on Pnk isomorphic to a subsheaf of ⊕pOPn . Let the
Hilbert polynomial of F be written in terms of binomial coefficients as

χ(F(r)) =

n∑
i=0

ai

(
r

i

)
with ai ∈ Z. Then, F is m-regular, where m = Fp,n(a0, . . . , an).

Proof. This proof is pretty fun. Assume k is infinite, as before and induct on n. Also, assume F to be
nonzero. For n = 0, we can take Fp,n to be any polynomial. So, assume n ≥ 1. Let H be a hyperplane
not containing any associated points of F . By construction the sheaf

Tor1
OPn

(OH ,⊕pOPn/F) = 0.

Thus, restriciton to H preserves injectivity of the map F → ⊕pOPn and hence FH is a subsheaf of
⊕pOH . Thus, we can do some induction.

Now, look at the short exact sequence

0→ F(−1)→ F → FH → 0.

Since Euler characteristic is additive on short exact sequences, we see that

χ(FH(r)) = χ(F(r))− χ(F(r − 1))

and hence the coefficients b0, . . . , bn of the Hilbert polynomial of FH satisfy

bi = gi(a0, . . . , an)

where gi is some polynomial in Z[x0, . . . , xn] independent of k or F .

By the inductive hypothesis, there exists some Fp,n−1 in Z[x0, . . . , xn−1] such that FH is m0-regular
where m0 = Fp,n−1(b0, . . . , bn). Substituting gj(a0, . . . , an) we see that m0 = G(a0, . . . , an) for some
G ∈ Z[x0, . . . , xn] independent of k or F . For m ≥ m0 − 1, the short exact sequence

0→ F(m− 1)→ F(m)→ FH → 0

gives an exact sequence

0→ H0(F(m− 1))→ H0(F(m))→ H0(FH(m))→ H1(F(m− 1))→ 0

and isomorphisms Hi(F(m− 1))→ Hi(F(m)) for all i ≥ 2. Since for some large enough m′,
Hi(F(m′)) = 0, we have

Hi(F(m)) = 0

for all i ≥ 2,m ≥ m0 − 2. Additionally, the surjection H1(F(m− 1))→ H1(F(m)) shows that from
m0 − 2 onwards, h1(F(m)) is monotonically decreasing in m. We can actually show that it is strictly
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decreasing till it hits 0. Note that equality h1(F(m)) = h1(F(m− 1)) can hold if and only if the
restriction map H0(F(m))→ H0(FH(m) is surjective. But by the remark following Lemma 6.3, this
implies that for all greater values of m, the restriction map is surjective and hence for all m′ ≥ m,
h1(F(m′)) = h1(F(m)). Thus, if equality ever holds, then at that value of m, h1(F(m)) = 0. Hence,
we see that

H1(F(m)) = 0 for m ≥ m0 + h1(F(m0)).

We now derive a polynomial upper bound on h1(F(m0)). Since F ⊆ ⊕pOPn , we must have

h0(F(m)) ≤ p
(
n+m0

n

)
.

Hence,

h1(F(m)) = h0(F(m))− χ(F(m))

≤ p
(
n+m0

n

)
−

n∑
i=0

ai

(
m0

i

)
= P (a0, . . . , an)

where P is the polynomial obtained by substituting m0 = G(a0, . . . , an) and is hence an element of
Z[x0, . . . , xn] that does not depend on F or k. Hence, we see that

H1(F(m)) = 0 for all m ≥ G(a0, . . . , an + P (a0, . . . , an).

Taking Fp,n = G+ P + n, and using the fact that Fp,n(a0, . . . , an) > m0 + n, we see that F is
Fp,n(a0, . . . , an)-regular, as desired (since we only care about cohomology upto dimension n, adding n
gives us the buffer we need for regularity.)

�

Remark. Note that the above proposition also holds with subsheafs of ⊕pOPn replaced with quotients
because if the left two terms in a short exact sequence of sheaves is m-regular, then so is the rightmost
term.

We end this talk by using the above two results to prove the Proposition 5.5 that was left unproved
during the construction of the Quot scheme. For convenience, we recall the proposition.

Proposition 6.5. There exists some integer m that depends only on the rank of V , the rank of W
and Φ such that for all r ≥ m, for all schemes T/S and for all T -flat coherent quotients F of EXT

with
kernel G, the following facts hold:

1. πT∗(F(r)), πT∗(G(r)), πT∗(EXT
(r)) are locally free sheaves of ranks determined by the rank of

V , rank of W , r and Φ, with π∗T (F(r)) of rank Φ(r) in particular. In addition, all higher direct
image sheaves vanish.

2. In the following commutative diagram of locally free sheaves on XT ,

0 π∗TπT∗(G(r)) π∗TπT∗(EXT
(r)) π∗TπT∗(F(r)) 0

0 G(r) EXT
(r) F(r) 0

the rows are exact and the vertical maps are surjective.
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Proof. For any field k and any k-valued point s ∈ S, we have an isomorphism Xs = Pnk with n is the
rank of V −1. Additionally, the restricted sheaf E|Xs is isomorphic to ⊕pOPn

k
where p is the rank of W .

It follows from Theorem 6.4 that there exists an integer which depends only on the rank of V , the rank
of W and Φ such that for any field k and any k-valued point s ∈ S, E|Xs

is m-regular and for any
quotient sheaf F of EXs

, both F and the kernel G are m-regular. We can now apply Lemma 6.3 to see
that for all r ≥ m and i ≥ 1,

(a) Hi(Xs,F(r)), Hi(Xs, EXs(r)), Hi(Xs,G(r)) = 0.
(b) F(r), EXs(r),G(r) are globally generated.

Now, suppose T is a (connected) S-scheme and F is a T -flat, coherent quotient of ET with Hilbert
polynomial Φ and kernel G. Then, looking at the long exact sequence for Tor, we see that G is also
T -flat. Hence, we can apply the following results from flat base change:

Lemma 6.6. Let π : X → S be a proper morphism of Noetherian schemes and let F be a coherent
OX -module which is flat over OS . Then the following holds:

If for some integer i, there exists d ≥ 0 such that for all s ∈ S, we have

dimk(s)H
i(Xs,Fs) = d

then Riπ∗F is locally free of rank d.

Now, part 1 of the proposition holds because for i ≥ 1 we can take d = 0 and for i = 1, we have locally
freeness because the pushforwards are flat and coherent over S. The ranks are determined by the rank
of V,W , r and Φ. In particular, since the Hilbert polynomial of F is Φ and all higher cohomology
vanishes, we have the rank of F = Φ(r).

For the second part of the proposition, we need to prove that the vertical maps are surjective and the
rows are exact. The bottom row is obviously exact. Surjectivity of the maps follows from global
generation of the bottom row. Hence, we just need the top row to be exact. But this follows from the
fact that all higher direct images of the sheaves vanish and the inverse image preserves exactness of
locally free sheaves. Hence, the proposition is proved.

�
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