INVARIANTS OF JETS AND THE CENTER FOR sl,
IVAN KARPOV, IVAN LOSEV

ABSTRACT. This is an expository talk for the student learning seminar on the representation theory
of affine Kac-Moody algebras at the critical level. We develop the formalism of jet schemes and use
it to compute the algebra of invariants for the action of the group G[[¢]] on its adjoint representation
a[[t]]- In turn, we use this computation to show that the center of V,_(sly) is the polynomial algebra
freely generated by the Sugawara modes. We then identify the center of V., (sly) with the algebra of
polynomial functions on the space of projective connections on the disc D = Spec(C[[t]]) thus getting
a coordinate free description of the center. We moslty follow [2].

1. INVARIANTS AND THE CENTER

1.1. Introduction. Throughout the talk, the base field is C.

Let g be a finite-dimensional simple Lie algebra. The corresponding connected algebraic group G
acts on g (via the adjoint representation), yielding G-actions by graded algebra automorphisms on
Clg](= S(g)) and by filtered algebra automorphisms on the universal enveloping algebra U(g).

Let h < g denote a Cartan subalgebra, and W be the corresponding Weyl group. The following is
due to Chevalley:

Proposition 1.1.1.  (A) We have a graded algebra isomorphism C[g]¢ ~ C[p]".
(B) The algebras in (A) are isomorphic to the polynomial algebra in r := rkg homogeneous
generators, to be denoted by P, ..., P,.

It is also well-known due to Harish-Chandra (see, e.g., [4, Ch. 23]) that the center Z(U(g)) of
U(g) is isomorphic to C[h]" as a filtered algebra. The Harish-Chandra theorem can be viewed as a
finite dimensional counterpart of the main result for the seminar: a description of the center of the
completed universal enveloping algebra of g at the critical level.

We write O for C[[t]], Go for the group of O-points of G and g for its Lie algebra, g® O, compare
to |6, Section 3|. The main goal of the first part of the talk is to get an analog of Proposition 1.1.1
for the action of the group G on go: we will see that the elements P;,, with¢=1,...,7rand n <0
introduced in [6, Section 3.4] are free generators of C[gn]“©. We will use this to show that the

Sugawara modes S, |05 € V,_(sly) (with n < —2) generate the center of V. (sl,).

1.2. Jet schemes. In order to compute the algebra Clgo]“° we will need the formalism of jet
schemes (a.k.a. arc spaces).

1.2.1. Definition via functor of points. Let CommAlg denote category of commutative associative
unital C-algebras, its opposite category is identified with the category of affine schemes over Spec(C).
In particular, an arbitrary scheme X over Spec(C) gives rise to its functor of points

Mor(Spec(?), X) : CommAlg — Sets

sending an algebra R to the set of R-points of X. One recovers X uniquely from its functor of
points, however, not every functor CommAlg — Sets is representable (i.e., is a functor of points for
a scheme).

Definition 1.2.1. Let X be a finite type scheme over Spec(C). We define the jet functor of X

Jx : CommAlg — Sets

by sending R to the set of all morphisms Spec(R|[t]]) — X (of schemes over Spec(C)).
1
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Proposition 1.2.2. The functor Jx is represented by a scheme to be denoted by JX and called the
jet scheme (a.k.a. arc space) of X.

We will sketch a proof (and a construction of JX) below in this section.
We also note that for general Yoneda reasons, J is a functor (from the category of finite type

schemes to the category of schemes). For a morphism ¢ : X — Y we write Jy for the induced
morphism JX — JY.

1.2.2. Affine case. We first give a constructive proof of Proposition 1.2.2 in the case when X is affine.

Example 1.2.3. First, set X = A™ = Spec(C[z1, ..., x,]). For an arbitrary commutative C-algebra
R, the set of R[[t]]-points of X is
Hom y14(Clz1, . ..,z ], R[[t]])-

Of course, any algebra homomorphism ¢ : Clxy, ..., x,] — R[[t]] is uniquely determined from the
images ¢(x;) that are formal power series

o(w;) = 2 aint " 0y € R,

n<0
Thus, the set of R-point of JX is the set {a;,, € Rli =1,...,m,n <0} and hence
JX = SpecClz;,li = 1,...,m,n <0].

Example 1.2.4. Now we consider the case when X is a general finite type affine scheme over
Spec(C), it can be defined as

Spec(Clxy, ..., xm]/(F1, ..., Fk)).
The same reasoning as in the Ezample 1.2.3 shows that the set Mor(Spec(R), JX) can be be
identified with the set of a;(t) := ¢(x;) € R|[t]] such that
(1.2.1) Fi(ai(t),...,an(t)) =0
forallj=1,... k.

To describe this set of formal power series, consider the algebra R := Clz;,] (c¢f. Example 1.2.3).
Define a derivation T € Derc(R) on the free generators by:

T:Tjp—> —NTjp_1.
Now, define Fj# = Fj(z;-1). One can show that the system of equations (1.2.1) is equivalent to
TZFJ»# = 0 for all possible { = 0 and j = 1,...,k. So for JX we can take the closed subscheme of
JA™ given by the equations TEFJ#:

JX = Spec(R/(TZFJ#)).

Remark 1.2.5. We have an algebra homomorphism C[X]| — C[JX] sending F' = F(xy,...,x;) to
F# defined by F(x1_1,...,%m—1). It yields a scheme morphism JX — X.

Exercise 1.2.6. Let X, Y be finite type affine schemes (over Spec(C)). Identify J(X x Y) with
JX x JY. More precisely, let 1 : X xY — X and my : X xY — Y be the projections. Then
Jmp x Jmy : J(X xY) 5 JX x JY.

1.2.3. Gluing. Now we proceed to the case of non-affine finite type schemes Y. We claim that JY

can be glued from JX for open affines X < Y. The key step here is to relate JX and J(X;) for

f € C[X], where X is the non-vanishing locus for f (known as a principal open subset). We claim

that J(X) is naturally identified with (JX), where f* € C[JX] is defined in Remark 1.2.5.
Indeed, recall that if C[X]| = Clxy,...,xn]/(F1,. .., Ft), then

C[Xf] = Clay, ..., zm, x]/(F1, ..., Fyxf —1).

It follows that C[J(X[)] = C[JX][zn|n < 0]/(T*(xf — 1)*). For £ = 0, the equation T*(xf —1)* =0
means that z_1f* = 1, i.e., f* is invertible, and x ; = (f*)"'. The equation T*(xf — 1)* = 0 for
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¢ > 0 then uniquely expresses z_,_; as a polynomial in z_1,...,2_, (f*)~! and elements of C[JX].
This gives the required identification C[J(X)] = C[JX][(f*)'].
This discussion finishes our sketch of proof of Proposition 1.2.2.

Remark 1.2.7. Note that we still have a morphism JY — Y. It is affine (of infinite type).

1.2.4. nth order jets. Let X be a finite type scheme over Spec(C). It turns out that JX (which is
an infinite type scheme) can be presented as the inverse limit of finite type schemes J, X (n-th order
jet schemes). By definition, J, X represents the functor CommAlg — Sets sending R to the set of
morphisms Spec(R[t]/(t")) — X.

For example, for X as in Example 1.2.4, we have

Jo X = Spec(C[JX]/(z;nli =1,...,m N < —n — 1)).

As in the case of J, J, is a functor (in this case, from the category of finite type schemes over Spec(C)
to itself). The claim that J =lim  .J, is left as an exercise (on the general categorical nonsense).

Exercise 1.2.8. For X smooth, show that J; X is the tangent bundle of X.
1.2.5. Smoothness. The goal of this part is to prove the following statement.

Theorem 1.2.9. For a smooth morphism ¢ : X — Y, the morphism J,p : J,(X) — J,(Y) is
smooth as well.!

Indeed, let us recall the following criterion of smoothness (|1, Section 1.4]). If R is a commutative
C-algebra, then by its nilpotent extension we mean a commutative algebra R; equipped with an
epimorphism R; — R whose kernel is a nilpotent ideal.

Proposition 1.2.10. Suppose that g : A — B s a morphism of schemes of finite type over C. Then,
g is smooth if and only if for any morphism h : S = Spec(R) — B which lifts to h' : S — A the
following holds:

suppose that Ry is a nilpotent extension of R, that Sy = Spec(Ry), and that hy : Sy — B is any
lifting of h. Then hy also lifts to b} : S; — A:

§—" A
P

s
s
-

In, g
7z
.
.

s
s

S ——— B

Proof of Theorem 1.2.9. By definition, an R-point of .J,, A is an R[t]/(t"™!)-point of A. Now, we have
the diagram

Spec R[t]/(t") %ﬁ X

'Hh’l f

-

Spec Ry [t]/(t"+1) — 1y,

where we need to prove the existence of h). To finish the proof we combine Proposition 1.2.10
with the observation that R;[t]/(t"*!) is a nilpotent extension of R[t]/(t"!). O

Remark 1.2.11. The similar argument proves that, for a surjective smooth morphism f, the mor-
phism J, f is also surjective (on the level of C-points) for all n.

Applying Theorem 1.2.9 to Y = pt, we get the following claim.

1One can introduce the notion of “formal smoothness”. Then, the same statement would be true for the functor .J
itself (instead of J,,’s).
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Corollary 1.2.12. For a smooth variety X, the scheme J,X is a smooth scheme of finite type.
The following exercise (based on the generic smoothness) will be used below.

Exercise 1.2.13. Let ¢ : X — Y be a dominant morphism to a smooth variety Y. Prove that
oot J, X — J,Y is dominant.

1.3. Jet-theoric Chevalley theorem. Recall that we write O for the algebra C[[¢]]. For an affine
scheme X we will often write X for JX.

Let GG be an algebraic group. Applying the functoriality of .J, and J to the structure maps of GG, we
see that J,,G, JG are group schemes over C. In fact, J,,G is an honest algebraic group with Lie algebra
g ®C[t]/(t"*h) — J,G is the semi-direct product of G with the unipotent group exp(tg[t]/t" " g[t]).
This description shows, in particular, that J,.1G — J,G for all n. And JG is the limit Lilln_)oo JnG,
hence a pro-algebraic group.

Applying the functor J to the action morphism G x g — g we get the morphism J(G x g) — Jg.
Under the identification JG x Jg =~ J(G x g) from Exercise 1.2.6, this gives an action of the pro-
algebraic group JG on Jg. We want to compute the algebra of invariant polynomial functions for
this action.

The following result is a jet analog of Proposition 1.1.1. Recall that P;,i = 1,...,r, denote free
homogeneous generators of the algebra C[g]“. Then we can form the elements P;,, € C[gp]“© for all
¢ <0andi=1,...,r, see |6, Section 3.4].

Theorem 1.3.1. The algebra of invariants C|go|“© is identified with C|J(h/W)], equivalently, is
freely generated by the elements P, .

1.3.1. Preparation. We write g//G := Spec(C[g]“). We have the quotient morphism 7 : g — g//G
induced by the inclusion C[g]® — C[g]. It gives rise to Jr : Jg — J(g//G). By the Chevalley
theorem, g//G is an affine space with coordinates P, ..., P.. The polynomials P, are nothing else
but the coordinates on the infinite dimensional affine space J(g//G). So our job is to show that the
pullback homomorphism (J7)* identifies C[J(g//G)] with the subalgebra of invariants for Go = JG
in C[Jg].

We are going to reduce this to the analogous claim, where J is replaced with J,,: (J,7)* identifies
C|J,.(g//G)] with C[J,g]’¢. Proving the latter for all n is enough for the following reason. Since
C[Jg] is the union of its subalgebras C[J,g], we see that C[Jg]’/¢ is the union of its subalgebras
C[Jg])’¢ n C[J,g]. Our reduction now follows from the next exercise (where one needs to use that
JG — J,G and that the projection Jg — J,g is JG-equivariant).

Exercise 1.3.2. C[Jg]’% n C|J.g] = C[J,.g]" as subalgebras in C|Jg].

1.3.2. 1st proof of C|J,(9//J.G)] = C|J.g]”»¢. In this proof, different from what is given in |2,
Section 3.4] we will use the Kostant slice, a remarkable affine subspace S < g with the property that
the restriction of the quotient morphism 7 : g — g//G := Spec(C[g]%) to S is an isomorphism. For
more on Kostant slices see [7]. In particular the claim that 7|g is an isomorphism is proved in |7,
Section 4.

Let ¢ denote the inclusion S < g. Since o is an isomorphism S = g//G, we see that J,m o J,u :
JoS = Ju(g//G). It remains to show that (J,.)* embeds C[J,g]’»¢ into C[J,S].

Let (3 denote the action map G x S — g¢,(g,s) — Ad(g)s, and ¢/ denote the embedding S —
G x S,s+ (1,s). Note that « = 8o/, hence J,. = J,0 0 J,/'. The action of G on G x S (by left
translations on the first factor) gives rise to an action of J,G on J,,(G x S) = J,G x J,,S (also by left
translation on the first factor). So (J,,¢/)* restricts to an isomorphism C[J,, (G x S)]/»¢ = C[J,S]. So,
the claim that (J,,t*) : C[J,g]""¢ — C[J,,S] is equivalent to (J,53)* : C[J,g]""¢ — C[J,.(G x S)]’"¢,
which will follow from (J,5)* : C[J,g] — C[J,(G x S)]. To see the latter injectivity, we remark that
f: G xS — gis dominant (Step 1 of the proof of Theorem in [7, Section 4|) and use Exercise 1.2.13.
This completes the 1st proof of Theorem 1.3.1.
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1.3.3. 2nd proof of C|J,(9//J.G)] = C|J,g]’“. Now we give a proof that closely follows one in |2].
Consider the open subset of regular elements:

g ={reg| dimZ(z) =rkg},
studied in detail in |7, Section 5|. In particular, we have the following claim
(*) The morphism 7|gres is smooth, and each fiber of 7|ges @ g9 — g//G is a single G-orbit (in

particular, the morphism is surjective).

Exercise 1.3.3. For g = sl,, the subset g9 consists precisely of all matrices such that in their
Jordan normal form, there is a single block for each eigenvalue.

Suppose, for a moment, that we know that the direct analog of (*) holds for the action of .J,,G on
Jn,g"% and the morphism J,(7|gres) : J,,0" — J,(g//G). We then can prove that C[J,(g/G)] =
C[J,g]"¢ using the following general result.

Proposition 1.3.4. Let H be an algebraic group and X,Y be normal algebraic varieties. Suppose H
acts on X, and Y s affine. Suppose, further, that ¢ : X — 'Y is a surjective H-invariant morphism
such that each fiber of ¢ is a single H-orbit. Then ¢* : C[Y] = C[X]".

Proof. Clearly, ¢* : C|Y]| < C[X]¥ and we need to prove the surjectivity. Take f € C[X]¥, and
consider the subalgebra of C[X]¥ generated by C[Y] and f, denote it by A. Then ¢ factors as
X — Spec(A) — Y, where both morphisms are dominant. Since each fiber of ¢ is a single orbit,
Spec(A) — Y is injective. Any injective dominant morphism is birational, hence f can be viewed
as a rational function on Y. It is left as an exercise to show that f has no poles on Y. Since YV is
normal, f € im ¢*. This finishes the proof. OJ

We apply this to X = J,¢"Y = J,(g/G) and H = J,G. Note that J,(g//G) is smooth,
hence normal, we use the analog of (*) to deduce C[J,(g//J.G)] = C[J.(g"9)]’¢. The subvariety
Jn(97%9) < J,gis open and dense. So the restriction homomorphism C[J,g] — C[J,(g")] is injective.
From here we deduce that C[.J,(g//J.G)] — C|J,g]"".

Now, it remains to establish that analog. First, we reformulate the claim.

Exercise 1.3.5. Let H be an algebraic group acting on a variety X, Y is a variety, and ¢ : X —»'Y
be an H-invariant morphism. The following claims are equivalent.

(a) The morphism ¢ is smooth and each fiber of ¢ is a single H-orbit.
(b) The morphism H x X — X xy X, (h,z) — (hz,x) is smooth and surjective.

Apply Exercise 1.3.5to H = G, X = g",Y = g//G, ¢ = 7|gres to get that G x g™ — g™ x g7
is smooth and surjective. Hence, by Section 1.2.5, J,(G x ") — J(g" Xy 9"*). One can use the
smoothness of 7|gres and generalize Exercise 1.2.6, to identify J, (g7 xg/cg"?) with J,,(g77) X 1, g/
Jn(979). We get (b) of Exercise 1.3.5 for H = J,G,X = J,(g"),Y = J,(9//G),p = Jn(T|gres),
yielding (a), which is what we need to finish the proof.

1.4. Center of V, (sly). Suppose G = SLs. We recall the definition of Sugawara operators from |6,
Section 1].

1 -
Sn = 52 Z cxt(g)mi(k) -
i=1j+k=n
The elements S,|0) for n < —2 are central in V,_(sls).

Theorem 1.4.1. The center of the vertex algebra V, (sl2) is isomorphic to C[S,|0)],<—2 (as a com-
mutative algebra).

We leave the proof of this theorem as an exercise. A warm-up is to recall how to prove that the
Casimir element is a free generator of the center of the U(sly) once one knows the description of
Clsly|52. For details, see |2, Section 3.5].
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2. THE COORDINATE-INDEPENDENT DESCRIPTION OF Vj(g).

2.1. The ring O and the field K. Suppose that X be a smooth curve. Let us define the ring O,
as the completion of the local ring Ox , at the maximal ideal m,, i.e., O, := lln Ox /m}. Let also
K. be the field of fractions of O,. Let m, denote the maximal ideal in O,.

A choice of an element ¢ € m,\m2 is the same as a choice of an isomorphism O,—C[[¢]].

Exercise 2.1.1. Prove this statement. A hint: to see that there is an isomorphism use a suitable
étale map from an open neighborhood of x to A'.

Note that an isomorphism O, — C[[¢]] induces an isomorphism IC, — C((t)).

2.2. The algebra g, .. We now want to define the Kac-Moody algebra in a coordinate free way,
using I, instead of C((t)).

Remark 2.2.1. This is needed, in particular, for globalizing our constructions over the curve X.
For more details, an interested reader may consult with the Seminaire Bourbaki talk [3].

The desired central extension g, , comes from the (familiar) short exact sequence

O_)Cl_)gn,x_)g®lcx_)07

where the cocycle is given by the standard formula ¢(A® f, B® g) = —k(A, B) Res,(fdg).

This definition does not depend on the choice of the local coordinate ¢ on X near x. Any such
choice identifies g, , with g,.

In the same fashion, one can redefine the vacuum module.

(2.2.1) Vi(@)e = Indggh ger C.

Hence, one also has

3(@)9: - 5(Vﬁ(g)m) = (Vn(g)m)g@em.

Our goal is to obtain a coordinate-free description of this algebra (note that we do not give a
coordinate free description of the vertex algebra V,(g) itself). A description of 3(g), that involves a
choice of a coordinate is in Theorem 1.4.1.

2.3. The group of coordinate changes. We start by studying how the picture from the Section 2.2
interacts with coordinate changes. A coordinate change is understood as an automorphism of O,.
Such automorphisms form a group to be denoted by Aut O.

Any ¢ € Aut O is uniquely determined by its action on the coordinate . So we can identify Aut O
with the set of formal power series >, a;t" with a; # 0. The group operation is the composition:
o(t) o (t) = d(¥(t)).

Set Aut;, O := {¢p € Aut O | a; = 1}. This is a normal subgroup of Aut O and, moreover,

Aut O ~ C* x Aut, O,

where C* is identified with the subgroup of Aut O consisting of “loop rotations”, i.e., the automor-
phisms of the form a : t — at,a € C*.

Remark 2.3.1. We can also consider, for each n > 0, the group Aut(C[t]/(t"!)) together with
its decomposition Aut(C[t]/(t"™1)) = C* x Aut, (C[t]/(t"*1)). Note that Aut (C[t]/(t")) is a
unipotent algebraic group, its elements can be thought of as elements t + ast + ... + a,t" with the
group law given by composition followed by truncation, i.e., setting t"*1 to 0. So we have an algebraic
group epimorphism Aut, (C[t]/(t"*?)) — Aut (C[t]/(#")) and the group Aut, O is the inverse limit
lim Aut (C[t]/(t"™Y)). Therefore it is a pro-unipotent pro-algebraic group.
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The Lie algebras of the algebraic groups of interest are as follows:

Lie(Aut O) = Dery O := tC|[[t]]0},
Lie(Aut, O) = Der, O := t*C[[t]]4,,
Note that the Lie subalgebra of C* < Lie(Aut O) is spanned by the Euler vector field ¢d;. We also
note that the entire algebra Derg O of derivations of O equals C[[t]]d;, hence is strictly large than

the Lie algebra Lie(Aut O).
Recall the standard notation

0
Ln = —t"“a,n Z 0

These elements form a topological basis inside Dery C|[t]]. Moreover, L,, (n > 0) form a topological
basis inside Der, C[[t]]. In particular, Dero O can be embedded into the Virasoro algebra as its
positive part.

2.4. The space g((t))/g[[t]] vs functions on the 1-forms. Here, we will be interested in a de-
scription of gr Vi(g). Let us recall the following statement from [6, Section 3.3].

Proposition 2.4.1. We have the following graded algebra isomorphisms
gr Vi(g) ~ Sym(g((2))/al[t]]) = Clg"[[¢]]dt].

We claim that the second isomorphism is coordinate-independent. Let us recall how it is con-
structed. The algebra C[g*[[¢]]d¢] is the algebra of polynomials in the linear functions r,, : g*[[t]]dt —
C with n < 0 given by «a — Res._o(2"a). Let (g*[[t]]dt)" denote the vector space with basis 7, of
course, it is just the space of continuous linear maps g*[[t]]dt — C (the continuity is with respect to
the t-adic topology on g*[[t]]dt and the discrete topology on C). We then have a linear map

(2.4.1) g((®)/allt]] — (o*[Ie]]at)”

given by f — r; with r¢(a) := Res,_o(fa). It is an isomorphism and it is coordinate-independent
because taking the residue of a form is classically known to be coordinate-independent.

In what follows in this section we will reprove that (2.4.1) is coordinate-independent from scratch
in order to illustrate a general technique that we are going to use in what follows to prove new (and
more difficult) results. We note that the group Aut O acts both on the source and the target of
(2.4.1). Our claim that this map is coordinate-independent means just that it is Aut(QO)-equivariant.
And, since Aut(0O) is connected (as a semi-direct product of a torus and a pro-unipotent group), to
show that (2.4.1) is Aut(O)-equivariant, it is enough to show that it is Dery O-equivariant. In fact,
we will see that it is Der O-equivariant. We will do this for an analog of (2.4.1) where g is replaced
with C.

We have L,t* = —ktk*" if k+m < —1 and L,t* = 0 else. The action of Der O on C[[t]]dt is given
by
(2.4.2) Lot dt) = (m —n)t" ™ dt.

So (L, 7™ty = —(rg, Lyt ™™ dt) = (m — n){ry, t" "7 dt) = (m — n)dkin_mo. We conclude

that L7, = —k7kyn, which shows that the analog of (2.4.1) (that by definition sends t* to r;) is
Der O-equivariant.

2.5. Der O-action on the elements S,,. Section 2.4 suggests that in order to give a coordinate free
description of the algebra C[S,,|0)|m < —2] we should determine how Der O acts on the elements
S (under the natural action of Der O on g by derivations).

Choose kg to be the standard trace pairing. With this choice, [6, Corollary 2.17] tells us that if
is not critical, then

1
(2.5.1) Ly,.Sym=(n—m)Spim— §(n3 —N)0p,—m-

But near x = k., the element S,, depends continuously on &, and so (2.5.1) also holds for k = k..
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Remark 2.5.1. (2.5.1) is true for a suitable normalization of the Sugawara elements for the general
simple g.

3. PROJECTIVE CONNECTIONS

3.1. Definition. Let us introduce the vector space Q3 of “A-forms” on D. Tts elements are, by
definition, the formal expressions of the form f(t)(dt)* for A € C.
The space Q7 becomes a Der O-module via the following formula (for A = 1 we recover (2.4.2)):
()0 - FO)(A)N = (€O F (1) + AF)E () (dD).
Definition 3.1.1. A projective connection on D = Spec C|[t]] is a second order differential operator
Py QBI/Q N Q%Q
of the form 0% — v(t). By definition, this operator sends f(t)(dt)=*? to (f"(t) — v(t) f(t))(dt)>/>.

3.2. The action of vector fields. We now would like to write down the action of vector fields on
projective connections. The action is as on the linear maps between two Der O-modules.
First, we compute

E(6)0, - (97 — o) f(£)(dt)™12) = EDa((F"(t) = v(B) f(1))(dt)*?) =

= (E@O"() = '@ f() —v(®) f'(1) + g((f”(t) —v(t) f(£)E'(t)))(dt) >,
On the other hand,

(5? — U(t))(f(t)@t . f(t)(dt)—l/Q) _ (@2 . U(t))(f(t)fl(t) . %f(t)f’(t))dt_lﬂ _

(gﬁ’(t)f”(t) + &) — v S (t) - %f(t)i”’(t) + %v(t)f(t)é’(t))(dt)g’”-

Thus, the formula for the action of £(¢)d; comes by taking the difference between two last quantities:

1

(3.2.1) E(0)0r: 67 = v(t) — (€O (1) + 20 (1) = 58" (1))

Remark 3.2.1. The space of projective connections can be viewed as an affine space with associ-
ated vector space C[[t]]. We can identify the two by sending 0? to 0. Note that (5.2.1) defines a
homomorphism from Der O to the Lie algebra of the group of affine transformations of C[[t]].

Note also that (5.2.1) integrates to an action of Aut O: for the coordinate change t = ¢(s) (¢ as
in 2.3, one has 0} — v(t) = 02 —w(s) for w(s) = v(¢(s))d'(s)> — 1{¢, s}, where {¢,s} = o 3202

¢ 2\ ¢
18 the so-called Schwarzian derivative.

3.3. Main theorem. Now, we can state the main result of this part. We write D, for Spec(Q,),
and Proj(D,) for the space of projective connections on D, that we view as an infinite dimensional
affine space.

Theorem 3.3.1. We have a coordinate-independent isomorphism 3(sly), ~ C[Proj(D,)].

Proof. For k < —2, we write py, for the element of C[Proj(D,)] that sends a projective connection
2 — 2o ait to a_y_s. Note that C[Proj(D,)| = Clpx|k < —2]. We claim that the assignment
sending Sk|0) to py defines a Der O-equivariant isomorphism 3(sly), ~ C[Proj(D,)].

Identify the space Proj(D,) with C[[t]] as in Remark 3.2.1. Thanks to (3.2.1), we have

o o o o, mi—n
(Lnpie, 7™ = (pp, =Lt ™™ 2y = {pg, —(m + D™ 2 £ 2(n + 1)t"™ Q—Tt" 2y

nd—n

2

= 6k’,m—n(2n - m) - 6k’,—n
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We conclude that L,pr = (n — k)pgon — #5;@_” (if kK + n > —2, then the first summand in the
right hand side is declared to be zero). This matches (2.5.1) and hence shows that the isomorphism
defined by Sk|0) — py is Der O-equivariant, finishing the proof. O

In subsequent talks we will see that Theorem 3.3.1 has a close relative.

Theorem 3.3.2. We have an algebra isomorphism Z(U,, (slo,)) =~ C[Proj(D})], where D} :=
Spec(KC,.).
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