VERTEX POISSON ALGEBRAS AND MIURA OPERS I

VASILY KRYLOV

1. RECAP

Let $(V,|0\rangle, T, Y)$ be a vertex algebra. Recall that to $A \in V$, one associates the formal sum $Y(A, z)=\sum_{m \in \mathbb{Z}} A_{(m)} z^{-m-1}$. The following property is a part of the definition of the vertex algebra structure.

The following three properties were proven by Ilya ([DuII]).

$$
\begin{equation*}
Y(T A, z)=\partial_{z} Y(A, z) \tag{1}
\end{equation*}
$$

$$
Y(A, z) B=e^{z T} Y(B,-z) A
$$

$\left[A_{(m)}, B_{(k)}\right]=\sum_{n \geqslant 0}\binom{m}{n}\left(A_{(n)} B\right)_{(m+k-n)} \Leftrightarrow\left[A_{(m)}, Y(B, z)\right]=\sum_{n \geqslant 0}\binom{m}{n} z^{m-n} Y\left(A_{(n)} B, z\right)$.

2. Vertex Poisson algebra structures and ($\operatorname{Der} \mathcal{O}$, Aut \mathcal{O})-EQuivariance

2.1. Commutative vertex algebras. Let us first of all recall (see $[\mathrm{DuI}]$) that a vertex algebra V is called commutative if

$$
[Y(A, z), Y(B, w)]=0 \text { for all } A, B \in V
$$

Ilya proved that V is commutative iff for every $A \in V$, we have $Y(A, z) \in$ $\operatorname{End}(V)[[z]]$. So, the non-commutativity of V is "controlled" by the coefficients of

$$
Y_{-}(A, z):=\sum_{m \geqslant 0} A_{m} z^{-m-1}
$$

Let us also recall that there is an equivalence of categories of commutative vertex algebras and commutative (associative, unital) algebras together with the derivation. This equivalence sends a commutative vertex algebra $(V,|0\rangle, T, Y)$ to (V, \circ, T), where the product \circ on the vector space V is defined as follows:

$$
\begin{equation*}
A \circ B:=A_{(-1)} \cdot B \tag{4}
\end{equation*}
$$

2.2. Vertex Poisson algebras: motivations and definitions. Recall that both $\mathfrak{z}(\widehat{\mathfrak{g}}), W\left({ }^{L} \mathfrak{g}\right)$ are commutative vertex algebras and Calder proved that there is an inclusion $\mathfrak{z}(\widehat{\mathfrak{g}}) \hookrightarrow W\left({ }^{L} \mathfrak{g}\right)$. Our first goal is to introduce a notion of a vertex Poisson algebra (this is some additional structure on a commutative vertex algebra), and prove that both $\mathfrak{z}(\widehat{\mathfrak{g}})$, $W\left({ }^{L} \mathfrak{g}\right)$ are vertex Poisson algebras and that the inclusion above is compatible with these structures. We relate the Der \mathcal{O}-action to the Poisson vertex algebra structure and use the fact that the isomorphism is Poisson to check that the inclusion above is $(\operatorname{Der} \mathcal{O}$, Aut $\mathcal{O})$-equivariant.
2.2.1. Poisson algebras. We start with a motivation: let us recall the notion of a Poisson algebra and how such an object appears naturally via deformations of (commutative) algebras.

Let P be an associative algebra over \mathbb{C}. Assume that we are given a deformation of P over the ring $\mathbb{C}[\epsilon] /\left(\epsilon^{k}\right)\left(k \in \mathbb{Z}_{\geqslant 2}\right)$. By this, we mean a pair $\left(P^{\epsilon}, \iota\right)$ of a $\mathbb{C}[\epsilon] /\left(\epsilon^{k}\right)$ algebra P^{ϵ} which is free as $\mathbb{C}[\epsilon] /\left(\epsilon^{k}\right)$-module together with the isomorphism of algebras $\iota: P^{\epsilon} /(\epsilon) \xrightarrow{\sim} P$.

Assume now that P is commutative and $k \geqslant 3$. Then, we can define an additional structure on P called the Poisson bracket. For $a, b \in P$, we define the Poisson bracket $\{a, b\} \in P$ as follows:

$$
\{a, b\}:=\frac{\tilde{a} \tilde{b}-\tilde{b} \tilde{a}}{\epsilon} \bmod \epsilon \in P,
$$

where $\tilde{a}, \tilde{b} \in P^{\epsilon}$ are arbitrary lifts of a, b (clearly, the definition does not depend on the choice of $\tilde{a}, \tilde{b})$.

The following three properties of $\{$,$\} are clear from the definitions:$

- (i) $\{a, b\}=-\{b, a\}$,
- (ii) $\{a,\{b, c\}\}+\{c,\{a, b\}\}+\{b,\{c, a\}\}=0$,
- (iii) $\{a, b c\}=b\{a, c\}+c\{a, b\}$.

Remark 2.1. Condition $k \geqslant 3$ is needed for the property (ii) to hold.
So, $\{$,$\} defines the Lie algebra structure on P$ and $\{a,-\}$ is a derivation of P. In other words, P is a Poisson algebra.
2.2.2. Vertex Poisson algebras. Let us now try to guess a candidate for a notion of a "Poisson structure" on a (commutative) vertex algebra V.

Note that it makes sense to talk about a vertex algebra over $\mathbb{C}[\epsilon] /\left(\epsilon^{k}\right)$, the definition is the same as over \mathbb{C}, operaions $T, Y(-, z)$ must be $\mathbb{C}[\epsilon] /\left(\epsilon^{k}\right)$-linear. So it makes sense to talk about a deformation $\left(V^{\epsilon}, \iota\right)$ of V over $\mathbb{C}[\epsilon] /\left(\epsilon^{k}\right)$ (recall that ι is the identification of vertex algebras $\left.\iota: V^{\epsilon} /(\epsilon) \xrightarrow{\sim} V\right)$.

We know that $Y_{-}^{\epsilon}(-, z)$ is equal to zero modulo ϵ, so for $A \in V$ we can define:

$$
\begin{equation*}
Y_{-}(A, z):=\frac{Y_{-}^{\epsilon}(\tilde{A}, z)}{\epsilon} \bmod \epsilon \tag{5}
\end{equation*}
$$

where $\tilde{A} \in V^{\epsilon}$ is a representative of A. Note that the definition does not depend on the choice of \tilde{A} since $Y^{\epsilon}(-, z)$ is $\mathbb{C}[\epsilon] /\left(\epsilon^{k}\right)$-linear.

So, we have equipped commutative vertex algebra V with an additional structure:

$$
Y_{-}(-, z): V \rightarrow z^{-1} \operatorname{End}(V)\left[\left[z^{-1}\right]\right], Y_{-}(A, z)=\sum_{m \geqslant 0} A_{(m)} z^{-m-1}
$$

It follows from (1), (2), (3) above that for $m \geqslant 0$, and $A, B \in V$ we have

- (I) (translation) $Y_{-}(T A, z)=\partial_{z} Y_{-}(A, z)$,
- (II) (skew-symmetry) $Y_{-}(A, z) B=\left(e^{z T} Y_{-}(B,-z) A\right)_{-}$,
- (III) (commutator) $\left[A_{(m)}, Y_{-}(B, z)\right]=\sum_{n \geqslant 0}\binom{m}{n}\left(z^{m-n} Y_{-}\left(A_{(n)} B, z\right)\right)_{-}$,
(II) and (III) are analogous to the properties (i) and (ii) in the definition of the Poisson algebra (i.e., the analog of the fact that $\{$,$\} defines a Lie algebra structure$ on P).

The following exercise should be considered as a vertex algebra counterpart of the property (iii). It claims that the coefficients of $Y_{-}(A, z)$ are derivations of the commutative product \circ (given by the formula (4)).
Exercise 2.2. For every $m \geqslant 0$ we have

- (IV) $A_{(m)}(B \circ C)=\left(A_{(m)} B\right) \circ C+B \circ\left(A_{(m)} C\right)$.

Proof. Hint: use the definition of ○ (see (4)) to see that (IV) is equivalent to

$$
\left[A_{(m)}, B_{(-1)}\right]=\left(A_{(m)} B\right)_{(-1)}, m \geqslant 0
$$

Rewrite this using some lifts $\tilde{A}, \tilde{B} \in V^{\epsilon}$ of A, B and then use (3).
Definition 2.3. A vertex Poisson algebra is $\left(V,|0\rangle, T, Y_{+}, Y_{-}\right)$, where $\left(V,|0\rangle, T, Y_{+}\right)$ is a commutative vertex algebra and

$$
Y_{-}: V \rightarrow z^{-1} \operatorname{End}(V)\left[\left[z^{-1}\right]\right]
$$

satisfies the conditions (I)-(IV).
2.3. Vertex Poisson algebra structure on $\mathfrak{z}(\widehat{\mathfrak{g}})$. We start with the following example.

Example 2.4. If $\left(V^{\epsilon}, \iota\right)$ is a deformation of some vertex algebra V over $\mathbb{C}[\epsilon]$, then the center $\mathcal{Z}(V)$ carries a natural Poisson vertex algebra structure. Namely, for $A \in \mathcal{Z}(V)$, the operator $Y_{-}(A, z)$ (given by the equation (5)) is still well-defined and satisfies all the required properties making $\mathcal{Z}(V)$ a Poisson vertex algebra.

Now, let us equip $\mathfrak{z}(\widehat{\mathfrak{g}})$ with a Poisson vertex algebra structure.
Fix a \mathfrak{g}-invariant scalar product κ_{0} on \mathfrak{g} and consider:

$$
\kappa(\epsilon):=\epsilon \kappa_{0}+\kappa_{c}
$$

Consider the family $V_{\kappa(\epsilon)}$, and recall that for every fixed $\epsilon=\epsilon_{0}$ we have $V_{\kappa\left(\epsilon_{0}\right)}=$ $U\left(\widehat{\mathfrak{g}}_{\kappa\left(\epsilon_{0}\right)}\right) \otimes_{U(\mathfrak{g}[t]]) \oplus \mathbb{C} 1} \mathbb{C}|0\rangle$. We can consider ϵ as a formal variable and define

$$
V_{\kappa(\epsilon)}:=U\left(\widehat{\mathfrak{g}}_{\kappa(\epsilon)}\right) \otimes_{U(\mathfrak{g}[[t]]) \otimes \mathbb{C}[\epsilon] \oplus \mathbb{C}[\epsilon] \mathbf{1}} \mathbb{C}[\epsilon]|0\rangle
$$

where $\widehat{\mathfrak{g}}_{\kappa(\epsilon)}=\mathfrak{g}((t)) \otimes \mathbb{C}[\epsilon] \oplus \mathbb{C}[\epsilon] \mathbf{1}$ is the Lie algebra over $\mathbb{C}[\epsilon]$ (with the commutator defined as before but with ϵ now considered as an indeterminante). The same formulas as before define on $V_{\kappa(\epsilon)}$ the structure of a vertex algebra over $\mathbb{C}[\epsilon]$. Reducing modulo (ϵ^{3}) we equip $V_{\kappa(\epsilon)}$ with the vertex algebra structure over $\mathbb{C}[\epsilon] /\left(\epsilon^{3}\right)$. This gives us the Poisson vertex algebra structure on the center $\mathfrak{z}(\widehat{\mathfrak{g}})$ of $V_{\kappa_{c}}(\mathfrak{g})$ to be denoted by $\mathfrak{z}(\widehat{\mathfrak{g}})_{\kappa_{0}}$ (note that this structure depends on κ_{0}). Since κ_{0} is fixed once and for all, we will sometimes omit it from the notation.

Note that $V_{\kappa}(\mathfrak{h})=\pi_{0}^{\kappa}(\mathfrak{g})=\pi_{0}^{\kappa}$ is the Heisenberg vertex algebra so the example above equips $\pi_{0}=\left.\pi_{0}^{\epsilon \kappa_{0}}\right|_{\epsilon=0}$ with a vertex Poisson algebra structure. This vertex Poisson algebra will be denoted by $\pi_{0, \kappa_{0}}$ or just by π_{0}.

Let us describe this Poisson structure explicitly.

Recall that $\pi_{0}^{\epsilon \kappa_{0}}$ is a Fock module over the Heisenberg Lie algebra $\widehat{\mathfrak{h}}_{\epsilon \kappa_{0}}$ with generators $b_{i, n}, i \in 1, \ldots, \ell, n \in \mathbb{Z}$ and $\mathbf{1}$ satisfying the relations:

$$
\left[b_{i, n}, b_{j, m}\right]=\epsilon n \kappa_{0}\left(h_{i}, h_{j}\right) \delta_{n,-m} \mathbf{1}
$$

Recall also that $\pi_{0, \kappa_{0}}$ can be identified with the space of monomials in $b_{i, n}$, $i=1, \ldots, \ell, n<0$ (via the action on the vacuum $|0\rangle$). It follows from the definitions that for $n<0$ and $i=1, \ldots, \ell$ we have:

$$
\begin{equation*}
Y_{-}\left(b_{i,-1}|0\rangle, z\right)=\left\{b_{i}(z),-\right\}:=\sum_{n \geqslant 0}\left\{b_{i, n},-\right\} z^{-n-1} \tag{6}
\end{equation*}
$$

where $\{$,$\} is the Poisson bracket defined by$

$$
\left\{b_{i, n}, b_{j, m}\right\}=n \kappa_{0}\left(h_{i}, h_{j}\right) \delta_{n,-m}
$$

In other words,

$$
Y_{-}\left(b_{i,-1}|0\rangle, z\right)=\sum_{n \geqslant 0}\left(\sum_{j=1}^{\ell} n \kappa_{0}\left(h_{i}, h_{j}\right) \frac{\partial}{\partial b_{j,-n}}\right) z^{-n-1} .
$$

Remark 2.5. We see from (6) that the vertex Poisson algebra structure on $\pi_{0, \kappa_{0}}$ indeed depends on κ_{0}.
2.4. Embedding $\mathfrak{z}(\hat{\mathfrak{g}})_{\kappa_{0}} \hookrightarrow \pi_{0, \kappa_{0}}$ is Poisson. Recall now that Zeyu constructed a homomorphism of vertex algebras:

$$
\omega_{\kappa_{c}}: V_{\kappa_{c}}(\mathfrak{g}) \rightarrow W_{0, \kappa_{c}}=M_{\mathfrak{g}} \otimes V_{0}(\mathfrak{h})=M_{\mathfrak{g}} \otimes \pi_{0}
$$

that can be deformed to a homomorphism of vertex algebras over $\mathbb{C}[\epsilon]$:

$$
\omega_{\kappa(\epsilon)}: V_{\kappa(\epsilon)} \rightarrow W_{0, \kappa(\epsilon)}=M_{\mathfrak{g}} \otimes \pi_{0}^{\epsilon \kappa_{0}}
$$

Recall also that the restriction of $\omega_{\kappa_{c}}$ to $\mathfrak{z}(\widehat{\mathfrak{g}})$ sends it into π_{0} (see [Kl, Lemma 1.2]).

Remark 2.6. Note that π_{0} is the center of $W_{0, \kappa_{c}}$.
Lemma 2.7. The embedding $\mathfrak{z}(\widehat{\mathfrak{g}})_{\kappa_{0}} \hookrightarrow \pi_{0, \kappa_{0}}$ (induced by $\omega_{\kappa_{c}}$) is a homomorphism of vertex Poisson algebras.

Proof. This is a corollary of the following general fact. Let $\left(V_{1}^{\epsilon}, \iota_{1}\right),\left(V_{2}^{\epsilon}, \iota_{2}\right)$ be deformations over $\mathbb{C}[\epsilon] /\left(\epsilon^{3}\right)$ of vertex algebras V_{1}, V_{2} and let $\mathcal{Z}\left(V_{1}\right), \mathcal{Z}\left(V_{2}\right)$ be their centers. If $\varphi_{\epsilon}: V_{1}^{\epsilon} \rightarrow V_{2}^{\epsilon}$ is a homomorphism of our vertex algebras over $\mathbb{C}[\epsilon] /\left(\epsilon^{3}\right)$ such that $\varphi_{0}: V_{1} \rightarrow V_{2}$ restricts to $\mathcal{Z}\left(V_{1}\right) \rightarrow \mathcal{Z}\left(V_{2}\right)$, then the latter is Poisson. Hint: use the fact that the definition of $Y_{-}(A, z)$ does not depend on the choice of a lift \tilde{A}.
2.5. Vertex Poisson algebra structure on $W\left({ }^{L} \mathfrak{g}\right)$. Let us now consider the classical W-algebra $W\left({ }^{L} \mathfrak{g}\right)$. Recall that $W\left({ }^{L} \mathfrak{g}\right)$ is by the definition the (commutative) vertex subalgebra of $\pi_{0}^{\vee}=\pi_{0}\left({ }^{L} \mathfrak{g}\right)$ defined as follows:

$$
W\left({ }^{L} \mathfrak{g}\right):=\bigcap_{i=1}^{\ell} \operatorname{ker} V_{i}[1] \subset \pi_{0}^{\vee},
$$

where

$$
V_{i}[1]=\sum_{m \leqslant 0} V_{i}[m] D_{b_{i, m-1}^{\prime}}, D_{b_{i, m}^{\prime}} \cdot b_{j, n}^{\prime}=a_{i j} \delta_{n, m}
$$

$a_{i j}$ is the Cartan matrix of ${ }^{L} \mathfrak{g}$, and

$$
\sum_{n \leqslant 0} V_{i}[n] z^{-n}=\exp \left(-\sum_{m>0} \frac{b_{i,-m}^{\prime}}{m} z^{m}\right)
$$

Let κ_{0}^{\vee} be the invariant product on \mathfrak{h}^{*} corresponding to κ_{0} (in other words, if we consider κ_{0} as the identification $\kappa_{0}: \mathfrak{h} \xrightarrow{\sim} \mathfrak{h}^{*}$, then $\kappa_{0}^{\vee}: \mathfrak{h}^{*} \xrightarrow{\sim} \mathfrak{h}$ is nothing else but κ_{0}^{-1}). We have $\nu_{0}=\kappa_{0}^{\vee}$ in Calder's notations.
Lemma 2.8. $W\left({ }^{L} \mathfrak{g}\right)$ is a vertex Poisson subalgebra of $\pi_{0, \kappa_{0}^{\vee}}^{\vee}$ (to be denoted $\left.W\left({ }^{L} \mathfrak{g}\right)_{\kappa_{0}^{\vee}}\right)$.
Proof. Recall that $V_{i}[1]$ is the limit as $\epsilon \rightarrow 0$ of $\frac{1}{\epsilon} \cdot\left(\frac{2}{\kappa_{0}^{\vee}\left(h_{i}, h_{i}\right)} V_{-\alpha_{i}}^{\epsilon \kappa_{0}^{\vee}}[1]\right)$, where $V_{-\alpha_{i}}^{\epsilon \kappa_{0}^{\vee}}[1]$ is the residue of the vertex operator

$$
V_{-\alpha_{i}}^{\epsilon \kappa_{0}^{\vee}}(z)=T_{-\alpha_{i}} \exp \left(\sum_{n<0} \frac{\alpha_{i} \otimes t^{n}}{n} z^{-n}\right) \exp \left(\sum_{n>0} \frac{\alpha_{i} \otimes t^{n}}{n} z^{-n}\right)
$$

Recall also that by [MF, Section 8.1.2], $\operatorname{ker} V_{-\alpha_{i}}^{\epsilon \kappa_{0}^{\vee}}(z)$ is the vertex subalgebra of $\pi_{0}^{\epsilon \kappa_{0}^{\vee}}$.
Now, we claim that $\operatorname{ker} \frac{1}{\epsilon} V_{-\alpha_{i}}^{\epsilon \kappa_{0}^{\vee}}[1]$ defines a flat deformation of ker $V_{i}[1]$. Note that it is enough to prove this claim for $\mathfrak{g}=\mathfrak{s l}_{2}$ (use that operator $V_{-\alpha_{i}}^{\epsilon \kappa_{0}^{\vee}}$ is equal to identity on the component corresponding to $\alpha_{i}^{\perp} \subset \mathfrak{h}$, in other words, if we identify $V_{0}(\mathfrak{h})$ with $V_{0}\left(\alpha_{i}^{\perp}\right) \otimes V_{0}\left(\operatorname{Span}_{\mathbb{C}}\left(\alpha_{i}\right)\right)$, then $V_{-\alpha_{i}}^{\epsilon \kappa_{0}^{\vee}}[1]$ will become Id tensor the corresponding operator for $\mathfrak{s l}_{2}$). Note also that ker $V_{-\alpha_{i}}^{\epsilon \epsilon_{0}^{\vee}}[1]$ has (graded) dimension at least grdim $\pi_{0}^{\vee}-\operatorname{grdim} \pi_{-\alpha_{i}}^{\vee}$. It is an exercise to see that the difference above is equal to the graded dimension of $\mathfrak{z}\left(\widehat{\mathfrak{s l}}_{2}\right)$. So, it remains to check that the graded dimension of ker $V_{i}[1]$ is not greater than the one of $\mathfrak{z}\left(\widehat{\mathfrak{s l}}_{2}\right)$. This (and actually the equality) will follow from the results of the second talk (namely, from the identification of ker $V_{i}[1]$ with functions on $\mathrm{Op}_{\mathrm{PGL}_{2}}(D)$).

As soon as we know that the deformation $\operatorname{ker} V_{-\alpha_{i}}^{\epsilon \kappa_{0}^{\nu}}[1]$ is flat, it immediately follows from the construction in Section 2.2.2 that ker $V_{i}[1]$ is Poisson.

Let us also explain in more detail why the kernel of $V_{-\alpha_{i}}^{\epsilon \kappa_{0}^{\vee}}(z)$ is a vertex subalgebra. Recall that in [Kl, Section 2.1], a notion of a module over a vertex algebra was introduced. Recall also (see [MF, Section 8.1.2]) that

It follows from [Fr, Equation (7.2-3)] that if M is a module over a vertex algebra V, then for every $A \in V$ and $B \in M$, we have (we use the same notaion for both $Y(A, z)$ and $\left.Y_{M}(A, z)\right)$:

$$
\begin{equation*}
\left[\int Y_{V, M}(B, z) d z, Y(A, w)\right]=Y_{V, M}\left(\int Y_{V, M}(B, z) d z \cdot A, w\right) \tag{7}
\end{equation*}
$$

Set $S:=\int Y_{V, M}(B, z) d z$. Equation above implies that for $A \in \operatorname{ker} S$, we have

$$
S \cdot Y(A, w)=Y_{M}(A, w) \cdot S
$$

This means that for $C \in \operatorname{ker} S$, we have

$$
S(Y(A, w) C)=\left(Y_{M}(A, w) \cdot S\right) C=0
$$

so $Y(A, w)$ preserves the kernel of S. This is the main property that one has to check to show that something is a vertex subalgebra. It is an exercise to finish the argument and check that ker S is indeed a vertex subalgebra of V.
2.6. The embedding $\mathfrak{z}(\widehat{\mathfrak{g}})_{\kappa_{0}} \hookrightarrow W\left({ }^{L} \mathfrak{g}\right)_{\kappa_{0}^{\vee}}$ is Poisson. Let us now recall that by [MF, Section 8.1.3] in Calder's notes we have an isomorphism of commutative vertex algebras

$$
\pi_{0}(\mathfrak{g}) \xrightarrow{\sim} \pi_{0}^{\vee}\left({ }^{L} \mathfrak{g}\right)
$$

inducing the embedding $\mathfrak{z}(\widehat{\mathfrak{g}}) \hookrightarrow W\left({ }^{L} \mathfrak{g}\right)$. All of the vertex algebras above are equipped with vertex Poisson algebra structures (depending on a choice of κ_{0}) and we already know that the embeddings $\mathfrak{z}(\widehat{\mathfrak{g}})_{\kappa_{0}} \hookrightarrow \pi_{0, \kappa_{0}}, W\left({ }^{L} \mathfrak{g}\right)_{\kappa_{0}^{\vee}} \hookrightarrow \pi_{0, \kappa_{0}^{\vee}}^{\vee}$ are Poisson. So, to see that the embedding $\mathfrak{z}(\widehat{\mathfrak{g}})_{\kappa_{0}} \hookrightarrow W\left({ }^{L} \mathfrak{g}\right)_{\kappa_{0}^{\vee}}$ is Poisson, it remains to prove the following lemma.

Lemma 2.9. The isomorphism $\pi_{0, \kappa_{0}} \xrightarrow{\sim} \pi_{0, \kappa_{0}^{\vee}}^{\vee}$ is Poisson.
Proof. This isomorphism is the specialization to $\epsilon=0$ of the family of isomorphisms of vertex algebras over $\mathbb{C}[\epsilon]$:

$$
\pi_{0}^{\epsilon \kappa_{0}} \xrightarrow{\sim} \pi_{0}^{\kappa_{0}^{\vee} / \epsilon}
$$

given by

$$
b_{i, n} \mapsto-\mathbf{b}_{i, n}^{\prime}
$$

where $\mathbf{b}_{i, n}^{\prime}=\epsilon \frac{2}{\kappa_{0}^{\mathrm{v}}\left(h_{i}, h_{i}\right)} \mathbf{b}_{i, n}$. The claim now follows from the definitions.
So, we finally obtain the following stronger version of the theorem proved by Calder.

Theorem 2.10. There is a commutative diagram of vertex Poisson algebras:

2.7. Equivariance w.r.t. (Der $\mathcal{O}, \operatorname{Aut} \mathcal{O})$. Recall that $\mathfrak{z}(\widehat{\mathfrak{g}})$ carries a natural action of $\operatorname{Der} \mathcal{O}$ (coming from the natural action on $V_{\kappa_{c}}(\mathfrak{g})$), the action of Aut \mathcal{O} is obtained by the exponentiation of the action of $\operatorname{Der}_{0} \mathcal{O}$ (recall that $\left.\operatorname{Der}_{0} \mathcal{O}=\mathbb{C}[[t]] \partial_{t}\right)$.

We claim that the action of $\operatorname{Der} \mathcal{O}$ on $\mathfrak{z}(\widehat{\mathfrak{g}})$ is controlled by the vertex Poisson algebra structure on $\mathfrak{z}(\widehat{\mathfrak{g}})_{\kappa_{0}}$. Indeed, recall (see [Wa, Sections 5,6]) that the Der \mathcal{O} action on the deformation $V_{\kappa(\epsilon)}(\mathfrak{g})$ is generated by the Fourier coefficients $L_{n}^{\epsilon}, n \geqslant$ -1 of the vertex operator

$$
Y\left(S_{\kappa(\epsilon)}, z\right)=\sum_{n \in \mathbb{Z}} L_{n}^{\epsilon} z^{-n-2}
$$

where $S_{\kappa(\epsilon)}$ is the conformal vector:

$$
S_{\kappa(\epsilon)}=\frac{\kappa_{0}}{\kappa(\epsilon)-\kappa_{c}} S_{1}=\epsilon^{-1} S_{1}
$$

and

$$
S_{1}=\frac{1}{2} \sum_{a} J_{(-1)}^{a} J_{a,(-1)}|0\rangle
$$

$J^{a}, J_{a} \in \mathfrak{g}$ is the dual basis w.r.t. κ_{0}.
The action of $\operatorname{Der} \mathcal{O}$ on $\mathfrak{z}(\widehat{\mathfrak{g}})$ can be obtained as a limit of the action above, namely limits L_{n}^{0} of the operators $L_{n}^{\epsilon}(n \geqslant-1)$ generate the action of $\operatorname{Der} \mathcal{O}$ on $\mathfrak{z}(\widehat{\mathfrak{g}})$ (c.f. [Wa, Section 6]). Note that these limits are indeed well-defined and equal to the coefficients of the series

$$
Y_{-}\left(S_{1}, z\right)=\sum_{n \geqslant-1} L_{n} z^{-n-2}
$$

Recall now that we have an embedding of Poisson algebras $\omega_{\kappa_{c}}: \mathfrak{z}(\widehat{\mathfrak{g}})_{\kappa_{0}^{\vee}} \hookrightarrow$ $W\left({ }^{L} \mathfrak{g}\right)_{\kappa_{0}^{\vee}}$. It follows that the Fourier coefficients of the vertex operator $Y_{-}\left(\omega_{\kappa_{c}}\left(S_{1}\right), z\right)$ equip $W\left({ }^{L} \mathfrak{g}\right)_{\kappa_{0}^{\vee}}$ with the action of $\operatorname{Der}(\mathcal{O})$. The embedding above is $\operatorname{Der}(\mathcal{O})$ equivariant by the definition.

Recall that we have an embedding of vertex Poisson algebras $W\left({ }^{L} \mathfrak{g}\right)_{\kappa_{0}^{\vee}} \hookrightarrow \pi_{0, \kappa_{0}^{\vee}}^{\vee}$. We then obtain the action of $\operatorname{Der}(\mathcal{O})$ on the whole $\pi_{0, \kappa_{0}^{\vee}}^{\vee}$ (via the Fourier coefficients of the vertex operator Y_{-}corresponding to $\left.\omega_{\kappa_{c}}\left(S_{1}\right) \in \pi_{0, \kappa_{0}^{\vee}}^{\vee}\right)$. Let us describe this action explicitly.
Lemma 2.11. The action of $L_{n}=-t^{n+1} \partial_{t} \in \operatorname{Der} \mathcal{O}, n \geqslant-1$ on $\pi_{0, \kappa_{o}^{\vee}}^{\vee}$ is given by the derivations of the algebra structure which are uniquely determined by:

$$
\begin{gathered}
L_{n} \cdot \mathbf{b}_{i, m}^{\prime}=-m \mathbf{b}_{i, n+m}^{\prime}, n<-m, \\
L_{n} \cdot \mathbf{b}_{i,-n}^{\prime}=-n(n+1), n>0, \\
L_{n} \cdot \mathbf{b}_{i, m}^{\prime}=0, n>-m .
\end{gathered}
$$

Proof. The claim follows from [Wa, Section 7] (see also [Fr, Equation 6.2-13]) where the action of L_{n} on π_{0} is described together with the fact that the identification $\pi_{0} \xrightarrow{\sim} \pi_{0}^{\vee}$ is Der \mathcal{O}-equivariant and sends $b_{i, n}$ to $-\mathbf{b}_{i, n}^{\prime}$.

3. Miura opers

The goal of this section is to construct an Aut \mathcal{O}-equivariant isomorphism between $W\left({ }^{L} \mathfrak{g}\right)$ and the algebra $\operatorname{Fun}_{\mathrm{Op}_{L_{G}}}(D)$ of functions on the space of ${ }^{L} G$ opers on the disc. This will allow us to compute the character of $W\left({ }^{L} \mathfrak{g}\right)$ (using that we know the character of $\mathrm{Fun}_{\left.\mathrm{Op}_{L_{G}}(D)\right) \text { and to conclude that the em- }}$ bedding $\mathfrak{z}(\widehat{\mathfrak{g}}) \hookrightarrow W\left({ }^{L} \mathfrak{g}\right)$ is actually an isomorphism. Composing isomorphisms $\mathfrak{z}(\widehat{\mathfrak{g}}) \xrightarrow{\sim} W\left({ }^{L} \mathfrak{g}\right) \xrightarrow{\sim}$ Fun $\mathrm{Op}_{L_{G}}(D)$ we will finally obtain the desired Aut \mathcal{O}-equivariant identification

$$
\mathfrak{z}(\widehat{\mathfrak{g}}) \xrightarrow{\sim} \operatorname{Fun}_{\mathrm{Op}}^{L_{G}}(D) .
$$

We start with constructing the isomorphism $W\left({ }^{L} \mathfrak{g}\right) \simeq \operatorname{Fun}_{\mathrm{Op}_{L_{G}}}(D)$. Let us explain how this will be done.

Recall that $W\left({ }^{L} \mathfrak{g}\right)$ is an Aut \mathcal{O}-equivariant subspace of π_{0}^{\vee} equal to the intersection of kernels of certain operators $V_{i}[1]$. We will identify π_{0}^{v} with the vector space of functions on the space $\operatorname{MOp}_{L_{G}}(D)_{\text {gen }}$ of so-called generic Miura ${ }^{L} G$-opers on the disc D. This will be done by identifying $\operatorname{MOp}_{L_{G}}(D)_{\text {gen }}$ with the space $\operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right)$ of connections in the H-bundle $\Omega_{D}^{\check{\rho}}$ (introduced in [Wa, Section 7]).

There is a natural Aut \mathcal{O}-equivariant (surjective) morphism from generic Miura opers to opers that induces a morphism

$$
\mu: \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right) \xrightarrow{\sim} \operatorname{MOp}_{L_{G}}(D)_{\operatorname{gen}} \rightarrow \operatorname{Op}_{L_{G}}(D)
$$

called the Miura transformation. We will show that the image of μ^{*} is precisely the intersection of kernels of $V_{i}[1]$'s. So, we will obtain the desired identification $W\left({ }^{L} \mathfrak{g}\right) \simeq \operatorname{Fun} \mathrm{Op}_{L_{G}}(D)$.
3.1. Miura opers. Let X be a smooth curve or D or D^{\times}. Recall that on all principal bundles that we consider group acts from the right. This is nothing but our convention. Recall also that G is an adjoint simple group.

Definition 3.1. A Miura G-oper on X is a quadruple $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}, \mathcal{F}_{B}^{\prime}\right)$, where $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}\right)$ is a G-oper on X and \mathcal{F}_{B}^{\prime} is a B-reduction in \mathcal{F} which is preserved by ∇.

Note that a B-reduction $\mathcal{F}_{B} \subset \mathcal{F}$ in a G-bundle \mathcal{F} on a space X is the same as a section of the map $\mathcal{F} / B \rightarrow X$.

We will say that two B-reductions $\mathcal{F}_{B}, \mathcal{F}_{B}^{\prime} \subset \mathcal{F}$ are in generic relative position if the image of the section corresponding to \mathcal{F}_{B}^{\prime}

$$
s^{\prime}: X \rightarrow \mathcal{F} / B \simeq \mathcal{F} \times{ }^{G} G / B \simeq \mathcal{F}_{B} \times{ }^{B} G / B
$$

lies in

$$
\mathcal{F}_{B} \times{ }^{B}\left(B w_{0} B\right) \subset \mathcal{F}_{B} \times{ }^{B} G / B,
$$

where $B w_{0} B \subset G / B$ is the open Bruhat cell (w_{0} is the longest element in the Weyl group of G).

A Miura G-oper on X is called generic if $\mathcal{F}_{B}, \mathcal{F}_{B}^{\prime}$ are in generic relative position. The space of generic Miura G-opers on X will be denoted by $\mathrm{MOp}_{G}(X)_{\text {gen }}$.
Example 3.2. For example, for $\mathfrak{g}=\mathfrak{s l}_{n}$, Miura G-oper is given by the following connection (in the trivial bundle):

$$
\partial_{t}+\left(\begin{array}{cccc}
* & 0 & \ldots & 0 \\
1 & * & \ldots & 0 \\
0 & 1 & \ddots & 0 \\
0 & \ldots & 1 & *
\end{array}\right)
$$

Let us now describe the space $\mathrm{MOp}_{G}(X)_{\text {gen }}$.
Consider the line bundle Ω_{X}^{1} and let $\Omega_{X}^{*} \subset \Omega_{X}^{1}$ be the complement to its zero section; Ω_{X}^{*} a \mathbb{C}^{\times}-bundle on X. Let $\check{\rho}: \mathbb{C}^{\times} \rightarrow H$ be the cocharacter of H corresponding to $\check{\rho}:=\frac{1}{2} \sum_{i} \alpha_{i}^{\vee}$ ($\check{\rho}$ indeed determines the cocharacter of H since G is adjoint). The cocharacter $\check{\rho}$ defines the action of \mathbb{C}^{\times}on H. Set

$$
\Omega^{\check{\rho}}:=\Omega_{X}^{*} \times{ }^{\mathbb{C}^{\times}} H
$$

Let $\operatorname{Conn}\left(\Omega_{X}^{\check{\rho}}\right)$ be the space of connections on the T-bundle $\Omega_{X}^{\check{\rho}}$. The rest of this section will be devoted to the proof of the following proposition.

Proposition 3.3. There exists a natural Aut X-equivariant isomorphism

$$
\operatorname{MOp}_{G}(X)_{\operatorname{gen}} \simeq \operatorname{Conn}\left(\Omega_{X}^{\check{\rho}}\right)
$$

First of all, recall that for any B-bundle \mathcal{P}_{B}, we can consider the corresponding H-bundle $\mathcal{P}_{H}:=\mathcal{P}_{B} / N$, where $N \subset B$ is the unipotent radical. We start with two lemmas.

The following statement was discussed in [Wa, Section 7].
Lemma 3.4. Let $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}\right)$ be a G-oper, then there exists a canonical isomorphism of H-bundles:

$$
\mathcal{F}_{H} \simeq \Omega_{X}^{\check{\rho}}
$$

Set $B_{-}:=w_{0}^{-1} B w_{0}$. Note that $B \cap B_{-}=H$. For a B-bundle \mathcal{F}_{B}^{\prime}, we will denote by $\mathcal{F}_{B_{-}}^{\prime}$ the B_{-}-bundle $\mathcal{F}_{B}^{\prime} w_{0} \subset \mathcal{F}$ (we apply $w_{0} \in G$ to \mathcal{F}_{B}^{\prime} using the right action of G on \mathcal{F}, the resulting space is a $w_{0}^{-1} B w_{0}=B_{-}$-torsor). Similarly, for an H-bundle $\mathcal{F}_{H}^{\prime} \subset \mathcal{F}$, we denote by $\mathcal{F}_{H}^{\prime} w_{0}$ the corresponding $w_{0}^{-1} H w_{0}=H$-bundle.

Lemma 3.5. If $\mathcal{F}_{B}, \mathcal{F}_{B}^{\prime} \subset \mathcal{F}$ are in generic relative position, then $\mathcal{F}_{B} \cap \mathcal{F}_{B_{-}}^{\prime}$ defines H-reductions in both \mathcal{F}_{B} and $\mathcal{F}_{B_{-}}^{\prime}$. We then obtain the identifications

$$
\mathcal{F}_{B} \cap \mathcal{F}_{B_{-}}^{\prime} \xrightarrow{\sim} \mathcal{F}_{H}, \quad \mathcal{F}_{B} \cap \mathcal{F}_{B_{-}}^{\prime} \xrightarrow{\sim} \mathcal{F}_{H}^{\prime} w_{0}
$$

where $\mathcal{F}_{H}:=\mathcal{F}_{B} / N, \mathcal{F}_{H}^{\prime}:=\mathcal{F}_{B}^{\prime} / N$.
So, in particular, $\mathcal{F}_{H} \simeq \mathcal{F}_{H}^{\prime} w_{0}$ as H-bundles.
Proof. We just need to check that for every $x \in X,\left.\left(\left.\mathcal{F}_{B}\right|_{x}\right) \cap\left(\mathcal{F}_{B_{-}}^{\prime} \mid x\right) \subset \mathcal{F}_{B}\right|_{x}$ is a principal homogeneous H-space. We fix a trivialization $\left.\mathcal{F}_{B}\right|_{x} \simeq B$, it induces the identification $\left.\mathcal{F}\right|_{x}=\left.\mathcal{F}_{B}\right|_{x} \times{ }^{B} G \simeq G$. So, we have identified $\left.\left.\mathcal{F}_{B}\right|_{x} \subset \mathcal{F}\right|_{x}$ with $B \subset G$. Then $\left.\mathcal{F}_{B_{-}}^{\prime}\right|_{x} \subset G$ identifies with $b w_{0} B \cdot w_{0}=b B_{-}$for some $b \in B$ (since \mathcal{F}_{B} and \mathcal{F}_{B}^{\prime} are in generic realive position). So, the intersection $\left(\left.\mathcal{F}_{B}\right|_{x}\right) \cap\left(\left.\mathcal{F}_{B_{-}}^{\prime}\right|_{x}\right)$ gets identified with $B \cap b B_{-}=b\left(B \cap B_{-}\right)=b H$ which is clearly a (right) H-torsor.

We are now ready to prove Proposition 3.3.
Proof. Note that Lemmas 3.4, 3.5 imply that if $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}, \mathcal{F}_{B}^{\prime}\right)$ is a generic Miura oper, then we have canonical identifications

$$
\mathcal{F} \simeq \Omega_{X}^{\check{\rho}} \times{ }^{H} G, \mathcal{F}_{B} \simeq \Omega_{X}^{\check{\rho}} \times{ }^{H} B, \mathcal{F}_{B}^{\prime} \simeq\left(\Omega_{X}^{\check{\rho}} \times{ }^{H} B_{-}\right) w_{0}
$$

So, to obtain the identification from Proposition 3.3 we just need to construct a connection ∇ in \mathcal{F} starting with a connection $\widehat{\nabla}$ in $\Omega_{X}^{\check{\rho}}$ and vice versa.

Let us construct a map from the LHS to the RHS. The connection ∇ preserves the B-bundle \mathcal{F}_{B}^{\prime} so induces a connection $\bar{\nabla}$ on the H-bundle \mathcal{F}_{H}^{\prime} and so on $\Omega^{\check{\rho}} \simeq$ $\mathcal{F}_{H} \simeq \mathcal{F}_{H}^{\prime} w_{0}$ (see Lemma 3.5). This is the connection on $\Omega^{\check{\rho}}$ that we need. This gives rise to a map $f: \operatorname{MOp}_{G}(D)_{\text {gen }} \rightarrow \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right), \nabla \mapsto \widehat{\nabla}$.

Let us construct a map in the opposite direction (it was sketched in [Wa, Section 7]). We start with a connection $\hat{\nabla}$ on $\Omega_{X}^{\check{\rho}}$. The connection $\widehat{\nabla}$ induces a connection on $\mathcal{F}=\Omega_{X}^{\check{\rho}} \times{ }^{H} G$ to be denoted by the same symbol.

Observe now that the space $\operatorname{Conn}(\mathcal{F})$ of connections on \mathcal{F} is the affince space over the vector space $\Gamma\left(X, \mathfrak{g}_{\mathcal{F}} \otimes_{\mathcal{O}_{X}} \Omega_{X}^{1}\right)$, where

$$
\mathfrak{g}_{\mathcal{F}}=\mathcal{F} \times{ }^{G} \mathfrak{g}=\Omega_{X}^{\check{\rho}} \times{ }^{H} \mathfrak{g}=\Omega_{X}^{\check{\rho}} \times{ }^{H}\left(\mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta} \mathfrak{g}_{\alpha}\right)=\left(\Omega_{X}^{\check{\rho}} \times{ }^{H} \mathfrak{h}\right) \oplus \bigoplus_{\alpha \in \Delta}\left(\Omega_{X}^{1}\right)^{\otimes\langle\check{\rho}, \alpha\rangle}
$$

So, we can identify $\operatorname{Conn}(\mathcal{F})$ with the space

$$
\left.\operatorname{Conn}\left(\Omega_{X}^{\check{\rho}}\right) \times \Gamma\left(X, \bigoplus_{\alpha \in \Delta}\left(\Omega^{1}\right)^{\otimes(\langle\check{\rho}, \alpha\rangle+1}\right)\right)
$$

For every negative simple root $-\alpha_{i}$, we see that the term $\left(\Omega^{1}\right)^{\otimes\left(\left\langle\check{\rho},-\alpha_{i}\right\rangle+1\right)}$ is just the structure sheaf \mathcal{O}_{X}, so the choice of a generator $f_{i} \in \mathfrak{g}_{-\alpha_{i}}$ defines the element $\left.p_{-1}:=\sum_{i} f_{i} \in \Gamma\left(X, \bigoplus_{\alpha \in \Delta}\left(\Omega^{1}\right)^{\otimes(\langle\grave{\rho}, \alpha\rangle+1}\right)\right)$. Now $\nabla:=\widehat{\nabla}+p_{-1}$. It follows from the definitions that the maps $\nabla \mapsto \widehat{\nabla}$ and $\widehat{\nabla} \mapsto \nabla$ are inverse to each other.

References

[Bo1] E. Bogdanova, Seminar notes, Part I
[Bo2] E. Bogdanova, Seminar notes, Part II
[DuI] I. Dumanski, Seminar notes, part I, 2024.
[DuII] I. Dumanski, Seminar notes, part II, 2024.
[Fr] E. Frenkel, Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, vol. 103, Cambridge University Press, Cambridge, 2007. MR 2332156
[Kl] D. Klyuev, Seminar notes, 2024.
[MF] C. Morton-Ferguson, Seminar notes, 2024.
[Wa] Zeyu Wang, Seminar notes, 2024.

