
INVARIANTS OF JETS AND THE CENTER FOR ŝl2

IVAN KARPOV, IVAN LOSEV

Abstract. This is an expository talk for the student learning seminar on the representation theory
of a�ne Kac-Moody algebras at the critical level. We develop the formalism of jet schemes and use
it to compute the algebra of invariants for the action of the group Grrtss on its adjoint representation

grrtss. In turn, we use this computation to show that the center of Vκcpŝl2q is the polynomial algebra

freely generated by the Sugawara modes. We then identify the center of Vκcpŝl2q with the algebra of
polynomial functions on the space of projective connections on the disc D � SpecpCrrtssq thus getting
a coordinate free description of the center. We moslty follow [2].

1. Invariants and the center

1.1. Introduction. Throughout the talk, the base �eld is C.
Let g be a �nite-dimensional simple Lie algebra. The corresponding connected algebraic group G

acts on g (via the adjoint representation), yielding G-actions by graded algebra automorphisms on
Crgsp� Spgqq and by �ltered algebra automorphisms on the universal enveloping algebra Upgq.
Let h � g denote a Cartan subalgebra, and W be the corresponding Weyl group. The following is

due to Chevalley:

Proposition 1.1.1. (A) We have a graded algebra isomorphism CrgsG � CrhsW .
(B) The algebras in (A) are isomorphic to the polynomial algebra in r :� rk g homogeneous

generators, to be denoted by P1, . . . , Pr.

It is also well-known due to Harish-Chandra (see, e.g., [4, Ch. 23]) that the center ZpUpgqq of
Upgq is isomorphic to CrhsW as a �ltered algebra. The Harish-Chandra theorem can be viewed as a
�nite dimensional counterpart of the main result for the seminar: a description of the center of the
completed universal enveloping algebra of ĝ at the critical level.
We write O for Crrtss, GO for the group of O-points of G and gO for its Lie algebra, gbO, compare

to [6, Section 3]. The main goal of the �rst part of the talk is to get an analog of Proposition 1.1.1
for the action of the group GO on gO: we will see that the elements Pi,n with i � 1, . . . , r and n   0
introduced in [6, Section 3.4] are free generators of CrgOsGO . We will use this to show that the

Sugawara modes Sn|0y P Vκcpŝl2q (with n ¤ �2) generate the center of Vκcpŝl2q.

1.2. Jet schemes. In order to compute the algebra CrgOsGO we will need the formalism of jet
schemes (a.k.a. arc spaces).

1.2.1. De�nition via functor of points. Let CommAlg denote category of commutative associative
unital C-algebras, its opposite category is identi�ed with the category of a�ne schemes over SpecpCq.
In particular, an arbitrary scheme X over SpecpCq gives rise to its functor of points

MorpSpecp?q, Xq : CommAlg Ñ Sets

sending an algebra R to the set of R-points of X. One recovers X uniquely from its functor of
points, however, not every functor CommAlg Ñ Sets is representable (i.e., is a functor of points for
a scheme).

De�nition 1.2.1. Let X be a �nite type scheme over SpecpCq. We de�ne the jet functor of X

JX : CommAlg Ñ Sets

by sending R to the set of all morphisms SpecpRrrtssq Ñ X (of schemes over SpecpCq).
1
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Proposition 1.2.2. The functor JX is represented by a scheme to be denoted by JX and called the
jet scheme (a.k.a. arc space) of X.

We will sketch a proof (and a construction of JX) below in this section.
We also note that for general Yoneda reasons, J is a functor (from the category of �nite type

schemes to the category of schemes). For a morphism φ : X Ñ Y we write Jφ for the induced
morphism JX Ñ JY .

1.2.2. A�ne case. We �rst give a constructive proof of Proposition 1.2.2 in the case when X is a�ne.

Example 1.2.3. First, set X � Am � SpecpCrx1, . . . , xmsq. For an arbitrary commutative C-algebra
R, the set of Rrrtss-points of X is

HomAlgpCrx1, . . . , xms, Rrrtssq.
Of course, any algebra homomorphism ϕ : Crx1, . . . , xms Ñ Rrrtss is uniquely determined from the

images ϕpxiq that are formal power series

ϕpxiq �
¸
n 0

ai,nt
�n�1, ai,n P R.

Thus, the set of R-point of JX is the set tai,n P R|i � 1, . . . ,m, n   0u and hence

JX � SpecCrxi,n|i � 1, . . . ,m, n   0s.

Example 1.2.4. Now we consider the case when X is a general �nite type a�ne scheme over
SpecpCq, it can be de�ned as

SpecpCrx1, . . . , xms{pF1, . . . , Fkqq.

The same reasoning as in the Example 1.2.3 shows that the set MorpSpecpRq, JXq can be be
identi�ed with the set of aiptq :� ϕpxiq P Rrrtss such that

(1.2.1) Fjpa1ptq, . . . , anptqq � 0

for all j � 1, . . . , k.
To describe this set of formal power series, consider the algebra R :� Crxi,ns (cf. Example 1.2.3).

De�ne a derivation T P DerCpRq on the free generators by:

T : xj,n ÞÑ �nxj,n�1.

Now, de�ne F#
j :� Fjpxi,�1q. One can show that the system of equations (1.2.1) is equivalent to

T ℓF#
j � 0 for all possible ℓ ¥ 0 and j � 1, . . . , k. So for JX we can take the closed subscheme of

JAm given by the equations T ℓF#
j :

JX � SpecpR{pT ℓF#
j qq.

Remark 1.2.5. We have an algebra homomorphism CrXs Ñ CrJXs sending F � F px1, . . . , xmq to
F# de�ned by F px1,�1, . . . , xm,�1q. It yields a scheme morphism JX Ñ X.

Exercise 1.2.6. Let X, Y be �nite type a�ne schemes (over SpecpCq). Identify JpX � Y q with
JX � JY . More precisely, let π1 : X � Y Ñ X and π2 : X � Y Ñ Y be the projections. Then
Jπ1 � Jπ2 : JpX � Y q

�
ÝÑ JX � JY .

1.2.3. Gluing. Now we proceed to the case of non-a�ne �nite type schemes Y . We claim that JY
can be glued from JX for open a�nes X � Y . The key step here is to relate JX and JpXf q for
f P CrXs, where Xf is the non-vanishing locus for f (known as a principal open subset). We claim
that JpXf q is naturally identi�ed with pJXqf 7 , where f

7 P CrJXs is de�ned in Remark 1.2.5.
Indeed, recall that if CrXs � Crx1, . . . , xms{pF1, . . . , Fkq, then

CrXf s � Crx1, . . . , xm, xs{pF1, . . . , Fk, xf � 1q.

It follows that CrJpXf qs � CrJXsrxn|n   0s{pT ℓpxf � 1q7q. For ℓ � 0, the equation T ℓpxf � 1q7 � 0
means that x�1f

7 � 1, i.e., f 7 is invertible, and x�1 � pf 7q�1. The equation T ℓpxf � 1q7 � 0 for
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ℓ ¡ 0 then uniquely expresses x�ℓ�1 as a polynomial in x�1, . . . , x�ℓ, pf
7q�1 and elements of CrJXs.

This gives the required identi�cation CrJpXf qs � CrJXsrpf 7q�1s.
This discussion �nishes our sketch of proof of Proposition 1.2.2.

Remark 1.2.7. Note that we still have a morphism JY Ñ Y . It is a�ne (of in�nite type).

1.2.4. nth order jets. Let X be a �nite type scheme over SpecpCq. It turns out that JX (which is
an in�nite type scheme) can be presented as the inverse limit of �nite type schemes JnX (n-th order
jet schemes). By de�nition, JnX represents the functor CommAlg Ñ Sets sending R to the set of
morphisms SpecpRrts{ptn�1qq Ñ X.
For example, for X as in Example 1.2.4, we have

JnX � SpecpCrJXs{pxi,N |i � 1, . . . ,m,N   �n� 1qq.

As in the case of J , Jn is a functor (in this case, from the category of �nite type schemes over SpecpCq
to itself). The claim that J � limÐÝnÑ8

Jn is left as an exercise (on the general categorical nonsense).

Exercise 1.2.8. For X smooth, show that J1X is the tangent bundle of X.

1.2.5. Smoothness. The goal of this part is to prove the following statement.

Theorem 1.2.9. For a smooth morphism φ : X Ñ Y , the morphism Jnφ : JnpXq Ñ JnpY q is
smooth as well.1

Indeed, let us recall the following criterion of smoothness ([1, Section 1.4]). If R is a commutative
C-algebra, then by its nilpotent extension we mean a commutative algebra R1 equipped with an
epimorphism R1 ↠ R whose kernel is a nilpotent ideal.

Proposition 1.2.10. Suppose that g : AÑ B is a morphism of schemes of �nite type over C. Then,
g is smooth if and only if for any morphism h : S � SpecpRq Ñ B which lifts to h1 : S Ñ A the
following holds:
suppose that R1 is a nilpotent extension of R, that S1 � SpecpR1q, and that h1 : S1 Ñ B is any

lifting of h. Then h1 also lifts to h11 : S1 Ñ A:

S A

S1 B

h1

h1

gDh11

Proof of Theorem 1.2.9. By de�nition, an R-point of JnA is an Rrts{ptn�1q-point of A. Now, we have
the diagram

SpecRrts{ptn�1q X

SpecR1rts{pt
n�1q Y,

h1

h1

fDh11

where we need to prove the existence of h11. To �nish the proof we combine Proposition 1.2.10
with the observation that R1rts{pt

n�1q is a nilpotent extension of Rrts{ptn�1q. □

Remark 1.2.11. The similar argument proves that, for a surjective smooth morphism f , the mor-
phism Jnf is also surjective (on the level of C-points) for all n.

Applying Theorem 1.2.9 to Y � pt, we get the following claim.

1One can introduce the notion of �formal smoothness�. Then, the same statement would be true for the functor J
itself (instead of Jn's).
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Corollary 1.2.12. For a smooth variety X, the scheme JnX is a smooth scheme of �nite type.

The following exercise (based on the generic smoothness) will be used below.

Exercise 1.2.13. Let φ : X Ñ Y be a dominant morphism to a smooth variety Y . Prove that
Jnφ : JnX Ñ JnY is dominant.

1.3. Jet-theoric Chevalley theorem. Recall that we write O for the algebra Crrtss. For an a�ne
scheme X we will often write XO for JX.
Let G be an algebraic group. Applying the functoriality of Jn and J to the structure maps of G, we

see that JnG, JG are group schemes over C. In fact, JnG is an honest algebraic group with Lie algebra
g b Crts{ptn�1q � JnG is the semi-direct product of G with the unipotent group expptgrts{tn�1grtsq.
This description shows, in particular, that Jn�1G↠ JnG for all n. And JG is the limit limÐÝnÑ8

JnG,
hence a pro-algebraic group.
Applying the functor J to the action morphism G� gÑ g we get the morphism JpG� gq Ñ Jg.

Under the identi�cation JG � Jg � JpG � gq from Exercise 1.2.6, this gives an action of the pro-
algebraic group JG on Jg. We want to compute the algebra of invariant polynomial functions for
this action.
The following result is a jet analog of Proposition 1.1.1. Recall that Pi, i � 1, . . . , r, denote free

homogeneous generators of the algebra CrgsG. Then we can form the elements Pi,n P CrgOsGO for all
ℓ   0 and i � 1, . . . , r, see [6, Section 3.4].

Theorem 1.3.1. The algebra of invariants CrgOsGO is identi�ed with CrJph{W qs, equivalently, is
freely generated by the elements Pi,ℓ.

1.3.1. Preparation. We write g{{G :� SpecpCrgsGq. We have the quotient morphism π : g Ñ g{{G
induced by the inclusion CrgsG ãÑ Crgs. It gives rise to Jπ : Jg Ñ Jpg{{Gq. By the Chevalley
theorem, g{{G is an a�ne space with coordinates P1, . . . , Pr. The polynomials Pi,ℓ are nothing else
but the coordinates on the in�nite dimensional a�ne space Jpg{{Gq. So our job is to show that the
pullback homomorphism pJπq� identi�es CrJpg{{Gqs with the subalgebra of invariants for GO � JG
in CrJgs.
We are going to reduce this to the analogous claim, where J is replaced with Jn: pJnπq

� identi�es
CrJnpg{{Gqs with CrJngsJnG. Proving the latter for all n is enough for the following reason. Since
CrJgs is the union of its subalgebras CrJngs, we see that CrJgsJG is the union of its subalgebras
CrJgsJG X CrJngs. Our reduction now follows from the next exercise (where one needs to use that
JG↠ JnG and that the projection JgÑ Jng is JG-equivariant).

Exercise 1.3.2. CrJgsJG X CrJngs � CrJngsJnG as subalgebras in CrJgs.

1.3.2. 1st proof of CrJnpg{{JnGqs
�
ÝÑ CrJngsJnG. In this proof, di�erent from what is given in [2,

Section 3.4] we will use the Kostant slice, a remarkable a�ne subspace S � g with the property that
the restriction of the quotient morphism π : g Ñ g{{G :� SpecpCrgsGq to S is an isomorphism. For
more on Kostant slices see [7]. In particular the claim that π|S is an isomorphism is proved in [7,
Section 4].
Let ι denote the inclusion S ãÑ g. Since π � ι is an isomorphism S

�
ÝÑ g{{G, we see that Jnπ � Jnι :

JnS
�
ÝÑ Jnpg{{Gq. It remains to show that pJnιq

� embeds CrJngsJnG into CrJnSs.
Let β denote the action map G � S Ñ g, pg, sq ÞÑ Adpgqs, and ι1 denote the embedding S ãÑ

G � S, s ÞÑ p1, sq. Note that ι � β � ι1, hence Jnι � Jnβ � Jnι
1. The action of G on G � S (by left

translations on the �rst factor) gives rise to an action of JnG on JnpG�Sq � JnG�JnS (also by left
translation on the �rst factor). So pJnι

1q� restricts to an isomorphism CrJnpG�SqsJnG
�
ÝÑ CrJnSs. So,

the claim that pJnι
�q : CrJngsJnG ãÑ CrJnSs is equivalent to pJnβq� : CrJngsJnG ãÑ CrJnpG�SqsJnG,

which will follow from pJnβq
� : CrJngs ãÑ CrJnpG�Sqs. To see the latter injectivity, we remark that

β : G�S Ñ g is dominant (Step 1 of the proof of Theorem in [7, Section 4]) and use Exercise 1.2.13.
This completes the 1st proof of Theorem 1.3.1.
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1.3.3. 2nd proof of CrJnpg{{JnGqs
�
ÝÑ CrJngsJnG. Now we give a proof that closely follows one in [2].

Consider the open subset of regular elements:

greg � tx P g | dimZgpxq � rk gu,

studied in detail in [7, Section 5]. In particular, we have the following claim

(*) The morphism π|greg is smooth, and each �ber of π|greg : greg Ñ g{{G is a single G-orbit (in
particular, the morphism is surjective).

Exercise 1.3.3. For g � sln, the subset greg consists precisely of all matrices such that in their
Jordan normal form, there is a single block for each eigenvalue.

Suppose, for a moment, that we know that the direct analog of (*) holds for the action of JnG on
Jng

reg and the morphism Jnpπ|gregq : Jng
reg Ñ Jnpg{{Gq. We then can prove that CrJnpg{{Gqs

�
ÝÑ

CrJngsJnG using the following general result.

Proposition 1.3.4. Let H be an algebraic group and X, Y be normal algebraic varieties. Suppose H
acts on X, and Y is a�ne. Suppose, further, that φ : X Ñ Y is a surjective H-invariant morphism
such that each �ber of ϕ is a single H-orbit. Then φ� : CrY s �

ÝÑ CrXsH .

Proof. Clearly, φ� : CrY s ãÑ CrXsH and we need to prove the surjectivity. Take f P CrXsH , and
consider the subalgebra of CrXsH generated by CrY s and f , denote it by A. Then φ factors as
X Ñ SpecpAq Ñ Y , where both morphisms are dominant. Since each �ber of φ is a single orbit,
SpecpAq Ñ Y is injective. Any injective dominant morphism is birational, hence f can be viewed
as a rational function on Y . It is left as an exercise to show that f has no poles on Y . Since Y is
normal, f P imφ�. This �nishes the proof. □

We apply this to X � Jng
reg, Y � Jnpg{{Gq and H � JnG. Note that Jnpg{{Gq is smooth,

hence normal, we use the analog of (*) to deduce CrJnpg{{JnGqs
�
ÝÑ CrJnpgregqsJnG. The subvariety

Jnpg
regq � Jng is open and dense. So the restriction homomorphism CrJngs Ñ CrJnpgregqs is injective.

From here we deduce that CrJnpg{{JnGqs
�
ÝÑ CrJngsJnG.

Now, it remains to establish that analog. First, we reformulate the claim.

Exercise 1.3.5. Let H be an algebraic group acting on a variety X, Y is a variety, and φ : X Ñ Y
be an H-invariant morphism. The following claims are equivalent.

(a) The morphism φ is smooth and each �ber of φ is a single H-orbit.
(b) The morphism H �X Ñ X �Y X, ph, xq ÞÑ phx, xq is smooth and surjective.

Apply Exercise 1.3.5 to H � G,X � greg, Y � g{{G,φ � π|greg to get that G�greg Ñ greg�g{{Gg
reg

is smooth and surjective. Hence, by Section 1.2.5, JnpG�gregq Ñ Jnpg
reg�g{{G g

regq. One can use the
smoothness of π|greg and generalize Exercise 1.2.6, to identify Jnpg

reg�g{{Gg
regq with Jnpg

regq�Jnpg{{Gq

Jnpg
regq. We get (b) of Exercise 1.3.5 for H � JnG,X � Jnpg

regq, Y � Jnpg{{Gq, φ � Jnpπ|gregq,
yielding (a), which is what we need to �nish the proof.

1.4. Center of Vκcpsl2q. Suppose G � SL2. We recall the de�nition of Sugawara operators from [6,
Section 1].

Sn �
1

2

3̧

i�1

¸
j�k�n

: xipjqxipkq : .

The elements Sn|0y for n ¤ �2 are central in Vκcpsl2q.

Theorem 1.4.1. The center of the vertex algebra Vκcpsl2q is isomorphic to CrSn|0ysn¤�2 (as a com-
mutative algebra).

We leave the proof of this theorem as an exercise. A warm-up is to recall how to prove that the
Casimir element is a free generator of the center of the Upsl2q once one knows the description of
Crsl2sSL2 . For details, see [2, Section 3.5].



6 IVAN KARPOV, IVAN LOSEV

2. The coordinate-independent description of Vkpgq.

2.1. The ring O and the �eld K. Suppose that X be a smooth curve. Let us de�ne the ring Ox

as the completion of the local ring OX,x at the maximal ideal mx, i.e., Ox :� limÐÝOX,x{m
n
x. Let also

Kx be the �eld of fractions of Ox. Let pmx denote the maximal ideal in Ox.
A choice of an element t P pmxzpm2

x is the same as a choice of an isomorphism Ox
�
ÝÑCrrtss.

Exercise 2.1.1. Prove this statement. A hint: to see that there is an isomorphism use a suitable
�etale map from an open neighborhood of x to A1.

Note that an isomorphism Ox
�
ÝÑ Crrtss induces an isomorphism Kx

�
ÝÑ Cpptqq.

2.2. The algebra ĝκ,x. We now want to de�ne the Kac-Moody algebra in a coordinate free way,
using Kx instead of Cpptqq.

Remark 2.2.1. This is needed, in particular, for globalizing our constructions over the curve X.
For more details, an interested reader may consult with the Seminaire Bourbaki talk [3].

The desired central extension ĝκ,x comes from the (familiar) short exact sequence

0Ñ C � 1Ñ ĝκ,x Ñ gbKx Ñ 0,

where the cocycle is given by the standard formula cpAb f,B b gq � �κpA,BqResxpfdgq.
This de�nition does not depend on the choice of the local coordinate t on X near x. Any such

choice identi�es ĝκ,x with ĝκ.
In the same fashion, one can rede�ne the vacuum module.

(2.2.1) Vκpgqx � Ind
pgκ,x
gbOx`C1C.

Hence, one also has

zppgqx � zpVκpgqxq � pVκpgqxq
gbOx .

Our goal is to obtain a coordinate-free description of this algebra (note that we do not give a
coordinate free description of the vertex algebra Vκpĝq itself). A description of zppgqx that involves a
choice of a coordinate is in Theorem 1.4.1.

2.3. The group of coordinate changes. We start by studying how the picture from the Section 2.2
interacts with coordinate changes. A coordinate change is understood as an automorphism of Ox.
Such automorphisms form a group to be denoted by AutO.
Any ϕ P AutO is uniquely determined by its action on the coordinate t. So we can identify AutO

with the set of formal power series
°8

i�1 ait
i with a1 � 0. The group operation is the composition:

ϕptq � ψptq � ϕpψptqq.
Set Aut�O :� tϕ P AutO | a1 � 1u. This is a normal subgroup of AutO and, moreover,

AutO � C� 
 Aut�O,
where C� is identi�ed with the subgroup of AutO consisting of �loop rotations�, i.e., the automor-

phisms of the form a : t ÞÑ at, a P C�.

Remark 2.3.1. We can also consider, for each n ¥ 0, the group AutpCrts{ptn�1qq together with
its decomposition AutpCrts{ptn�1qq � C� 
 Aut�pCrts{ptn�1qq. Note that Aut�pCrts{ptn�1qq is a
unipotent algebraic group, its elements can be thought of as elements t � a2t � . . . � ant

n with the
group law given by composition followed by truncation, i.e., setting tn�1 to 0. So we have an algebraic
group epimorphism Aut�pCrts{ptn�2qq↠ Aut�pCrts{ptn�1qq and the group Aut�O is the inverse limit
limÐÝn

Aut�pCrts{ptn�1qq. Therefore it is a pro-unipotent pro-algebraic group.
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The Lie algebras of the algebraic groups of interest are as follows:

LiepAutOq � Der0O :� tCrrtssBt,
LiepAut�Oq � Der�O :� t2CrrtssBt,

Note that the Lie subalgebra of C� � LiepAutOq is spanned by the Euler vector �eld tBt. We also
note that the entire algebra Der0O of derivations of O equals CrrtssBt, hence is strictly large than
the Lie algebra LiepAutOq.
Recall the standard notation

Ln � �tn�1 B

Bt
, n ¥ 0.

These elements form a topological basis inside Der0Crrtss. Moreover, Ln (n ¡ 0) form a topological
basis inside Der�Crrtss. In particular, Der0O can be embedded into the Virasoro algebra as its
positive part.

2.4. The space gpptqq{grrtss vs functions on the 1-forms. Here, we will be interested in a de-
scription of grVkpgq. Let us recall the following statement from [6, Section 3.3].

Proposition 2.4.1. We have the following graded algebra isomorphisms

grVkpgq � Sympgpptqq{grrtssq � Crg�rrtssdts.

We claim that the second isomorphism is coordinate-independent. Let us recall how it is con-
structed. The algebra Crg�rrtssdts is the algebra of polynomials in the linear functions rn : g�rrtssdtÑ
C with n   0 given by α ÞÑ Resz�0pz

nαq. Let pg�rrtssdtq_ denote the vector space with basis rn, of
course, it is just the space of continuous linear maps g�rrtssdtÑ C (the continuity is with respect to
the t-adic topology on g�rrtssdt and the discrete topology on C). We then have a linear map

(2.4.1) gpptqq{grrtss Ñ pg�rrtssdtq_

given by f ÞÑ rf with rf pαq :� Resz�0pfαq. It is an isomorphism and it is coordinate-independent
because taking the residue of a form is classically known to be coordinate-independent.
In what follows in this section we will reprove that (2.4.1) is coordinate-independent from scratch

in order to illustrate a general technique that we are going to use in what follows to prove new (and
more di�cult) results. We note that the group AutO acts both on the source and the target of
(2.4.1). Our claim that this map is coordinate-independent means just that it is AutpOq-equivariant.
And, since AutpOq is connected (as a semi-direct product of a torus and a pro-unipotent group), to
show that (2.4.1) is AutpOq-equivariant, it is enough to show that it is Der0O-equivariant. In fact,
we will see that it is DerO-equivariant. We will do this for an analog of (2.4.1) where g is replaced
with C.
We have Lnt

k � �ktk�n if k�m ¤ �1 and Lnt
k � 0 else. The action of DerO on Crrtssdt is given

by

(2.4.2) Lnpt
�m�1dtq � pm� nqtn�m�1dt.

So xLnrk, t
�m�1dty � �xrk, Lnt

�m�1dty � pm � nqxrk, t
n�m�1dty � pm � nqδk�n�m,0. We conclude

that Lnrk � �krk�n, which shows that the analog of (2.4.1) (that by de�nition sends tk to rk) is
DerO-equivariant.

2.5. DerO-action on the elements Sm. Section 2.4 suggests that in order to give a coordinate free
description of the algebra CrSm|0y|m ¤ �2s we should determine how DerO acts on the elements
Sm (under the natural action of DerO on ĝ by derivations).
Choose κ0 to be the standard trace pairing. With this choice, [6, Corollary 2.17] tells us that if κ

is not critical, then

(2.5.1) Ln.Sm � pn�mqSn�m �
1

2
pn3 � nqδn,�m.

But near κ � κc, the element Sm depends continuously on κ, and so (2.5.1) also holds for κ � κc.
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Remark 2.5.1. (2.5.1) is true for a suitable normalization of the Sugawara elements for the general
simple g.

3. Projective connections

3.1. De�nition. Let us introduce the vector space Ωλ
D of �λ-forms� on D. Its elements are, by

de�nition, the formal expressions of the form fptqpdtqλ for λ P C.
The space Ωλ

D becomes a DerO-module via the following formula (for λ � 1 we recover (2.4.2)):

ξptqBt � fptqpdtq
λ � ppξptqf

1

ptq � λfptqξ
1

ptqqqpdtqλ.

De�nition 3.1.1. A projective connection on D � SpecCrrtss is a second order di�erential operator

ρ : Ω
�1{2
D Ñ Ω

3{2
D

of the form B2t � vptq. By de�nition, this operator sends fptqpdtq�1{2 to pf2ptq � vptqfptqqpdtq3{2.

3.2. The action of vector �elds. We now would like to write down the action of vector �elds on
projective connections. The action is as on the linear maps between two DerO-modules.
First, we compute

ξptqBt � ppB
2
t � vptqqfptqpdtq�1{2q � ξptqBtppf

2ptq � vptqfptqqpdtq3{2q �

� pξptqpf3ptq � v1ptqfptq � vptqf 1ptqq �
3

2
ppf2ptq � vptqfptqqξ1ptqqqpdtq3{2.

On the other hand,

pB2t � vptqqpξptqBt � fptqpdtq
�1{2q � pB2t � vptqqpξptqf 1ptq �

1

2
fptqξ1ptqqdt�1{2 �

p
3

2
ξ1ptqf2ptq � ξptqf3ptq � vptqξptqf 1ptq �

1

2
fptqξ3ptq �

1

2
vptqfptqξ1ptqqpdtq3{2.

Thus, the formula for the action of ξptqBt comes by taking the di�erence between two last quantities:

(3.2.1) ξptqBt : B
2
t � vptq ÞÑ pξptqv1ptq � 2vptqξ1ptq �

1

2
ξ3ptqq.

Remark 3.2.1. The space of projective connections can be viewed as an a�ne space with associ-
ated vector space Crrtss. We can identify the two by sending B2t to 0. Note that (3.2.1) de�nes a
homomorphism from DerO to the Lie algebra of the group of a�ne transformations of Crrtss.
Note also that (3.2.1) integrates to an action of AutO: for the coordinate change t � ϕpsq (ϕ as

in 2.3, one has B2t � vptq � B2s �wpsq for wpsq � vpϕpsqqϕ1psq2 � 1
2
tϕ, su, where tϕ, su :� ϕ3

ϕ1
� 3

2
pϕ

2

ϕ1
q2

is the so-called Schwarzian derivative.

3.3. Main theorem. Now, we can state the main result of this part. We write Dx for SpecpOxq,
and ProjpDxq for the space of projective connections on Dx that we view as an in�nite dimensional
a�ne space.

Theorem 3.3.1. We have a coordinate-independent isomorphism zpsl2qx � CrProjpDxqs.

Proof. For k ¤ �2, we write pk for the element of CrProjpDxqs that sends a projective connection
B2t �

°8
i�0 ait

i to a�k�2. Note that CrProjpDxqs � Crpk|k ¤ �2s. We claim that the assignment
sending Sk|0y to pk de�nes a DerO-equivariant isomorphism zpsl2qx � CrProjpDxqs.
Identify the space ProjpDxq with Crrtss as in Remark 3.2.1. Thanks to (3.2.1), we have

xLnpk, t
�m�2y � xpk,�Lnt

�m�2y � xpk,�pm� 2qtn�m�2 � 2pn� 1qtn�m�2 �
n3 � n

2
tn�2y

� δk,m�np2n�mq � δk,�n
n3 � n

2
.
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We conclude that Lnpk � pn � kqpk�n �
n3�n

2
δk,�n (if k � n ¡ �2, then the �rst summand in the

right hand side is declared to be zero). This matches (2.5.1) and hence shows that the isomorphism
de�ned by Sk|0y ÞÑ pk is DerO-equivariant, �nishing the proof. □

In subsequent talks we will see that Theorem 3.3.1 has a close relative.

Theorem 3.3.2. We have an algebra isomorphism ZprUκcpŝl2,xqq � CrProjpD�
x qs, where D�

x :�
SpecpKxq.
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