
VERTEX POISSON ALGEBRAS AND MIURA OPERS I

VASILY KRYLOV

1. Recap

Let (V, |0⟩, T, Y ) be a vertex algebra. Recall that to A ∈ V , one associates the
formal sum Y (A, z) =

∑
m∈Z A(m)z

−m−1. The following property is a part of the
definition of the vertex algebra structure.

The following three properties were proven by Ilya ([DuII]).

(1) Y (TA, z) = ∂zY (A, z),

(2) Y (A, z)B = ezTY (B,−z)A

(3)

[A(m), B(k)] =
∑
n⩾0

(
m

n

)
(A(n)B)(m+k−n) ⇔ [A(m), Y (B, z)] =

∑
n⩾0

(
m

n

)
zm−nY (A(n)B, z).

2. Vertex Poisson algebra structures and (DerO,AutO)-equivariance

2.1. Commutative vertex algebras. Let us first of all recall (see [DuI]) that a
vertex algebra V is called commutative if

[Y (A, z), Y (B,w)] = 0 for all A,B ∈ V.

Ilya proved that V is commutative iff for every A ∈ V , we have Y (A, z) ∈
End(V )[[z]]. So, the non-commutativity of V is “controlled” by the coefficients of

Y−(A, z) :=
∑
m⩾0

Amz−m−1.

Let us also recall that there is an equivalence of categories of commutative vertex
algebras and commutative (associative, unital) algebras together with the deriva-
tion. This equivalence sends a commutative vertex algebra (V, |0⟩, T, Y ) to (V, ◦, T ),
where the product ◦ on the vector space V is defined as follows:

(4) A ◦B := A(−1) ·B.
1
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2.2. Vertex Poisson algebras: motivations and definitions. Recall that both
z(ĝ), W (Lg) are commutative vertex algebras and Calder proved that there is an
inclusion z(ĝ) ↪→ W (Lg). Our first goal is to introduce a notion of a vertex Poisson
algebra (this is some additional structure on a commutative vertex algebra), and
prove that both z(ĝ), W (Lg) are vertex Poisson algebras and that the inclusion
above is compatible with these structures. We relate the DerO-action to the Poisson
vertex algebra structure and use the fact that the isomorphism is Poisson to check
that the inclusion above is (DerO,AutO)-equivariant.

2.2.1. Poisson algebras. We start with a motivation: let us recall the notion of
a Poisson algebra and how such an object appears naturally via deformations of
(commutative) algebras.

Let P be an associative algebra over C. Assume that we are given a deformation
of P over the ring C[ϵ]/(ϵk) (k ∈ Z⩾2). By this, we mean a pair (P ϵ, ι) of a C[ϵ]/(ϵk)-
algebra P ϵ which is free as C[ϵ]/(ϵk)-module together with the isomorphism of

algebras ι : P ϵ/(ϵ) ∼−→P .
Assume now that P is commutative and k ⩾ 3. Then, we can define an additional

structure on P called the Poisson bracket. For a, b ∈ P , we define the Poisson
bracket {a, b} ∈ P as follows:

{a, b} :=
ãb̃− b̃ã

ϵ
mod ϵ ∈ P,

where ã, b̃ ∈ P ϵ are arbitrary lifts of a, b (clearly, the definition does not depend on

the choice of ã, b̃).
The following three properties of { , } are clear from the definitions:

• (i) {a, b} = −{b, a},
• (ii) {a, {b, c}}+ {c, {a, b}}+ {b, {c, a}} = 0,
• (iii) {a, bc} = b{a, c}+ c{a, b}.

Remark 2.1. Condition k ⩾ 3 is needed for the property (ii) to hold.

So, { , } defines the Lie algebra structure on P and {a,−} is a derivation of P .
In other words, P is a Poisson algebra.

2.2.2. Vertex Poisson algebras. Let us now try to guess a candidate for a notion of
a “Poisson structure” on a (commutative) vertex algebra V .

Note that it makes sense to talk about a vertex algebra over C[ϵ]/(ϵk), the
definition is the same as over C, operaions T , Y (−, z) must be C[ϵ]/(ϵk)-linear. So
it makes sense to talk about a deformation (V ϵ, ι) of V over C[ϵ]/(ϵk) (recall that
ι is the identification of vertex algebras ι : V ϵ/(ϵ) ∼−→V ).

We know that Y ϵ
−(−, z) is equal to zero modulo ϵ, so for A ∈ V we can define:

(5) Y−(A, z) :=
Y ϵ
−(Ã, z)

ϵ
mod ϵ,

where Ã ∈ V ϵ is a representative of A. Note that the definition does not depend
on the choice of Ã since Y ϵ(−, z) is C[ϵ]/(ϵk)-linear.

So, we have equipped commutative vertex algebra V with an additional structure:

Y−(−, z) : V → z−1 End(V )[[z−1]], Y−(A, z) =
∑
m⩾0

A(m)z
−m−1.

It follows from (1), (2), (3) above that for m ⩾ 0, and A,B ∈ V we have
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• (I) (translation) Y−(TA, z) = ∂zY−(A, z),
• (II) (skew-symmetry) Y−(A, z)B = (ezTY−(B,−z)A)−,
• (III) (commutator) [A(m), Y−(B, z)] =

∑
n⩾0

(
m
n

)
(zm−nY−(A(n)B, z))−,

(II) and (III) are analogous to the properties (i) and (ii) in the definition of the
Poisson algebra (i.e., the analog of the fact that { , } defines a Lie algebra structure
on P ).

The following exercise should be considered as a vertex algebra counterpart of
the property (iii). It claims that the coefficients of Y−(A, z) are derivations of the
commutative product ◦ (given by the formula (4)).

Exercise 2.2. For every m ⩾ 0 we have

• (IV) A(m)(B ◦ C) = (A(m)B) ◦ C +B ◦ (A(m)C).

Proof. Hint: use the definition of ◦ (see (4)) to see that (IV) is equivalent to

[A(m), B(−1)] = (A(m)B)(−1), m ⩾ 0.

Rewrite this using some lifts Ã, B̃ ∈ V ϵ of A,B and then use (3). □

Definition 2.3. A vertex Poisson algebra is (V, |0⟩, T, Y+, Y−), where (V, |0⟩, T, Y+)
is a commutative vertex algebra and

Y− : V → z−1 End(V )[[z−1]]

satisfies the conditions (I)–(IV).

2.3. Vertex Poisson algebra structure on z(ĝ). We start with the following
example.

Example 2.4. If (V ϵ, ι) is a deformation of some vertex algebra V over C[ϵ], then
the center Z(V ) carries a natural Poisson vertex algebra structure. Namely, for
A ∈ Z(V ), the operator Y−(A, z) (given by the equation (5)) is still well-defined
and satisfies all the required properties making Z(V ) a Poisson vertex algebra.

Now, let us equip z(ĝ) with a Poisson vertex algebra structure.
Fix a g-invariant scalar product κ0 on g and consider:

κ(ϵ) := ϵκ0 + κc

Consider the family Vκ(ϵ), and recall that for every fixed ϵ = ϵ0 we have Vκ(ϵ0) =
U(ĝκ(ϵ0))⊗U(g[[t]])⊕C1 C|0⟩. We can consider ϵ as a formal variable and define

Vκ(ϵ) := U(ĝκ(ϵ))⊗U(g[[t]])⊗C[ϵ]⊕C[ϵ]1 C[ϵ]|0⟩,

where ĝκ(ϵ) = g((t))⊗C[ϵ]⊕C[ϵ]1 is the Lie algebra over C[ϵ] (with the commuta-
tor defined as before but with ϵ now considered as an indeterminante). The same
formulas as before define on Vκ(ϵ) the structure of a vertex algebra over C[ϵ]. Re-

ducing modulo (ϵ3) we equip Vκ(ϵ) with the vertex algebra structure over C[ϵ]/(ϵ3).
This gives us the Poisson vertex algebra structure on the center z(ĝ) of Vκc

(g) to be
denoted by z(ĝ)κ0

(note that this structure depends on κ0). Since κ0 is fixed once
and for all, we will sometimes omit it from the notation.

Note that Vκ(h) = πκ
0 (g) = πκ

0 is the Heisenberg vertex algebra so the example
above equips π0 = πϵκ0

0 |ϵ=0 with a vertex Poisson algebra structure. This vertex
Poisson algebra will be denoted by π0,κ0

or just by π0.
Let us describe this Poisson structure explicitly.
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Recall that πϵκ0
0 is a Fock module over the Heisenberg Lie algebra ĥϵκ0

with
generators bi,n, i ∈ 1, . . . , ℓ, n ∈ Z and 1 satisfying the relations:

[bi,n, bj,m] = ϵnκ0(hi, hj)δn,−m1.

Recall also that π0,κ0
can be identified with the space of monomials in bi,n,

i = 1, . . . , ℓ, n < 0 (via the action on the vacuum |0⟩). It follows from the definitions
that for n < 0 and i = 1, . . . , ℓ we have:

(6) Y−(bi,−1|0⟩, z) = {bi(z),−} :=
∑
n⩾0

{bi,n,−}z−n−1,

where { , } is the Poisson bracket defined by

{bi,n, bj,m} = nκ0(hi, hj)δn,−m.

In other words,

Y−(bi,−1|0⟩, z) =
∑
n⩾0

( ℓ∑
j=1

nκ0(hi, hj)
∂

∂bj,−n

)
z−n−1.

Remark 2.5. We see from (6) that the vertex Poisson algebra structure on π0,κ0

indeed depends on κ0.

2.4. Embedding z(ĝ)κ0 ↪→ π0,κ0 is Poisson. Recall now that Zeyu constructed a
homomorphism of vertex algebras:

ωκc
: Vκc

(g) → W0,κc
= Mg ⊗ V0(h) = Mg ⊗ π0

that can be deformed to a homomorphism of vertex algebras over C[ϵ]:

ωκ(ϵ) : Vκ(ϵ) → W0,κ(ϵ) = Mg ⊗ πϵκ0
0 .

Recall also that the restriction of ωκc
to z(ĝ) sends it into π0 (see [Kl, Lemma

1.2]).

Remark 2.6. Note that π0 is the center of W0,κc .

Lemma 2.7. The embedding z(ĝ)κ0
↪→ π0,κ0

(induced by ωκc
) is a homomorphism

of vertex Poisson algebras.

Proof. This is a corollary of the following general fact. Let (V ϵ
1 , ι1), (V

ϵ
2 , ι2) be

deformations over C[ϵ]/(ϵ3) of vertex algebras V1, V2 and let Z(V1), Z(V2) be their
centers. If φϵ : V

ϵ
1 → V ϵ

2 is a homomorphism of our vertex algebras over C[ϵ]/(ϵ3)
such that φ0 : V1 → V2 restricts to Z(V1) → Z(V2), then the latter is Poisson. Hint:
use the fact that the definition of Y−(A, z) does not depend on the choice of a lift

Ã. □

2.5. Vertex Poisson algebra structure on W (Lg). Let us now consider the clas-
sical W -algebra W (Lg). Recall that W (Lg) is by the definition the (commutative)
vertex subalgebra of π∨

0 = π0(
Lg) defined as follows:

W (Lg) :=

ℓ⋂
i=1

kerVi[1] ⊂ π∨
0 ,

where

Vi[1] =
∑
m⩽0

Vi[m]Db′i,m−1
, Db′i,m

· b′j,n = aijδn,m,
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aij is the Cartan matrix of Lg, and∑
n⩽0

Vi[n]z
−n = exp

(
−

∑
m>0

b′i,−m

m
zm

)
.

Let κ∨
0 be the invariant product on h∗ corresponding to κ0 (in other words, if we

consider κ0 as the identification κ0 : h
∼−→ h∗, then κ∨

0 : h
∗ ∼−→ h is nothing else but

κ−1
0 ). We have ν0 = κ∨

0 in Calder’s notations.

Lemma 2.8. W (Lg) is a vertex Poisson subalgebra of π∨
0,κ∨

0
(to be denoted W (Lg)κ∨

0
).

Proof. Recall that Vi[1] is the limit as ϵ → 0 of 1
ϵ · (

2
κ∨
0 (hi,hi)

V
ϵκ∨

0
−αi

[1]), where V
ϵκ∨

0
−αi

[1]

is the residue of the vertex operator

V
ϵκ∨

0
−αi

(z) = T−αi exp
(∑

n<0

αi ⊗ tn

n
z−n

)
exp

(∑
n>0

αi ⊗ tn

n
z−n

)
.

Recall also that by [MF, Section 8.1.2], kerV
ϵκ∨

0
−αi

(z) is the vertex subalgebra of π
ϵκ∨

0
0 .

Now, we claim that ker 1
ϵV

ϵκ∨
0

−αi
[1] defines a flat deformation of kerVi[1]. Note

that it is enough to prove this claim for g = sl2 (use that operator V
ϵκ∨

0
−αi

is equal

to identity on the component corresponding to α⊥
i ⊂ h, in other words, if we

identify V0(h) with V0(α
⊥
i )⊗V0(SpanC(αi)), then V

ϵκ∨
0

−αi
[1] will become Id tensor the

corresponding operator for sl2). Note also that kerV
ϵκ∨

0
−αi

[1] has (graded) dimension
at least grdimπ∨

0 − grdimπ∨
−αi

. It is an exercise to see that the difference above

is equal to the graded dimension of z(ŝl2). So, it remains to check that the graded

dimension of kerVi[1] is not greater than the one of z(ŝl2). This (and actually
the equality) will follow from the results of the second talk (namely, from the
identification of kerVi[1] with functions on OpPGL2

(D)).

As soon as we know that the deformation kerV
ϵκ∨

0
−αi

[1] is flat, it immediately
follows from the construction in Section 2.2.2 that kerVi[1] is Poisson.

Let us also explain in more detail why the kernel of V
ϵκ∨

0
−αi

(z) is a vertex subal-
gebra. Recall that in [Kl, Section 2.1], a notion of a module over a vertex algebra
was introduced. Recall also (see [MF, Section 8.1.2]) that

V
ϵκ∨

0
−αi

(z) = Y
π
ϵκ∨

0
0 ,π

ϵκ∨
0

−αi

(| − αi⟩, z) ∈ Hom(π
ϵκ∨

0
0 , π

ϵκ∨
0

−αi
)[[z±1]].

It follows from [Fr, Equation (7.2-3)] that if M is a module over a vertex algebra
V , then for every A ∈ V and B ∈ M , we have (we use the same notaion for both
Y (A, z) and YM (A, z)):

(7)
[ ∫

YV,M (B, z)dz, Y (A,w)
]
= YV,M

(∫
YV,M (B, z)dz ·A,w

)
.

Set S :=
∫
YV,M (B, z)dz. Equation above implies that for A ∈ kerS, we have

S · Y (A,w) = YM (A,w) · S.

This means that for C ∈ kerS, we have

S(Y (A,w)C) = (YM (A,w) · S)C = 0
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so Y (A,w) preserves the kernel of S. This is the main property that one has to
check to show that something is a vertex subalgebra. It is an exercise to finish the
argument and check that kerS is indeed a vertex subalgebra of V .

□

2.6. The embedding z(ĝ)κ0 ↪→ W (Lg)κ∨
0
is Poisson. Let us now recall that by

[MF, Section 8.1.3] in Calder’s notes we have an isomorphism of commutative vertex
algebras

π0(g)
∼−→π∨

0 (
Lg)

inducing the embedding z(ĝ) ↪→ W (Lg). All of the vertex algebras above are
equipped with vertex Poisson algebra structures (depending on a choice of κ0)
and we already know that the embeddings z(ĝ)κ0

↪→ π0,κ0
, W (Lg)κ∨

0
↪→ π∨

0,κ∨
0
are

Poisson. So, to see that the embedding z(ĝ)κ0
↪→ W (Lg)κ∨

0
is Poisson, it remains

to prove the following lemma.

Lemma 2.9. The isomorphism π0,κ0

∼−→π∨
0,κ∨

0
is Poisson.

Proof. This isomorphism is the specialization to ϵ = 0 of the family of isomorphisms
of vertex algebras over C[ϵ]:

πϵκ0
0

∼−→π
κ∨
0 /ϵ

0

given by
bi,n 7→ −b′

i,n,

where b′
i,n = ϵ 2

κ∨
0 (hi,hi)

bi,n. The claim now follows from the definitions. □

So, we finally obtain the following stronger version of the theorem proved by
Calder.

Theorem 2.10. There is a commutative diagram of vertex Poisson algebras:

π0,κ0

≃ // π∨
0,κ∨

0

z(ĝ)κ0

OO

// W (Lg)κ∨
0

OO

2.7. Equivariance w.r.t. (DerO,AutO). Recall that z(ĝ) carries a natural action
of DerO (coming from the natural action on Vκc

(g)), the action of AutO is obtained
by the exponentiation of the action of Der0 O (recall that Der0 O = C[[t]]∂t).

We claim that the action of DerO on z(ĝ) is controlled by the vertex Poisson
algebra structure on z(ĝ)κ0

. Indeed, recall (see [Wa, Sections 5,6]) that the DerO-
action on the deformation Vκ(ϵ)(g) is generated by the Fourier coefficients Lϵ

n, n ⩾
−1 of the vertex operator

Y (Sκ(ϵ), z) =
∑
n∈Z

Lϵ
nz

−n−2,

where Sκ(ϵ) is the conformal vector:

Sκ(ϵ) =
κ0

κ(ϵ)− κc
S1 = ϵ−1S1

and

S1 =
1

2

∑
a

Ja
(−1)Ja,(−1)|0⟩,
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Ja, Ja ∈ g is the dual basis w.r.t. κ0.
The action of DerO on z(ĝ) can be obtained as a limit of the action above,

namely limits L0
n of the operators Lϵ

n (n ⩾ −1) generate the action of DerO on
z(ĝ) (c.f. [Wa, Section 6]). Note that these limits are indeed well-defined and equal
to the coefficients of the series

Y−(S1, z) =
∑
n⩾−1

Lnz
−n−2.

Recall now that we have an embedding of Poisson algebras ωκc
: z(ĝ)κ∨

0
↪→

W (Lg)κ∨
0
. It follows that the Fourier coefficients of the vertex operator Y−(ωκc

(S1), z)

equip W (Lg)κ∨
0

with the action of Der(O). The embedding above is Der(O)-
equivariant by the definition.

Recall that we have an embedding of vertex Poisson algebras W (Lg)κ∨
0
↪→ π∨

0,κ∨
0
.

We then obtain the action of Der(O) on the whole π∨
0,κ∨

0
(via the Fourier coefficients

of the vertex operator Y− corresponding to ωκc(S1) ∈ π∨
0,κ∨

0
). Let us describe this

action explicitly.

Lemma 2.11. The action of Ln = −tn+1∂t ∈ DerO, n ⩾ −1 on π∨
0,κ∨

0
is given by

the derivations of the algebra structure which are uniquely determined by:

Ln · b′
i,m = −mb′

i,n+m, n < −m,

Ln · b′
i,−n = −n(n+ 1), n > 0,

Ln · b′
i,m = 0, n > −m.

Proof. The claim follows from [Wa, Section 7] (see also [Fr, Equation 6.2-13]) where
the action of Ln on π0 is described together with the fact that the identification

π0
∼−→π∨

0 is DerO-equivariant and sends bi,n to −b′
i,n. □

3. Miura opers

The goal of this section is to construct an AutO-equivariant isomorphism be-
tween W (Lg) and the algebra FunOpLG(D) of functions on the space of LG-
opers on the disc. This will allow us to compute the character of W (Lg) (us-
ing that we know the character of FunOpLG(D)) and to conclude that the em-
bedding z(ĝ) ↪→ W (Lg) is actually an isomorphism. Composing isomorphisms

z(ĝ) ∼−→W (Lg) ∼−→ FunOpLG(D) we will finally obtain the desired AutO-equivariant
identification

z(ĝ) ∼−→ FunOpLG(D).

We start with constructing the isomorphism W (Lg) ≃ FunOpLG(D). Let us
explain how this will be done.

Recall that W (Lg) is an AutO-equivariant subspace of π∨
0 equal to the intersec-

tion of kernels of certain operators Vi[1]. We will identify π∨
0 with the vector space

of functions on the space MOpLG(D)gen of so-called generic Miura LG-opers on the

disc D. This will be done by identifying MOpLG(D)gen with the space Conn(Ωρ̌
D)

of connections in the H-bundle Ωρ̌
D (introduced in [Wa, Section 7]).

There is a natural AutO-equivariant (surjective) morphism from generic Miura
opers to opers that induces a morphism

µ : Conn(Ωρ̌
D) ∼−→ MOpLG(D)gen → OpLG(D)
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called the Miura transformation. We will show that the image of µ∗ is precisely
the intersection of kernels of Vi[1]’s. So, we will obtain the desired identification
W (Lg) ≃ FunOpLG(D).

3.1. Miura opers. Let X be a smooth curve or D or D×. Recall that on all
principal bundles that we consider group acts from the right . This is nothing but
our convention. Recall also that G is an adjoint simple group.

Definition 3.1. AMiura G-oper onX is a quadruple (F ,∇,FB ,F ′
B), where (F ,∇,FB)

is a G-oper on X and F ′
B is a B-reduction in F which is preserved by ∇.

Note that a B-reduction FB ⊂ F in a G-bundle F on a space X is the same as
a section of the map F/B → X.

We will say that two B-reductions FB ,F ′
B ⊂ F are in generic relative position

if the image of the section corresponding to F ′
B

s′ : X → F/B ≃ F ×G G/B ≃ FB ×B G/B

lies in
FB ×B (Bw0B) ⊂ FB ×B G/B,

where Bw0B ⊂ G/B is the open Bruhat cell (w0 is the longest element in the Weyl
group of G).

A Miura G-oper on X is called generic if FB ,F ′
B are in generic relative position.

The space of generic Miura G-opers on X will be denoted by MOpG(X)gen.

Example 3.2. For example, for g = sln, Miura G-oper is given by the following
connection (in the trivial bundle):

∂t +


∗ 0 . . . 0
1 ∗ . . . 0

0 1
. . . 0

0 . . . 1 ∗

 .

Let us now describe the space MOpG(X)gen.
Consider the line bundle Ω1

X and let Ω∗
X ⊂ Ω1

X be the complement to its zero
section; Ω∗

X a C×-bundle on X. Let ρ̌ : C× → H be the cocharacter of H corre-
sponding to ρ̌ := 1

2

∑
i α

∨
i (ρ̌ indeed determines the cocharacter of H since G is

adjoint). The cocharacter ρ̌ defines the action of C× on H. Set

Ωρ̌ := Ω∗
X ×C×

H.

Let Conn(Ωρ̌
X) be the space of connections on the T -bundle Ωρ̌

X . The rest of this
section will be devoted to the proof of the following proposition.

Proposition 3.3. There exists a natural AutX-equivariant isomorphism

MOpG(X)gen ≃ Conn(Ωρ̌
X).

First of all, recall that for any B-bundle PB , we can consider the corresponding
H-bundle PH := PB/N , where N ⊂ B is the unipotent radical. We start with two
lemmas.

The following statement was discussed in [Wa, Section 7].

Lemma 3.4. Let (F ,∇,FB) be a G-oper, then there exists a canonical isomorphism
of H-bundles:

FH ≃ Ωρ̌
X .
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Set B− := w−1
0 Bw0. Note that B ∩ B− = H. For a B-bundle F ′

B , we will
denote by F ′

B−
the B−-bundle F ′

Bw0 ⊂ F (we apply w0 ∈ G to F ′
B using the right

action of G on F , the resulting space is a w−1
0 Bw0 = B−-torsor). Similarly, for an

H-bundle F ′
H ⊂ F , we denote by F ′

Hw0 the corresponding w−1
0 Hw0 = H-bundle.

Lemma 3.5. If FB ,F ′
B ⊂ F are in generic relative position, then FB∩F ′

B−
defines

H-reductions in both FB and F ′
B−

. We then obtain the identifications

FB ∩ F ′
B−

∼−→FH , FB ∩ F ′
B−

∼−→F ′
Hw0,

where FH := FB/N , F ′
H := F ′

B/N .
So, in particular, FH ≃ F ′

Hw0 as H-bundles.

Proof. We just need to check that for every x ∈ X, (FB |x) ∩ (F ′
B−

|x) ⊂ FB |x is

a principal homogeneous H-space. We fix a trivialization FB |x ≃ B, it induces
the identification F|x = FB |x ×B G ≃ G. So, we have identified FB |x ⊂ F|x with
B ⊂ G. Then F ′

B−
|x ⊂ G identifies with bw0B ·w0 = bB− for some b ∈ B (since FB

and F ′
B are in generic realive position). So, the intersection (FB |x) ∩ (F ′

B−
|x) gets

identified with B ∩ bB− = b(B ∩B−) = bH which is clearly a (right) H-torsor. □

We are now ready to prove Proposition 3.3.

Proof. Note that Lemmas 3.4, 3.5 imply that if (F ,∇,FB ,F ′
B) is a generic Miura

oper, then we have canonical identifications

F ≃ Ωρ̌
X ×H G, FB ≃ Ωρ̌

X ×H B, F ′
B ≃ (Ωρ̌

X ×H B−)w0.

So, to obtain the identification from Proposition 3.3 we just need to construct a

connection ∇ in F starting with a connection ∇̂ in Ωρ̌
X and vice versa.

Let us construct a map from the LHS to the RHS. The connection ∇ preserves
the B-bundle F ′

B so induces a connection ∇ on the H-bundle F ′
H and so on Ωρ̌ ≃

FH ≃ F ′
Hw0 (see Lemma 3.5). This is the connection on Ωρ̌ that we need. This

gives rise to a map f : MOpG(D)gen → Conn(Ωρ̌
D), ∇ 7→ ∇̂.

Let us construct a map in the opposite direction (it was sketched in [Wa, Section

7]). We start with a connection ∇̂ on Ωρ̌
X . The connection ∇̂ induces a connection

on F = Ωρ̌
X ×H G to be denoted by the same symbol.

Observe now that the space Conn(F) of connections on F is the affince space
over the vector space Γ(X, gF ⊗OX

Ω1
X), where

gF = F ×G g = Ωρ̌
X ×H g = Ωρ̌

X ×H (h⊕
⊕
α∈∆

gα) = (Ωρ̌
X ×H h)⊕

⊕
α∈∆

(Ω1
X)⊗⟨ρ̌,α⟩.

So, we can identify Conn(F) with the space

Conn(Ωρ̌
X)× Γ(X,

⊕
α∈∆

(Ω1)⊗(⟨ρ̌,α⟩+1))

For every negative simple root −αi, we see that the term (Ω1)⊗(⟨ρ̌,−αi⟩+1) is just
the structure sheaf OX , so the choice of a generator fi ∈ g−αi

defines the element

p−1 :=
∑

i fi ∈ Γ(X,
⊕

α∈∆(Ω
1)⊗(⟨ρ̌,α⟩+1)). Now ∇ := ∇̂ + p−1. It follows from

the definitions that the maps ∇ 7→ ∇̂ and ∇̂ 7→ ∇ are inverse to each other. □
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