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Abstract

Following [1] very closely, we analyze the singularities of moduli
spaces of sheaves on K3 surfaces for primitive Mukai vector. For
a generic polarization, these moduli spaces are smooth, but this is
not true for any polarization H. These singularities admit symplec-
tic resolutions by choosing generic polarizations close to H. For pure
sheaves of dimension one, these singularities are locally isomorphic to
singularities of certain Nakajima quiver varieties, and the symplectic
resolutions obtained by choosing a generic polarization close to H cor-
respond to variations of GIT quotient in the construction of Nakajima
quiver varieties.

1 Introduction

In these notes, we continue our study of the geometry of the moduli spaces
of sheaves on K3 surfaces. Before we recall some of the results we have
discussed in the seminar so far, we need to fix some notation. We will be
concerned with the study of the moduli space MH(v) of (Gieseker semistable)
sheaves F on a projective K3 surface S with Mukai vector

v = v(F ) := ch(F )
√

td(S) = (r(F ), c1(F ), χ(F )− r(F )) ∈ H∗alg(S,Z),

where r(F ) is the rank of F , c1(F ) the first Chern class, and χ(F ) is the
Euler characteristic of the sheaf F . Recall also the Mukai pairing for vectors
v = (v0, v1, v2) and w = (w0, w1, w2) defined by v · w = v1w1 − v0w2 − v2w0.
Finally, H ∈ Amp (S) is a polarization in the ample cone of S.

In the second half of this seminar, we have discused some aspects of the
geometry of the moduli space MH(v). First, we have seen that the locus of
stable sheaves M s

H(V ) ⊂ MH(v) is smooth because the obstruction of this
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space being smooth at [F ] lies in Ext2
0(F, F ) = 0. There exists a symplectic

form on M s
H(V ), defined using the identification T[F ]M

s
H(v) ∼= Ext1(F, F )

and the pairing

Ext1(F, F )⊗ Ext1(F, F )→ Ext2(F, F ) ∼= Ext0(F, F )∗ ∼= C.

We have also seen that if MH(v) is non-empty, then dimMH(v) = v2 + 2.
The next natural question is to determine those vectors v for which

MH(v) 6= ∅. Recall that a vector v is called primitive if it cannot be written
as v = mw for another Mukai vector w and for some integer m ≥ 2. Further,
a vector v ∈ H∗alg(S,Z) is positive if it is primitive, if v2 + 2 ≥ 0, and if

either v0 > 0,

or v0 = 0, v1 is effective and v2 6= 0,

or v0 = v1 = 0 and v2 > 0.

Theorem 1.1. (Yoshioka, [1, page 5]) Let v be a positive Mukai vector.
Then for every ample polarization H ∈ Amp(S) and for every m ≥ 1, the
moduli space MH(mv) is non-empty.

In particular, if v is positive, we have that for generic H, the space
MH(v) = M s

H(v) (see section 2 for more details) is an irreducible holomor-
phic symplectic variety, which we will call in the rest of the notes IHS. It is
natural to see what happens when v is not primitive or H is not generic.

We have already discussed the case when v is not primitive in this sem-
inar. First, these moduli spaces are singular, but considering that in the
primitive case they are smooth IHS varieties, it is natural to ask whether
these singular spaces MH(mv), for m ≥ 2, admit IHS resolutions. O’Grady
found examples of such resolutions in some particular cases and he showed
that these resolutions were not deformation equivalent to MH(v) for v primi-
tive, as dicussed in Barbara’s talk [2]. Kaledin, Lehn, and Sorger showed that
the moduli spaces found by O’Grady are the only moduli spaces which admit
a symplectic resolution of singularities. For more details, see Yinbang’s talk
[4].

The article [1] discusses the case when H0 is not chosen generic, and v is a
primitive Mukai vector. In this case, we will explain that choosing a generic
polarization H near H0 (in a sense to be made precise in the next section),
we get a symplectic resolution

MH(v)→MH0(v),

which sends an H−stable sheaf F to its S−equivalence class with respect
to H0. Thus, this construction does not provide new examples of IHS. Nev-
ertheless, it is interesting to study the singularities of the space MH0(v)
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and see how the resolution of singularities MH(v) → MH0(v) changes as H
varies in a neighborhood of H0 in the ample cone Amp(S). In these notes
we will only be concerned with the case of pure one dimensional sheaves,
when v(F ) = (0, c1(F ), χ(F )). In this situation, Gieseker semi-stability
with respect to a polarization H is equivalent to slope stability for the slope
µH(F ) = χ(F )

c1(F ).H
, because χ(mF ) = (c1(F ).H)m+ χ(F ).

Nakajima quiver varieties are symplectic varieties related to moduli of
representations of quivers. Their construction bears some similarities with
the construction of the moduli of sheaves, and their local geometry is easier
to understand than that of moduli of sheaves, in general, as we will see in
sections 3 and 4. The definition of Nakajima quiver varieties Mχ0(n) depends
on a quiver Q, a dimension vector n, and a character χ0 from a certain
group to C∗. As it is the case for moduli of sheaves, Mχ0(n) is smooth for a
generic choice of character, and the singular spaces Mχ0(n) admit symplectic
resolutions by choosing a generic χ near χ0.

Arbarello and Saccà construct a quiver Q(F ) depending on a sheaf F
such that the resolution

MH(v)→MH0(v)

near [F ] looks locally like a resolution of singularities

Mχ(n)→Mχ0(n)

of Nakajima quiver varieties. Also, all the maps MH(V )→MH0(v) obtained
by varying the polarizationH ∈ Amp(S) can be realized as maps of Nakajima
quiver varieties associate to this quiver Q(F ). These results will be made
precise in section 5.

The plan for these notes is the following: in section 2, we discuss the wall
and chamber decomposition of Amp(S) and we explain how to construct res-
olutions of MH0(v) for non-generic H0 by “perturbing” H0 in the ample cone.
In section 3 we discuss a very important technical result about the deforma-
tion theory of F ∈ MH0(v), namely that the dgla RHom(F, F ) satisfies the
formality property. All these terms will be defined in the respective section,
where we also explain the geometric consequences of this fact. In section 4
we give a brief overview of quivers, stability conditions, and Nakajima quiver
varieties. Finally, in section 5 we state the main theorem from [1] and discuss
some of the ingredients used in its proof.
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2 Moduli of sheaves for non-generic polariza-

tions

In this section we will explain how to construct (symplectic) resolutions of
MH0(v) for H0 a not necessarily generic polarization. First, we need to know
that the ample cone Amp(S) admits a wall-and-chamber decomposition:

Theorem 2.1. (Yoshioka, see [1, Theorem-Definition 2.4])
Let ∈ H∗alg(S,Z) be a positive (and thus primitive) Mukai vector. There

exists a countable set of real codimension one linear subspaces in Amp(S)⊗R,
called the walls associated to v, such that if H lies in the complement of these
subspaces, then there are no strictly H−semistable sheaves with Mukai vector
v, while if H lies on one of the walls, then there exist H−strictly semistable
sheaves. If W1, ...,Wk are some walls, then MH(v) is independent of H a
polarization lying precisely on these k walls. Finally, if v is the Mukai vector
of a pure dimension one sheaf, then the number of walls is finite.

In the case of pure dimension one sheaves, one can describe fairly explic-
itly the walls inside Amp(S) using linear equations. A very similar descrip-
tion using linear equations exists in the wall-and-chamber decomposition for
quiver varieties, as we will see in section 4. This description allows us to
see that for H a polarization in a chamber adjacent to H0, there exists a
birational morphism

MH(v)→MH0(v).

Lemma 2.2. Let v = (0, D, χ) be a positive Mukai vector, with D is effec-
tive and χ 6= 0. Then the walls associated to v are described by equations
χ(Γ.x) = χΓ(D.x), where Γ ⊂ D is a subcurve, and χΓ ranges in a finite
subset of Z determined by v and Γ.

Further, for any H adjacent to H0, there exists a morphism

h : MH(v)→MH0(v)

which sends an H−stable sheaf F to the direct sum of its H0−Jordan-Holder
factors. The map is an isomorphism over the locus of H0−stable sheaves, and
it is birational.

For a proof, see [1, Proposition 2.5]. In the rest of the notes, we will
always assume that F is polystable. This will cause no harm because in any
S−equivalence class of sheaves there exists a polystable sheaf. In most of the
cases, we will actually write F = ⊕si=1Fi ⊗ Vi for Fi different stable sheaves
and Vi complex vector spaces.
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3 Deformation theory and the formality prop-

erty

The general approach in deformation theory is to associate a deformation
functor to a given deformation problem, and to try to represent this functor
in some way. For example, when studying deformations of a sheaf, we are
led to the functor DF : Artin → Sets from the category of local Artinian
C−algebras to the category of sets, defined by

DF (A) = {(FA, φ)|FA flat family of coherent sheaves on S, φ : FA⊗Ak → F}/ ∼,

for the natural equivalence relation [1, page 9].
Now, if we could represent this functor by a space DF in some sense,

the moduli of sheaves around F will be a quotient of DF by Aut(F ). We
will make precise statements involving this heuristics later. In any case,
understanding this particular deformation functor gives information about
the local geometry of the moduli of sheaves around F .

A general idea of the study of deformation problems is that, instead going
straight from such a problem to a deformation functor, we should first find
a differential graded lie algebra, also denoted by DF , and then go from this
dgla to the functor DF . One reason for first constructing a dgla is that
there exists a canonical way of associating a deformation functor to a dgla.
Further, quasi-isomorphic dglas give isomorphic deformation functors. Let’s
explain the first statement in more detail.

First, recall that a dgla is a differential graded vector space (L, d) with a
lie bracket [·, ·] : L×L→ L of degree zero which is (graded) skew-symmetric,
satisfies the (graded) Jacobi rule, and such that differentiating with respect
to d respects a Leibniz rule− for more details, see [5, 6]. Now, given a dgla L,
we can associate a deformation functor MCL : Artin→ Sets which associates
to a local Artinian ring solutions to the Maurer-Cartan equation:

MCL(A) = {x ∈ L1 ⊗mA|dx+
1

2
[x, x] = 0}/equivalence,

where mA is the maximal ideal of A.
For our problem, it is natural to look for the dgla L which gives the

deformation functor DF needed in our study of moduli of sheaves. Fortu-
nately, one can find it very explicitly: it is RHom(F, F ) [6]. We also say that
F satisfies the formality criterion if RHom(F, F ) is quasi-isomorphic to its
cohomology algebra Ext(F, F ). If this is the case, the deformation functor
DF , which comes from the dgla RHom(F, F ), is the same as the deformation
functor coming from the dgla (with trivial differentials) Ext(F, F ). It is eas-
ier to study the deformation functor for such a dgla and one can show that
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it is represented by a complete intersection of quadrics in Ext1(F, F ). More
precisely, the space DF representing the deformation functor is isomorphic
to k−1

2 (0), where

k2 : ̂Ext1(F, F )→ Ext2(F, F )0

is the Kuranishi map k2(e) = e ∪ e.
This result is very remarkable, because in general the space representing

the deformation functor is k−1(0), where k = k2+k3+· · · is the full Kuranishi
map, where kn are the obstructions to lifting the sheaf to the level n+1, and
they are the order n factors of the Kuranishi map. In our case k = k2 is a
quadratic map which has a very explicit description.

Thus, showing that RHom(F, F ) is formal gives a fairly explicit descrip-
tion of the moduli space MH(v) near [F ]. Arbarello-Saccà showed, based
on a theorem of Zhang [8], that all pure one dimensional sheaves satisfy the
formality property.

Theorem 3.1. Let F be a pure, dimension one sheaf on S which is polystable
with respect to a polarization H0. Then the dgla RHom(F, F ) is formal.

The proof is based on a result of Zhang [8], who proved that RHom(E,E)
is formal for certain vector bundles E. Write E = ⊕Eni

i , where Ei are its
non-isomorphic stable summands; then Zhang’s result says that E is formal
if all the Eis are line bundles or all have rank at least 2. We can assume that
F is generated by global sections and that H1(S, F ) = 0 after tensoring F
enough times with H0. To a one dimensional sheaf F generated by global
sections and with H1(S, F ) = 0, one can associate the Lazarsfeld-Mukai
bundle MF defined via the short exact sequence

0→MF → H0(S, F )⊗OS → F → 0.

One can show that MF is locally free, and that EF , the dual of MF , satisfies
the hypothesis of Zhang’s theorem, and thus that the above result holds. Full
details can be found in [1, Section 3].

4 Quivers and Nakajima quiver varieties

In this section, we finally define quivers, and talk about stability conditions,
quiver varieties, and Nakajima quiver varieties. General references for the
material in this section are [3] and [7].

First, a quiver Q is an oriented graph (V,E, s, t), where s, t : E → V
are the source and target maps. We label the vertices by the numbers
{1, 2, · · · , s}.
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A representation of dimension n = (n1, · · · , ns) is a choice of maps Vs(e) →
Vt(e), for every edge e ∈ E, where Vi is a complex vector space of dimension
ni. Thus, the space of representations of dimension n is

Rep(Q, n) = ⊕e∈E Hom(Vs(e), Vt(e)),

on which the group

G(n) :=
∏
i∈V

GL(ni)

acts in the natural way. We want to define moduli spaces of representations
as quotients of Rep(Q, n) by G(n). Recalling the GIT setting discussed in
lecture 3, we can define spaces

Rep(Q, n)//χG(n)

for all characters χ : G(n)→ C∗. One can also define a stability conditions for
quivers (called King-Rudakov), reminiscent of the slope/ Gieseker stability
for moduli of sheaves.

To define it, let n be a dimension vector and let V be a representation
of Q of dimension n. Further, choose θ ∈ n⊥ ⊂ Zs. The representation V is
called (semi)stable if for all proper subrepresentations W ⊂ V of Q,∑

θiwi∑
wi

< (≤)

∑
θivi∑
vi
.

Recall that one of the most important ingredients in the construction of
the moduli of sheaves was proving that Gieseker stability is the same as GIT
stability (for some explicit character). There is an analogous statement for
quivers. First, to a vector θ ∈ n⊥, we associate the character χθ : G(n)→ C∗
by

χθ(g1, ..., gs) =
∏

det(gi)
−θi .

Theorem 4.1. A representation V of dimension n of Q is King-Rudakov
θ−(semi)stable if and only if it is GIT (semi)stable for the character χθ.
Also, if V ′ is another such representation, V and V ′ are King-Rudakov
S−equivalent if and only if they are GIT S−equivalent.

Before going further, we will mention some examples of quiver varieties.
Let Q be the quiver with two vertices 1 and 2, and with r arrow 1 → 2.
Choose the dimension vector n = (1, 1). The stability parameter will thus
have the form θ = (u,−u). One can check that for u < 0 there are no
semistable objects, so the moduli space is the empty set. Further, for u = 0
the quiver variety is a point, and for u > 0 the quiver variety if Pr−1.
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We did not mention anything about symplectic varieties yet. Given a
smooth variety X, there is a standard way of constructing a symplectic va-
riety: take the cotangent bundle T ∗X. Thus, if we want to construct a
symplectic variety from a quiver, we should take the cotangent bundle of
Rep(Q, n)//χG(n)− the problem is that the quotient may be very well sin-
gular. Nakajima quiver varieties are symplectic substitutes for the possibly
absent cotangent bundle T ∗X. The construction is based on the moment
map, which is a very important tool in the study of moduli problems [3], but
we will not discuss it in these notes.

Recall that
Rep(Q, n) = ⊕e∈E Hom(Vs(e), Vt(e)),

and thus

T ∗Rep(Q, n) = ⊕e∈E(Hom(Vs(e), Vt(e))⊕ Hom(Vt(e), Vs(e))).

The moment map µ : T ∗Rep(Q, n) → g(n) has in this particular case the
explicit description:

µ((xe, ye)e∈E) =
∑
e∈E

(xeye − yexe) ∈ g(n),

where g(n) is the lie algebra of G(n). Given a character χθ as above, we can
define a Nakajima quiver variety as the GIT quotient

Mθ(n) = µ−1(0)//χθG(n).

One can put a symplectic structure on this variety [1, page 20].
In the case of moduli of sheaves, we were able to understand how the

moduli spaces change in function of the polarization H ∈ Amp(S). There
exists a wall-and-chamber structure in the case of quiver varieties as well:

Theorem 4.2. (Nakajima) There exists a wall-and-chamber structure in
n⊥ ⊗Q ⊂ Qs with all the walls passing through the origin. Further,

(1) if θ is in a chamber, then θ−semistability is the same as θ−stability,
so Mθ(n) = M s

θ (n).
(2) if θ and θ′ are contained in the walls W1, ...,Wk and in no other walls,

then Mθ(n) = Mθ′(n).
(3) let F and F ′ be faces such that F ′ ⊂ F̄ , with θ ∈ F, θ ∈ F ′, then

θ−(semi)stability implies θ′−(semi)stability. Since all the faces contain 0 in
their closure, there exists a map

π : Mθ(n)→M0(n)

for any θ ∈ n⊥.
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Before moving to the discussion of the main result of these notes, we
mention an example of Nakajima quiver varieties. Let Q be the quiver with
two vertices 1 and 2, with one edge 1→ 2 and with one loop 1→ 1. Choose
the dimension vector n = (n, 1), and let χ := det : G(n) → C∗. Then
Mχ(n) = Hilb(C2, n) is the Hilbert scheme of n points in C2, and the map
Mχ(n)→M0(n) is the Hilbert-Chow morphism

Hilb(C2, n)→ Sn(C2).

Full details and more examples can be found in [3] and [7].

5 The main theorem

In the introduction, we said that one of the main results of [1] is that locally
the space MH0(v) is isomorphic to an open subset of a Nakajima quiver
variety. Before explaining why this is true, we first need to associate a quiver
Q = Q(F ) to a polystable sheaf F ∈MH0(v). For this purpose, write

F = ⊕si=1Fi ⊗ Vi.

The moduli space MH0(v) near [F ] “looks” like a quotient of k−1
2 (0) by

Aut(F ), where recall that k2 : Ext1(F, F ) → Ext2(F, F ) is the order two
Kuranishi map. Similarly, the Nakajima quiver variety for the trivial char-
acter looks like a quotient of the kernel of the moment map

T ∗Rep(Q, n)→ g(n)

by G(n). Thus, we need to construct a quiver Q such that

G(n) ∼= Aut(F ), (5.1)

Rep(Q, n) ∼= Ext1(F, F ), (5.2)

g(n) ∼= Ext2(F, F ) (5.3)

are all G(n)−equivariant isomorphisms. Having the explicit description of
F = ⊕si=1Fi ⊗ Vi we can compute

Aut(F ) =
s∏
i=1

GL(Vi),

Ext1(F, F ) = ⊕i,j Hom(Vi, Vj)
ext1(Vi,Vj),

Ext2(F, F ) = Hom(F, F ) = ⊕si=1 Hom(Vi, Vi).
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Now, we can guess what is the right definition for the quiver Q. Label the
vertices V by the integers {1, · · · , s} and draw

ext1(Fi, Fj) for i < j,

ext1(Fi, Fi)/2 for i = j,

0 for j < i

edges between the vertices i and j. One can show by direct computations
now that (5.1), (5.2), and (5.3) all hold.

After all this preparation, we can finally state the main theorem from [1]:

Theorem 5.1. Let H0 be a polarization of S, and let F1, · · · , Fs be pairwise
distinct H0−sheaves. Let V1, · · · , Vs be vector spaces of dimension n1, · · · , ns
respectively, and define F := ⊕si=1Fi ⊗ Vi the corresponding H0−polystable
sheaf. Denote by v its Mukai vector and by G = Aut(F ) =

∏s
i=1GL(Vi).

(1) If F satisfies the formality criterion, then there exists a local analytic
isomorphism

φ : (M0(n), 0) ∼= (MH0(v), [F ]).

(2) Suppose that F is pure of dimension one, so that in particular (1) is
satisfies. Then for any chamber C ⊂ Amp(S) containing H0 in its closure,
we can find a chamber D ⊂ n⊥ such that for every H ∈ C and for every
θ ∈ D, the symplectic resolution

MH(v)→MH0(v)

is locally isomorphic to the symplectic resolution

Mθ(n)→M0(n).

(3) The assignment of a chamber C ⊂ n⊥ ⊗ Q for every chamber in
Amp(S) which is adjacent to H0 is induced as follows: if H is a polarization
with H.D = H0.D, then the morphism is

H → χH((g1, · · · , gs)) =
s∏
i=1

det(gi)
Di.H−Di.H0 ,

where Di = c1(Fi).

We will only discuss part (1) of the above theorem. We want to prove
that MH0(v) and M0(n) = µ−1(0)//G(n) are locally isomorphic around [F ]
and 0. Recall from lecture 4 that MH0(v) is defined as a GIT quotient
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QuotH0
(W )//GL(W ) and that we can find an étale slice Z ⊂ QuotH0

(W )
passing through [F ] = [⊕si=1Fi ⊗ Vi] such that, for G = Aut(F ),

Z//G→ QuotH0
(W )//GL(W ) = MH0(v)

is étale. Now, we know that

µ−1(0) ∼= k−1
2 (0)

G(n)−equivariantly, by our construction of the quiver Q. The formality
property for F translates into a local G(n)−equivariant isomorphism

Z ∼= k−1
2 (0).

This is explained in detail in [1, Section 4]. Thus, we have a local ana-
lytic isomorphism Z//G(n) ∼= k−1

2 (0)//G(n) = M0(n). However, the map
Z//G(n)→MH0(v) is étale, and this implies the desired isomorphism

(MH0(v), [F ]) ∼= (M0(n), 0).
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[8] Z. Zhang, A note on formality and singularities of moduli spaces, Mosc.
Math. J. 12, 863-879, 2012.

arXiv:1511.07321
www.northeastern.edu/iloseu/Barbara_S16.pdf
www.northeastern.edu/iloseu/Barbara_S16.pdf
arXiv:0905.0686
arXiv:0905.0686
www.northeastern.edu/iloseu/Yinbang_S16.pdf
www.northeastern.edu/iloseu/Yinbang_S16.pdf
arXiv:math/0507284
www1.mat.uniroma1.it/people/manetti/ManSea.pdf

	Introduction
	Moduli of sheaves for non-generic polarizations
	Deformation theory and the formality property
	Quivers and Nakajima quiver varieties
	The main theorem

