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1 Algebraic K3 surfaces

1.1 Definition of K3 surfaces

Let K be an arbitrary field. Here, a variety over K will mean a separated, geometrically
integral scheme of finite type over K. A surface is a variety of dimension two. If X is a
variety over K of dimension n, then ωX will denote its canonical class, that is ωX

∼= Ωn
X/K.

For a sheaf F on a scheme X, I will write H• (F) for H• (X,F), unless that leads to
ambiguity.

Definition 1.1.1. A K3 surface over K is a complete non-singular surface X such that
ωX
∼= OX and H1(X,OX) = 0.

Corollary 1.1.1. One can observe several simple facts for a K3 surface:

1. ΩX
∼= TX ;

2. H2(OX) ∼= H0(OX);

3. χ(OX) = 2 dim Γ(OX) = 2.
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Fact 1.1.2. Any smooth complete surface over an algebraically closed field is projective.

This fact is an immediate corollary of the Zariski–Goodman theorem which states that
for any open affine U in a smooth complete surfaceX (over an algebraically closed field), the
closed subset X \U is connected and of pure codimension one in X, and moreover supports
an ample effective divisor. The proof of the theorem can be found in [2], Theorem 2.8.

Corollary 1.1.3. If K is algebraically closed, then a K3 surface over K is projective.

Remark 1.1.1. There is a notion of complex K3 surfaces. Those are not necessarily
projective, but it is known that a complex K3 surface is projective if and only if it is
algebraic.

Example 1.1.2 (Quartic in P3). Let X be a smooth quartic in P3. Then one has a short
exact sequence of coherent sheaves on P3:

0→ O(−4)→ O → OX → 0.

From the corresponding long exact sequence of cohomology one can easily derive that
H1(OX) = 0. Now, from the adjunction formula, we can calculate the canonical bundle on
X:

ωX
∼=
(
ωP3 ⊗O(4)

)
|X ∼= OP3 |X ∼= OX .

Hence X is a K3 surface.

Example 1.1.3. A smooth complete intersection of type (d1, . . . , dn) in Pn+2 is a K3
surface if and only if

∑
di = n+ 3. The argument is essentialy the same as in the previous

example, iterated n times.
Note that without loss of generality, we can consider only intersections with all di being

positive, so this gives us only finitely many possibilities, namely:

n = 1, type (4);

n = 2, type (2, 3);

n = 3, type (2, 2, 2).

So we have constructed K3 surfaces of degrees 4, 6 and 8.

Example 1.1.4 (Kummer surface). Here, assume that K is algebraically closed and not
of characteristic 2. Let A be an abelian surface over K. The theory of abelian varieties
implies that the natural involution ι : A→ A, x 7→ −x has 16 fixed points. (For this fact,
a reference would be [5], Chapter 6.) The quotient by this involution has only rational
double point singularities, which can be resolved by blowing up in these points. The
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resulting surface can be also obtained by first blowing up and then taking the quotient,
which results in the following diagram:

Ã - A

X

π

?
- A/ι

?

The canonical bundle formula for blowup (see [3], V.Prop.3.3) implies that ωÃ
∼= O(

∑
Ei),

where Ei are the exceptional divisors corresponding to the points. Note that π is a branched
covering of degree 2, so if Ēi are the images of the divisors Ei, then π∗O(Ēi) = O(2Ei).
Also, by the canonical bundle formula for branched coverings, we get ωÃ

∼= π∗ωX ⊗
O(
∑
Ei). By comparing these two formulas, we obtain that π∗ωX

∼= OÃ. Let L be a
square root of O(

∑
Ēi), then use the isomorphism π∗OÃ

∼= OX ⊕ L∗ and the projection
formula to conclude that the canonical bundle of X is trivial:

OX ⊕ L∗ ∼= π∗OÃ
∼= π∗π

∗ωX
∼= π∗OÃ ⊗ ωX

∼= (OX ⊕ L∗)⊗ ωX
∼= ωX ⊕ (L∗ ⊗ ωX) .

Now we can take canonical morphisms OX → OX ⊕ L∗ ∼= ωX ⊕ (L∗ ⊗ ωX) → ωX and
OX → OX ⊕ L∗ ∼= ωX ⊕ (L∗ ⊗ ωX) → L∗ ⊗ ωX . One of them should be an isomorphism.
In the former case, we get that OX

∼= ωX , and in the latter case, we would obtain a
contradiction.

Finally, note that the image of the injection H1(X,OX) → H1(Ã,OÃ) ∼= H1(A,OA) is
contained in the subspace invariant under the induced action of ι, hence H1(X,OX) = 0.

For a more detailed discussion of Kummer surfaces, see [2], Chapter 10, Section 10.5.

Example 1.1.5 (Double plane). Assume that K is not of characteristic 2. Consider a
nonsingular curve C ⊂ P2 of degree six. Take line bundle L ∼= O(3) which is a square root
of O(C), i.e. has a fixed isomorphism L2 ∼= O(C), and a section σ ∈ Γ(L2). Then we
can consider the double covering π : X → P2 branched along the curve C, defined as a
hypersurface in Tot(L∗) by local equation t2 = σ.

Then π∗OX
∼= OP2⊕O(−3), which implies that H1(X,OX) = 0. Now use the canonical

bundle formula for branched coverings:

ωX
∼= π∗ (ωP2 ⊗O(3)) ∼= π∗OP2

∼= OX .

This concludes the proof that X is a K3 surface.

1.2 Classical invariants

Intersection form. Hartshorne introduces intersections form on a surface in [3], Chap-
ter V, §1, for (smooth projective) surfaces over algebraically close fields; moreover, other
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aspects of the classical theory are also defined over an algebraically closed field; so from
now on we will assume that the base field K is algebraically closed. However, there is a
formula for the intersection form in terms of Euler characteristic or Hilbert polynomials,
which allows one to generalize the definition of the intersection form to the not algebraically
closed case, but it seems excessive now.

Recall that by DivX we denote the group of divisors, and there is no ambiguity in this
notion if X is a smooth projective variety. Recall also that if D is a divisor, then we can
associate a line bundle to it, and this line bundle is denoted by OX(D).

Theorem 1.2.1. Let X be a smooth projective surface. Then there is a unique pairing
DivX ×DivX → Z, denoted by C.D for any two divisors C, D, such that

1. if C and D are nonsingular curves meeting transversally, then C.D = #(C ∩D);

2. the pairing is symmetric;

3. the pairing is bilinear, i.e. for any triple of divisors C1, C2 and D, we have (C1 +
C2).D = C1.D + C2.D;

4. the pairing depends only on the linear equivalence classes, i.e. if C1 ∼ C2, then
C1.D = C2.D.

Definition 1.2.1. The pairing in the previous theorem is called the intersection form of
the surface.

Fact 1.2.2. Now we can list without proof several facts about the intersection form. First
note that for a smooth surface X, we have a surjection Div(X)→ Pic(X) with kernel being
divisors linearly equivalent to zero, so the intersection form induces a pairing on Pic(X).

1. if L is an ample line bundle and C ⊂ X is a curve, then L.O(C) > 0;

2. Riemann–Roch for line bundles on surfaces:

χ(L) =
L.(L ⊗ ω∗X)

2
+ χ(OX).

Corollary 1.2.3. If X is a K3 surface, then the Riemann–Roch theorem has a very nice
form:

χ(L) =
1

2
L.L+ 2.

Proof. Combine Corollary 1.1.1 and triviality of the canonical bundle.

Definition 1.2.2. We define algebraic equivalence of divisors on X as the transitive closure
of the relation ∼. For two effective divisors C, D in Div(X), we say that C ∼ D if there
exist a nonsingular curve T and an effective divisor E on X × T flat (as a scheme) over T ,
and for some points 0, 1 ∈ T , we have E0

∼= C and E1
∼= D. For two arbitrary divisors C,

D in Div(X), we say that C ∼ D if there exist effective divisors C1, C2, D1, D2 such that
Ci ∼ Di and C = C1 − C2, D = D1 −D2.
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Definition 1.2.3. The Néron–Severi group of a surface X is the quotient NS(X)
def
=

Pic(X)/Pic0(X), where Pic0(X) is the subgroup of all line bundles that are algebraically
equivalent to zero.

Definition 1.2.4. The group Num(X) is defined as the quotient of the Picard group
Pic(X) by the kernel of the intersection form. We say that line bundles from the kernel
are numerically trivial.

Fact 1.2.4. The groups NS(X) and Num(X) are finitely generated.

Definition 1.2.5. The rank of NS(X) is called the Picard number and is denoted by ρ(X).

Lemma 1.2.5. Let H be an ample divisor on a surface X. Then there is an integer n0
such that for any divisor D, if D.H > n0, then H2(O(D)) = 0.

Proof. By Serre duality, h2(O(D)) = h0(O(K −D)), where K stands for a divisor corre-
sponding to the canonical bundle ωX . We want the divisor K −D to be not effective. For
this, it is sufficient that (K −D).H < 0, for H is ample. So we can take n0 = K.H.

Lemma 1.2.6. Let H be an ample divisor on a surface X, and let D be a divisor such
that D.H > 0 and D2 > 0. Then for all n >> 0, nD is linearly equivalent to an effective
divisor.

Proof. We apply the Riemann–Roch theorem to nD (here K stands for a divisor corre-
sponding to the canonical bundle ωX):

χ(O(nD)) =
nD.(nD −K)

2
+ χ(OX).

Apply the previous lemma to get that for n large enough, h2(O(nD)) = 0, so that
χ(O(nD)) = h0(O(nD)) − h1(O(nD)) ≤ h0(O(nD)). Apply these considerations to the
Riemann–Roch formula:

h0(O(nD)) ≥ nD.(nD −K)

2
+ χ(OX).

But the right hand side is a polynomial of degree two in n and tends to infinity for large
n, in particular h0(O(nD)) is positive for large n and hence nD is effective.

Theorem 1.2.7 (Hodge index theorem). Let X be a surface, let H be an ample divisor
on the surface, and suppose that D is a divisor which is not numerically trivial and such
that D.H = 0. Then D2 < 0.

Proof. We will prove by contradiction. Assume that D2 ≥ 0 and consider first the case
when D2 > 0. Let H ′ = D + nH. For n big enough, H ′ is an ample divisor, because H
is ample. The inequality D.H ′ = D2 > 0 implies, by the previous lemma, that mD is an
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effective divisor for large enough m, which would imply that mD.H > 0, which in turn
implies that D.H > 0. That is a contradiction.

If D2 = 0, then by assumption there is a divisor E with D.E 6= 0. Take E′
def
=

(H2)E − (E.H)H, then

D.E′ = (H2)D.E 6= 0 and E′.H = 0.

Now let D′ = nD + E′, then D′.H = 0 and D′2 = 2nD.E′ + E′.E′. Since D.E′ 6= 0, by a
suitable choice of n we can make D′2 > 0, and apply the previous argument to D′ to get a
contradiction.

Proposition 1.2.8. Let X be a surface with an ample divisor, say H. Then the signature
of the intersection form on Num(X) is (1, ρ(X)− 1).

Proof. All nonzero elements of the orthogonal complement to H are squared to a negative
number, by Hodge index theorem 1.2.7.

Proposition 1.2.9. For a K3 surface X, the natural surjections are isomorphisms:

Pic(X)
∼−→ NS(X)

∼−→ Num(X).

In addition, the intersection form on Pic(X) is non-degenerate, even and of signature
(1, ρ(X)− 1).

Proof. Suppose that a line bundle L is non-trivial, but for some ample line bundle L′ the
pairing L.L′ is equal to zero. Then also L∗.L′ = 0. Use Fact 1.2.2 to conclude that L
and L∗ do not arise as bundles corresponding to effective divisors in X, so they cannot
possibly have nonzero global sections, i.e. H0(L) = H0(L∗) = 0. Now use Serre duality for
H2(L) ∼= H0(L∗)∗ = 0. That means that χ(L) = −h1(L) ≤ 0. Now apply Riemann–Roch
theorem for K3 surfaces:

χ(L) =
1

2
L.L+ 2 ≤ 0.

The latter implies that L.L < 0, in particular, L is not numerically trivial. That means
that the surjections in consideration, namely

Pic(X)
∼−→ NS(X)

∼−→ Num(X),

are injective, i.e. they are isomorphisms.
The intersection form is non-degenerate on Num(X), so it is non-degenerate on Pic(X).

Apply Riemann–Roch once again to obtain the formula L.L = 2(χ(L) − 4) and conclude
that the form is even. Claim about the signature follows from the Hodge index theo-
rem 1.2.7.
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Chern classes. A reference for this background material is appendix A in [3], where
Hartshorne defines Chow ring and Chern classes of an algebraic variety and states the
Hirzebruch–Riemann–Roch formula.

Chern classes of vector bundles are naturally defined as elements of the Chow ring.
The latter is freely generated, as an abelian group, by closed irreducible subvarieties in a
variety X that are subject to a certain equivalence relation, called “rational equivalence”.
It is not essential to give here the definition of the rational equivalence, because we will
only use formal properties of Chern classes without proof. Moreover, the Chow ring is
graded by the codimension of the subvarieties. The ith homogeneous component of the
Chow ring of a variety X is denoted by Ai(X). Note that A0(X) ∼= Z naturally (because
we assume that X is itself irreducible). This isomorphism is sometimes called deg, and we
will occasionally speak of an element a ∈ A0(X) as of an integer.

Definition 1.2.6. Let E be a locally free sheaf of rank r on a nonsingular quasiprojective
variety X. Let ξ ∈ A1(P(E)) be the class of the divisor corresponding to OP(E)(1). Let
π : P(E) → X be the natural projection. Then π∗ makes A(P(E)) into a free A(X)-
module generated by 1, ξ, . . . , ξr−1. For each i =0, 1, . . . , r, define the ith Chern class
ci(E) ∈ Ai(X) by the requirement c0(E) = 1 and

r∑
i=0

(−1)i
(
π∗ci(E).ξr−i

)
= 0.

Define the total Chern class

c(E) = c0(E) + c1(E) + · · ·+ cr(E)

and the Chern polynomial

ct(E) = c0(E) + c1(E)t+ · · ·+ cr(E)tr.

Fact 1.2.10. Here we list some properties of Chern polynomials. Let X be a variety, let
E ′, E , E ′”, F be locally free sheaves on X.

1. If L ∼= OX(D) for a divisor D, then ct(L) = 1 +Dt. In particular, ct(OX) = 1.

2. If 0→ E ′ → E → E ′′ → 0 is a short exact sequence of locally free sheaves on X, then
ct(E) = ct(E ′)ct(E ′′).

3. (Splitting principle.) The Chern polynomial of a locally free sheaf can be written
down as a product

ct(E) =
rk E∏
i=1

(1 + ait),

where ai ∈ A1(X).

4. For a vector bundle E , ct(det E) = 1 + c1(E)t.
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Hirzebruch–Riemann–Roch theorem. For the purpose of stating this theorem, we
will need to introduce two elements of A(X)⊗Q corresponding to a sheaf E of rank r on
X. Let

ct(E) =
r∏

i=1

(1 + ait).

Definition 1.2.7. Define the exponential Chern character of E as

ch(E) =
r∑

i=1

eai .

Definition 1.2.8. Define the Todd class of E as

td(E) =
r∏

i=1

ai
1− e−ai

.

Theorem 1.2.11 (Hirzebruch–Riemann–Roch). For a locally free sheaf E on a nonsingular
projective variety X of dimension n over an algebraically closed field, the following formula
holds:

χ(E) = deg
(
ch(E).td(T )

)
n
,

where T is the tangent bundle on X and ( · )n denotes the component of degree n in
A(X)⊗Q.

Hodge diamond of a K3 surface. We will now explain how to use Hirzebruch–
Riemann–Roch formula to determine the Hodge numbers of a K3 surface X:

hp,q(X)
def
= dim Hq

(
Ωp
X

)
.

Hodge numbers are usually written in the form of diamond, called Hodge diamond, which
for surfaces looks as follows:

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

Interestingly, all K3 surfaces have the same Hodge diamond. We will now proceed by
determining its entries.

8



Proposition 1.2.12. The Hodge diamond of a K3 surface X looks as follows:

1
0 0

1 20 1
0 0

1

Proof. Recall that for a sheaf E of rank r on X we have:

ch(E) = r + c1(E) +
1

2

(
c1(E)2 − 2c2(E)

)
and

td(E) = 1 +
1

2
c1(E) +

1

12

(
c1(E)2 + c2(E)

)
.

First, apply the Hirzebruch–Riemann–Roch theorem 1.2.11 for E = O, O being the struc-
ture sheaf O = OX . By 1.2.10, ct(O) = 1, so ch(O) = 1 and

χ(O) = deg

(
1.

(
1 +

1

2
c1(T ) +

1

12

(
c1(T )2 + c2(T )

)))
2

=
1

12

(
c1(T )2 + c2(T )

)
.

Recall that c1(T ) = c1(det T ) = c1(O) = 0, and use the fact that χ(O) = 2 for a K3
surface. So we get the following equality:

2 = χ(O) =
c2(T )

12
,

hence c2(T ) = 24.
Now apply the Hirzebruch–Riemann–Roch formula to T :

χ(T ) = deg
(
ch(T ).td(T )

)
2

= deg

(
(2− c2(T )) .

(
1 +

c2(T )

12

))
2

= 4− 24 = −20.

Now turn to calculating the Hodge numbers. We will use the fact that in characteristic
zero, Hodge diamond has a vertical and a horizontal symmetries. So, knowing that h0(O) =
1, we can conclude that h0,0 = h2,0 = h0,2 = h2,2 = 1. Also, from h1(O) = 0 we get that
h1,0 = h0,1 = h1,3 = h3,1 = 0. So we are left with only one unknown Hodge number h1,1.
But recall that h1,1 = h1(ΩX) = h0(ΩX)+h2(ΩX)−χ(ΩX) = −χ(ΩX) = −χ(T ) = 20.

2 Complex K3 surfaces

2.1 Complex K3 surfaces

Definition 2.1.1. A complex K3 surface is a compact connected Kähler complex surface
X such that Ω2

X
∼= OX and H1(X,OX) = 0.
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Remark 2.1.1. If you drop the condition of a complex K3 surfaces being Kähler, it would
still turn out that the surface is Kähler. The proof is highly nontrivial, so we just add this
condition as a part of the definition. For details, see Section 7.3.2 in [4].

Proposition 2.1.1. If X is an algebraic K3 surface over K = C, then the associated
complex spaceXan is a complex K3 surface. Moreover, if a complex K3 surface is projective,
then it can be obtained from an algebraic K3 surface.

To prove the proposition, one should recall the principles of GAGA. In particular, one
wants to know that for projective varieties, categories of coherent sheaves of an algebraic
variety and of the corresponding complex manifold are equivalent.

Example 2.1.2. We can generalize the notion of Kummer K3 surfaces to not necessarily
algebraic complex tori. This will give an example of a not projective complex K3 surface.
One can give an analytic proof of triviality of the canonical bundle. Recall the construction
of a Kummer surface — A was a two-dimensional torus, then we have taken a quotient by
an involution and blown up the singularities.

Ã - A

X

π

?
- A/ι

?

The manifold A trivially possesses a holomorphic symplectic form, which is preserved by
the involution, so it induces a symplectic form on A/ι away from the singular locus. The
idea is then to take a local analytic neighborhood of a singular fiber in X and use the fact
that it is isomorphic to T ∗P2.

Exponential short exact sequence. For a complex manifold, we have the following
short exact sequence of sheaves:

0→ Z→ O → O× → 0.

It yields the long exact sequence of cohomology for the case of K3 surfaces (note that there
are nonzero terms further on the right):

0→ Z→ C ∼−→ C→ H1(X,Z)→ 0→ H1(O×)→
→ H2(X,Z)→ C→ H2(O×)→ H3(X,Z)→ 0.

This long exact sequence shows that H1(X,Z) = 0, so we can write a new version of this
long exact sequence (recall that H1(O×) ∼= Pic(X)):

0→ Pic(X)→ H2(X,Z)→ C→ H2(O×)→ H3(X,Z)→ 0.
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We already know that Pic(X) is torsion free, so H2(X,Z) is also torsion free. By Poincaré
duality and because H2(X,Z) has zero torsion, we can conclude that H3(X,Z) = 0. So we
have only three nonzero cohomology groups for a K3 surface.

Picard group and topological interpretation of intersection form. The Picard
group of a K3 surface X is embedded into H2(X,Z) and hence inherits the topological
intersection form. This induced intersection form coincides with the algebraically defined
intersection form. This inclusion shows that the isomorphism Pic(X)

∼−→ NS(X) holds in
the complex case as well.

Remark 2.1.3. However, for non-projective complex K3 surfaces it can happen that
Pic(X) and Num(X) are not isomorphic.

One can give an upper bound on the rank of the Picard group. The Lefschetz theorem
on (1,1)-classes states the following isomorphism (in fact, the theorem claims that it is true
for any compact Kähler manifold X):

Pic(X) ∼= H2(X,Z) ∩H1,1(X).

The Hodge diamond of a complex K3 surface is the same as the one of an algebraic K3
surface, so we get the following inequality:

rk Pic(X) ∼= rk
(
H2(X,Z) ∩H1,1(X)

)
≤ dim H1,1(X) = 20.

In fact, any number between 0 and 20 is attained as the Picard number of a complex K3
surface. In the case of algebraic K3 surfaces over arbitrary base field, there is a lower
bound 1 ≤ ρ, and by means of étale cohomology, one can find an upper bound ρ ≤ 22.

Fact 2.1.2. The integral cohomology H2(X,Z) of a complex K3 surface X endowed with
the intersection form is isomorphic to the lattice

H2(X,Z) ∼= E8(−1)⊕2 ⊕ U⊕3.

The proof of this fact invokes theory of lattices, namely general classification of uni-
modular lattices. Due to this classification, it is enough to prove that H2(X,Z) is even of
signature (3, 19). After that, a tedious (but not overwhelmingly) calculation would follow,
which is done by Huybrechts in [4], Chapter 1, Proposition 3.5.

Notation 2.1.2. We will denote the lattice E8(−1)⊕2⊕U⊕3 by Λ and call it the K3 lattice.

2.2 Hodge structures

Let V be a free Z-module of finite rank or a finite-dimensional Q-vector space. By VC we
will denote the vector space V ⊗C obtained by extension of scalars (tensor product is over
Z or Q, respectively). The complex vector space VC naturally comes with a real structure,
i.e. we have an R-linear isomorphism VC → VC defined by complex conjugation.
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Definition 2.2.1. A Hodge structure of weight n ∈ Z on V is given by a direct sum
decomposition of the complex vector space VC:

VC =
⊕

p+q=n

V p,q

such that V p,q = V q,p.

For a Hodge structure V of even weight n = 2k the intersection V ∩ V k,k (defined by
means of the natural inclusion V ⊂ VC) is called the space of Hodge classes in V .

Example 2.2.1. The Tate Hodge structure is denoted by Z(1). It is the Hodge structure
of weight −2 given by the free Z-module of rank 1 such that (Z(1))−1,−1 is one-dimensional.
Similarly, one defines the rational Hodge structure Q(1). We can also define twists of the
Tate Hodge structures Z(n) and Q(n) in an obviuos way.

Example 2.2.2. For a compact Kähler manifold (in particular, for a smooth complex
projective variety), the torsion free part of the singular cohomology Hn(X,Z) comes with
a natural Hodge structure of weight n given by the standard Hodge decomposition.

Definition 2.2.2. Define a morphism of Hodge structures V , W of weight n as a Z-linear
or Q-linear, respectively, homomorphism f : V →W such that its C-linear extension maps
V p,q to W p,q.

Definition 2.2.3. For the purpose of this definition, first introduce the notion of the Weil
operator C, which acts on V p,q by multiplication with ip−q (here i is a square root of
unity). A polarization of a rational Hodge structure V of weight n is a morphism of Hodge
structures

ψ : V ⊗ V → Q(−n)

such that its R-linear extension yields a positive definite symmetric form

(v, w) 7→ ψ(v, Cw)

on the real part of V p,q⊕V q,p. Then the data (V, ψ) is called a polarized Hodge structure. A
Hodge structure is called polarizable if it admits a polarization. An isomorphism V1 → V2
of Hodge structures that is compatible with given polarizations ψ1, respectively ψ2, is called
a Hodge isometry.

2.3 Period map

Recall that Λ denotes the K3 lattice. Consider the C-vector space ΛC
def
= Λ⊗C endowed with

the C-linear extension of the form on Λ. This extended form corresponds to a homogeneous
quadratic polynomial. The latter defines a quadric in P(ΛC), which is smooth because the
bilinear form is nondegenerate.
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Definition 2.3.1. We define the period domain as the following open (in classical topology)
subset of the quadric:

D
def
= {x ∈ P(ΛC) | (x, x) = 0, (x, x̄) > 0} ⊂ P(ΛC).

Definition 2.3.2. We say that a Hodge structure V is of K3 type if dimV 2,0 = dimV 0,2 =
1, dimV 1,1 = 20 and all other spaces in the decomposition are zero.

Proposition 2.3.1. There exists a natural bijection between D and the set of Hodge
structures of K3 type on Λ which for any (2, 0)-class σ satisfy:

1. (σ, σ) = 0;

2. (σ, σ̄) > 0;

3. Λ1,1 ⊥ σ.

Proof. The (2, 0) part of any Hodge structure of K3 type defines a line in ΛC, and conditions
1 and 2 guarantee that this line lies in D.

Conversely, if a point l ∈ D is given, then there exists a Hodge structure with l as its
(2, 0) part, and this Hodge structure satisfies 1 and 2. The third condition defines the (1, 1)
part uniquely, so the Hodge structure satisfying conditions 1—3 is unique.

Now consider a smooth proper family of K3 surfaces f : X → S. Assume that S is
connected and simply connected, with a distinguished point 0 and a fixed isomorphism
ϕ : H2(X0,Z)→ Λ. As S is simply connected, we can assume that all fibres H2(Xt,Z) are
canonically isomorphic to Λ: H2(Xt,Z) ∼= H2(X0,Z)

∼−→ Λ.

Fact 2.3.2. The period map defined by

P : S → P(ΛC)

t 7→ [ϕ(H2,0(Xt))]

is a holomorphic map that takes values in the period domain D ⊂ P(ΛC). It depends on
the distinguished point 0 ∈ S and the chosen isomorphism ϕ.

Definition 2.3.3. A smooth proper family f : X → S with a distinguished point 0 ∈ S is
called the universal deformation if for any other smooth proper family f ′ : X ′ → S′ with
X0
∼= X ′0, the latter family can be obtained from the first one as a pullback under a unique

map S′ → S.

Fact 2.3.3. Let X0 be a complex K3 surface. Then X0 admits a smooth universal defor-
mation X → Def(X0) with Def(X0) smooth of dimension 20.
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Theorem 2.3.4 (Local Torelli theorem). Let X0 be a complex K3 surface and consider
its universal deformation X → Def(X0). Take a connected simply connected open neigh-
borhood of 0 in Def(X0), denote it by S. Then the period map

P : S → D ⊂ P(H2(X0,C))

is a local isomorphism.

Fact 2.3.5. The universal families of K3 surfaces X → Def(X0) glue to a global universal
family

f : X → N .

The moduli space N of K3 surfaces with a fixed isomorphism of lattices ϕ : H2(X,Z)→ Λ
exists as a 20-dimensional not Hausdorff complex manifold. (When gluing together open
sets, it sometimes happens that what emerges is not Hausdorff, e.g. a line with a double
point.)

One can define a universal identification of H2(X,Z) with Λ by gluing isomorphisms of
the local systems R2f∗Z

∼−→ Λ. So one can define a global period map. For more details on
this construction, see Chapter 6, Section 3.3 in Huybrechts’ notes [4] and also references
there.

Theorem 2.3.6 (Surjectivity of the period map). The global period map

P : N → D

is surjective and a local isomorphism.

Remark 2.3.1. Many topological invariants being equal, one could wonder whether it is
possible to distinguish K3 surfaces somehow on the topological level. The answer is no. In
fact, all complex K3 surfaces turn out to be deformation equivalent, hence diffeomorphic.
The proof of this fact can be divided into three steps:

1. Any K3 surface is deformation equivalent to a K3 surface with the Picard group
generated by a line bundle of square 4. (This part relies on the Local Torelli Theorem
2.3.4.)

2. Any K3 surface with the Picard group of the above form is a quartic surface in P3.

3. Any two smooth quartics in P3 are deformation equivalent.
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Polarized K3 surfaces. One would like to have injective period maps. It is possible if
we endow a K3 surface with additional structure, namely polarization.

Definition 2.3.4. A polarized K3 surface is a K3 surface X with a fixed ample line bundle
L. The K3 surface is primitively polarized if L is primitive, i.e. it is not a tensor power of
another ample line bundle.

Note that not all K3 surfaces are polarizable.
Let (X,L) be a primitively polarized K3 surface such that L.L = 2d. Fix an isomor-

phism Λ ∼= H2(X,Z), so that Λ becomes a Hodge structure. Recall that by Lefschetz
theorem on (1, 1)-classes, Pic(X) ∼= H2(X,Z) ∩ H1,1(X), so we can associate to the line
bundle L a vector v in the space of Hodge classes of Λ. Then v⊥ is a sublattice of Λ, de-

note it by Λd
def
= v⊥. Note that P(Λd) is a hypersurface in P(Λ), i.e. it is a 20-dimensional

complex projective space. The corresponding period domain will be Dd
def
= D∩P(Λd), it is

now a 19-dimensional complex manifold.
Similarly, one can construct the moduli space

Nd
def
=

(X,L, ϕ)

∣∣∣∣∣∣∣∣
X — a K3 surface,
L — a primitive ample line bundle on X,
ϕ : H2(X,Z)→ Λ — an isometry of lattices,
ϕ(L) = v


of primitively polarized K3 surfaces, where v is a fixed class of square 2d. This moduli
space Nd is a fine moduli space, and it turns out to be a Hausdorff complex manifold.

I can define a certain group action on this moduli space. Namely, let O be the group of
orthogonal transformations of Λd which come from orthogonal transformations of Λ fixing
v. Then an element g ∈ O acts on a point of Nd as follows:

g · (X,L, ϕ) = (X,L, g ◦ ϕ).

Also, Dd obviously carries a O-action, and the period map is O-equivariant, so we can
obtain two period maps at once:

Pd : Nd → Dd,

P̄d : O \Nd → O \Dd.

By the Baily–Borel theorem (a reference for which can be [1]), O \ Dd is a normal
quasiprojective variety.

One can say even more about the latter period maps, see the forthcoming theorem.

Theorem 2.3.7 (Global Torelli theorem). The period maps

Pd : Nd → Dd,

P̄d : O \Nd → O \Dd.

are injective.
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One immediately has a corollary of this.

Corollary 2.3.8 (Global Torelli theorem). Let (X,L) and (X ′,L′) be two polarized com-
plex K3 surfaces. Then (X,L) ∼= (X ′,L′) if and only if there exists a Hodge isometry
H2(X,Z) ∼= H2(X ′,Z) mapping l to l′, where l and l′ are cohomology classes of L and L,
respectively.

As we have mentioned above, not all of K3 surfaces admit a polarization, and the
period maps are not surjective. But relaxing the condition of being polarizable to that
of being quasipolarizable, one can argue that all K3 surfaces are quasipolarizable and the
new period maps are isomorphisms.
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