VERTEX POISSON ALGEBRAS AND MIURA OPERS I

VASILY KRYLOV

1. RECAP

Let (V,|0),T,Y) be a vertex algebra. Recall that to A € V, one associates the
formal sum Y (A,2) =3 -, A(m)z_m_l. The following property is a part of the
definition of the vertex algebra structure.

The following three properties were proven by Ilya ([Dull)).

(1) Y(TA,2) = 0.Y (A, 2),

(2) Y (A, 2)B =e*TY (B, —2)A

(3)

[Amy, Byl = Z (:) (A B)(mk—n) & [Am), Y (B,2)] = Z <Tg) 2" "Y (A B, 2).
n>0 n=0

2. VERTEX POISSON ALGEBRA STRUCTURES AND (Der O, Aut O)-EQUIVARIANCE

2.1. Commutative vertex algebras. Let us first of all recall (see [Dul]) that a
vertex algebra V is called commutative if

[Y(A,2),Y(B,w)]=0forall A,BeV.

Ilya proved that V is commutative iff for every A € V, we have Y (4,z2) €
End(V)[[#]]. So, the non-commutativity of V is “controlled” by the coefficients of

Y_(4,z):= Z Azt

m=0

Let us also recall that there is an equivalence of categories of commutative vertex
algebras and commutative (associative, unital) algebras together with the deriva-
tion. This equivalence sends a commutative vertex algebra (V,]0),T,Y) to (V,0,T),
where the product o on the vector space V is defined as follows:

(4) Ao B := A(_l) - B.
1
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2.2. Vertex Poisson algebras: motivations and definitions. Recall that both
3(9), W(Eg) are commutative verter algebras and Calder proved that there is an
inclusion 3(g) — W (¥g). Our first goal is to introduce a notion of a vertez Poisson
algebra (this is some additional structure on a commutative vertex algebra), and
prove that both 3(g), W (Fg) are vertex Poisson algebras and that the inclusion
above is compatible with these structures. We relate the Der O-action to the Poisson
vertex algebra structure and use the fact that the isomorphism is Poisson to check
that the inclusion above is (Der O, Aut O)-equivariant.

2.2.1. Poisson algebras. We start with a motivation: let us recall the notion of
a Poisson algebra and how such an object appears naturally via deformations of
(commutative) algebras.

Let P be an associative algebra over C. Assume that we are given a deformation
of P over the ring C[e]/(€*) (k € Z>2). By this, we mean a pair (P, ) of a Cle]/(e")-
algebra P¢ which is free as Cle]/(¢*)-module together with the isomorphism of
algebras t: P¢/(e) =» P.

Assume now that P is commutative and k > 3. Then, we can define an additional
structure on P called the Poisson bracket. For a,b € P, we define the Poisson
bracket {a,b} € P as follows:

{a,b} = ab — ba
€
where a,b € P¢ are arbitrary lifts of a, b (clearly, the definition does not depend on

the choice of @, b).
The following three properties of {, } are clear from the definitions:
hd (1) {CL, b} = _{ba Cl},
i (ll) {CL, {b7 C}} + {Cv {av b}} + {ba {Ca a}} =0,
e (iii) {a,bc} = b{a,c} + c{a,b}.
Remark 2.1. Condition k > 3 is needed for the property (ii) to hold.

mod € € P,

So, {, } defines the Lie algebra structure on P and {a,—} is a derivation of P.
In other words, P is a Poisson algebra.

2.2.2. Vertex Poisson algebras. Let us now try to guess a candidate for a notion of
a “Poisson structure” on a (commutative) vertex algebra V.

Note that it makes sense to talk about a vertex algebra over Cle]/(¢*), the
definition is the same as over C, operaions T, Y (—, z) must be C[¢]/(e*)-linear. So
it makes sense to talk about a deformation (V¢,:) of V over Cle]/(e¥) (recall that
¢ is the identification of vertex algebras ¢: V¢/(e) => V).

We know that Y (—, z) is equal to zero modulo €, so for A € V' we can define:

Y<(A,z)

(5) Y_(4,z):= ;

mod e,

where A € V€ is a representative of A. Note that the definition does not depend
on the choice of A since Y¢(—, ) is C[e]/(e*)-linear.
So, we have equipped commutative vertex algebra V with an additional structure:
Y (=, 2): V= 2z "End(V)[[z 7], Y_(4,2) = Z Ayz~™ L
m=0

It follows from (1), (2), (3) above that for m > 0, and A, B € V we have
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e (I) (translation) Y_(TA, z) = 0,Y_(A4, z),
o (II) (skew-symmetry) Y_(4,2)B = (e*TY_(B,—2)A)_,
o (III) (commutator) [Aq, Y- (B, 2)] = 3,5, (™M (™ "Y_ (A B, 2))-,

(IT) and (III) are analogous to the properties (i) and (ii) in the definition of the
Poisson algebra (i.e., the analog of the fact that {, } defines a Lie algebra structure
on P).

The following exercise should be considered as a vertex algebra counterpart of
the property (iii). It claims that the coefficients of Y_ (A4, z) are derivations of the
commutative product o (given by the formula (4)).

Ezercise 2.2. For every m > 0 we have
° (IV) A(m)(B o C) = (A(m)B) oC+Bo (A(m)C).

Proof. Hint: use the definition of o (see (4)) to see that (IV) is equivalent to
[Am), B-v] = (Am) B) -1y, m > 0.
Rewrite this using some lifts A, B € V¢ of A, B and then use (3). O

Definition 2.3. A vertex Poisson algebra is (V,|0), T, Yy, Y_), where (V,|0),T,Y,)
is a commutative vertex algebra and

Y_:V = 2z P End(V)[[z7Y]]
satisfies the conditions (I)—(IV).

2.3. Vertex Poisson algebra structure on 3(g). We start with the following
example.

Ezample 2.4. If (V<,1) is a deformation of some vertex algebra V over Cle], then
the center Z(V') carries a natural Poisson vertex algebra structure. Namely, for
A € Z(V), the operator Y_(4,z) (given by the equation (5)) is still well-defined
and satisfies all the required properties making Z(V') a Poisson vertex algebra.

Now, let us equip 3(g) with a Poisson vertex algebra structure.
Fix a g-invariant scalar product k¢ on g and consider:

k(€) := €kg + Ke
Consider the family V), and recall that for every fixed € = ¢y we have V() =
U(8r(eo)) @uglhact C|0). We can consider € as a formal variable and define

Vit = U(Br(e) @u(anecidectdr Clell0),

where g,.() = 9((t)) ® Cle] ® Cle]1 is the Lie algebra over Cle] (with the commuta-
tor defined as before but with ¢ now considered as an indeterminante). The same
formulas as before define on V() the structure of a vertex algebra over Cle]. Re-
ducing modulo (€*) we equip V(o) with the vertex algebra structure over C[e]/(€?®).
This gives us the Poisson vertex algebra structure on the center 3(g) of V;;_(g) to be
denoted by 3(g)s, (note that this structure depends on k). Since kg is fixed once
and for all, we will sometimes omit it from the notation.

Note that Vi.(h) = 7§ (g) = 7§y is the Heisenberg vertex algebra so the example
above equips mp = 7;"°|e=0 With a vertex Poisson algebra structure. This vertex
Poisson algebra will be denoted by g x, or just by mp.

Let us describe this Poisson structure explicitly.
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Recall that 7" is a Fock module over the Heisenberg Lie algebra Ber, With
generators b; n, 4 € 1,...,¢, n € Z and 1 satisfying the relations:

[bi,na bj,m] = 671/*60(}7,1’, hj)fsn,—m]--

Recall also that mp ., can be identified with the space of monomials in b; ,
i=1,...,¢,n <0 (via the action on the vacuum |0)). It follows from the definitions
that for n <0 and i =1,...,¢ we have:

(©) V(b 1100, 2) = {bi(2), =} = S {bims—2 L,
n=0
where {, } is the Poisson bracket defined by
{bi,n» bj,m} = Nk (hza hj)an,7m~

In other words,
: )
Yo (bioal0),2) = > (Znno(hi,hj)w>z_"_l.
n>0 j=1 J=n

Remark 2.5. We see from (6) that the vertex Poisson algebra structure on mg
indeed depends on kg.

2.4. Embedding 3(g)., < 7o, is Poisson. Recall now that Zeyu constructed a
homomorphism of vertex algebras:

: Vi, (8) = Wo e, = Mg @ Vo(h) = My ® o

that can be deformed to a homomorphism of vertex algebras over Cle]:

Wk

c

€ERO

Wi(e): Vi) = Won(e) = Mg @ g

Recall also that the restriction of wy_ to 3(g) sends it into my (see [Kl, Lemma
1.2]).

Remark 2.6. Note that 7 is the center of Wy ., .

Lemma 2.7. The embedding 3(8)w, < To.x, (induced by w,,) is a homomorphism
of vertex Poisson algebras.

Proof. This is a corollary of the following general fact. Let (V£ ¢1), (Vs t2) be
deformations over C[e]/(€?) of vertex algebras V;, Vo and let Z(V;), Z(V2) be their
centers. If .: VI — Vi is a homomorphism of our vertex algebras over Cle]/(e®)
such that ¢g: V4 — Vs restricts to Z(V1) — Z(V2), then the latter is Poisson. Hint:
use the fact that the definition of Y_(A, z) does not depend on the choice of a lift
A. O

2.5. Vertex Poisson algebra structure on W (%g). Let us now consider the clas-
sical W-algebra W (Lg). Recall that W (Lg) is by the definition the (commutative)
vertex subalgebra of 7 = 7 (*g) defined as follows:

¢
W(tg) = (\ker Vi[1] C
i=1
where

Vill] = > VilmDy, . Dy b = aijdnm,

i,m—1 ?
m<0
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a;; is the Cartan matrix of g, and
b’
Z Vi[n]z™" = exp ( - Z %zm)
n<0 m>0

Let gy be the invariant product on h* corresponding to o (in other words, if we
consider rq as the identification ro: h == h*, then x§ : h* == b is nothing else but
kg '). We have 1y = kg in Calder’s notations.

Lemma 2.8. W (%g) is a vertex Poisson subalgebra Of’]T(\)/’Ng (to be denoted W ("g) .y ).

Proof. Recall that V;[1] is the limit as e — 0 of 1 - (WVE’Z} [1]), where VEZX [1]

is the residue of the vertex operator

exY i tn . . m »
VI G) = Toep (30 M e (3 H ).
0 0

n< n>

Recall also that by [MF, Section 8.1.2], ker Vf';g (z) is the vertex subalgebra of WS%.
Now, we claim that ker %Vm‘j[l} defines a flat deformation of ker V;[1]. Note

—a;
that it is enough to prove this claim for g = sly (use that operator V_E'Zj is equal
to identity on the component corresponding to a;- C b, in other words, if we
identify Vo (h) with Vo(a;") @ Vo(Spanc(a;)), then V20 [1] will become Id tensor the
corresponding operator for sl;). Note also that ker V0 [1] has (graded) dimension
at least grdim 7wy — grdim WZai. It is an exercise to see that the difference above
is equal to the graded dimension of 3(;[2). So, it remains to check that the graded
dimension of ker V;[1] is not greater than the one of j3(sly). This (and actually
the equality) will follow from the results of the second talk (namely, from the
identification of ker V;[1] with functions on Oppgy,(D)).

As soon as we know that the deformation ker V70 [1] is flat, it immediately
follows from the construction in Section 2.2.2 that ker V;[1] is Poisson.

Let us also explain in more detail why the kernel of V7’ (z) is a vertex subal-
gebra. Recall that in [Kl, Section 2.1], a notion of a module over a vertex algebra
was introduced. Recall also (see [MF, Section 8.1.2]) that

A\ Vv Vv
VI =Y oy ey (| — ), 2) € Hom(n™ 773 )[[*1]].
0o T_a;

It follows from [Fr, Equation (7.2-3)] that if M is a module over a vertex algebra
V, then for every A € V and B € M, we have (we use the same notaion for both
Y (A, z) and Yy (A, 2)):

(7) [/YV,M(B,z)dz,Y(A,w)} - YMM(/YV,M(B,z)dz.A,w).
Set S := [ Yy, m (B, z)dz. Equation above implies that for A € ker S, we have
S-Y(Aw)=Yy(4Aw)-S.
This means that for C' € ker S, we have
S(Y(A,w)C) = (Yy(A,w)-S)C =0
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so Y (A, w) preserves the kernel of S. This is the main property that one has to
check to show that something is a vertex subalgebra. It is an exercise to finish the
argument and check that ker S is indeed a vertex subalgebra of V.

O

2.6. The embedding 3(g)., — W(Lg)%v is Poisson. Let us now recall that by
[MF, Section 8.1.3] in Calder’s notes we have an isomorphism of commutative vertex
algebras

mo(g) =+ g (“9)
inducing the embedding 3(g) < W(Xg). All of the vertex algebras above are
equipped with vertex Poisson algebra structures (depending on a choice of ko)

and we already know that the embeddings 3(§)x, < 0,10+ W(Lg),ﬁg — W(\)/K(\)/ are

Poisson. So, to see that the embedding 3(g)., — W(Lg)%v is Poisson, it remains
to prove the following lemma.

Lemma 2.9. The isomorphism mg ., L>7T(YKV 18 Poisson.
Ko

Proof. This isomorphism is the specialization to € = 0 of the family of isomorphisms
of vertex algebras over C[e]:

4
ﬂgno o~ 7.(.30 /€
given by /
bi7n — _bi,n’
where b}, = embim- The claim now follows from the definitions. U

So, we finally obtain the following stronger version of the theorem proved by
Calder.

Theorem 2.10. There is a commutative diagram of vertex Poisson algebras:

= \
_—
71-07’@0 7TO,I{(\)/

R

A~

5(9)/-60 - W(Lg)ng

2.7. Equivariance w.r.t. (Der O, Aut O). Recall that 3(g) carries a natural action
of Der O (coming from the natural action on Vj;_(g)), the action of Aut O is obtained
by the exponentiation of the action of Derg O (recall that Derg O = C|[[t]]0:).

We claim that the action of Der O on 3(g) is controlled by the vertex Poisson
algebra structure on 3(g),,. Indeed, recall (see [Wa, Sections 5,6]) that the Der O-
action on the deformation V,(.(g) is generated by the Fourier coefficients L, n >
—1 of the vertex operator

Y(Sn(5)7 Z) = Z L;Z_n_za
neL
where Sy (¢ is the conformal vector:
Ko
Sn(e) = K)(G)

— Ke

Sl = 6_151

and )
S, = 3 Z JE 1y Ja=1)0),
a
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J? Jq € g is the dual basis w.r.t. kq.

The action of Der O on 3(g) can be obtained as a limit of the action above,
namely limits LY of the operators LS (n > —1) generate the action of Der O on
3(9) (c.f. [Wa, Section 6]). Note that these limits are indeed well-defined and equal
to the coefficients of the series

Y_(S1,2) = Z L,z "2
n>—1
Recall now that we have an embedding of Poisson algebras w, : 3(@)% —
W (*g),y. It follows that the Fourier coefficients of the vertex operator Y (wy, (51), 2)
equip W(Lg),{g with the action of Der(OQ). The embedding above is Der(O)-

equivariant by the definition.
Recall that we have an embedding of vertex Poisson algebras W (¥ 8)ry = Ty e

We then obtain the action of Der(O) on the whole 7 Y (via the Fourier coefficients
of the vertex operator Y_ corresponding to w,(S1) € 7 Kg). Let us describe this
action explicitly.

Lemma 2.11. The action of L, = —t""10; € DerO, n > —1 on ’/T[\)/Kg is given by
the derivations of the algebra structure which are uniquely determined by:

Ly -b,, =—-mb, ., n<—m,
L, - b;,—n =-n(n+1), n>0,

Ly-b;,, =0, n>—m.

Proof. The claim follows from [Wa, Section 7] (see also [Fr, Equation 6.2-13]) where
the action of L, on 7y is described together with the fact that the identification
mo —= my is Der O-equivariant and sends bin to —b;m. O

3. MIURA OPERS

The goal of this section is to construct an Aut O-equivariant isomorphism be-
tween W (Lg) and the algebra FunOp.(D) of functions on the space of LG-
opers on the disc. This will allow us to compute the character of W (lg) (us-
ing that we know the character of Fun OpLs (D)) and to conclude that the em-
bedding 3(g) — W(%g) is actually an isomorphism. Composing isomorphisms
3(9) == W(Lg) == Fun Op. (D) we will finally obtain the desired Aut O-equivariant
identification

() = Fun Opu. (D).

We start with constructing the isomorphism W(*g) ~ FunOp.s(D). Let us
explain how this will be done.

Recall that W (%g) is an Aut O-equivariant subspace of 7 equal to the intersec-
tion of kernels of certain operators V;[1]. We will identify 7y with the vector space
of functions on the space MOp. 5(D)gen 0f so-called generic Miura LG-opers on the
disc D. This will be done by identifying MOpz ¢ (D)gen with the space Conn(25)
of connections in the H-bundle Q% (introduced in [Wa, Section 7]).

There is a natural Aut O-equivariant (surjective) morphism from generic Miura
opers to opers that induces a morphism

p: Conn(Q2) < MOpLg(D)gen — Oprg(D)
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called the Miura transformation. We will show that the image of u* is precisely
the intersection of kernels of V;[1]’s. So, we will obtain the desired identification
W (Fg) ~ Fun OpLs(D).

3.1. Miura opers. Let X be a smooth curve or D or D*. Recall that on all
principal bundles that we consider group acts from the right. This is nothing but
our convention. Recall also that G is an adjoint simple group.

Definition 3.1. A Miura G-oper on X is a quadruple (F,V, Fg, Fg), where (F,V, Fg)
is a G-oper on X and FJ is a B-reduction in F which is preserved by V.

Note that a B-reduction Fg C F in a G-bundle F on a space X is the same as
a section of the map F/B — X.

We will say that two B-reductions Fp, F C F are in generic relative position
if the image of the section corresponding to FJ

s: X > F/B~Fx“G/B~FpxPG/B
lies in
Fp xB (BwyB) c Fg x® G/B,
where BwyB C G/ B is the open Bruhat cell (wy is the longest element in the Weyl
group of G).
A Miura G-oper on X is called generic if Fp, Fj are in generic relative position.
The space of generic Miura G-opers on X will be denoted by MOp¢ (X)gen.

FEzample 3.2. For example, for g = sl,,, Miura G-oper is given by the following
connection (in the trivial bundle):

* 0

1 = 0
Oy +

0 1 0

0O ... 1 =«

Let us now describe the space MOpg(X)gen-

Consider the line bundle Q% and let Q% C Q% be the complement to its zero
section; 2% a C*-bundle on X. Let p: C* — H be the cocharacter of H corre-
sponding to p := %Zl a) (p indeed determines the cocharacter of H since G is
adjoint). The cocharacter g defines the action of C* on H. Set

07 =% x© H.

Let Conn(Qi) be the space of connections on the 7-bundle Q’;(. The rest of this
section will be devoted to the proof of the following proposition.

Proposition 3.3. There exists a natural Aut X -equivariant isomorphism
MOpg(X)gen = Conn(Q%).

First of all, recall that for any B-bundle Pp, we can consider the corresponding
H-bundle Py := Pg/N, where N C B is the unipotent radical. We start with two
lemmas.

The following statement was discussed in [Wa, Section 7].

Lemma 3.4. Let (F,V,Fg) be a G-oper, then there exists a canonical isomorphism
of H-bundles: )
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Set B_ := wy 'Bwg. Note that BN B_ = H. For a B-bundle Fj, we will
denote by FJ; the B_-bundle Frwy C F (we apply wg € G to Fj using the right
action of G on F, the resulting space is a wngwo = B_-torsor). Similarly, for an
H-bundle F}, C F, we denote by Fjwq the corresponding wy ' Hwy = H-bundle.

Lemma 3.5. If Fp, F C F arein generic relative position, then FgNFp  defines
H -reductions in both Fp and Fj; . We then obtain the identifications

FeNFp =5 Fu, FpNFp — Fywo,

where Fy := Fp/N, Fi; .= Fg/N.
So, in particular, Fg ~ Fwe as H-bundles.

Proof. We just need to check that for every z € X, (Fgls) N (Fp_|z) C FBls is
a principal homogeneous H-space. We fix a trivialization Fg|, ~ B, it induces
the identification F|, = Fp|, x® G ~ G. So, we have identified Fp|, C F|, with
B C G. Then Fj; |, C G identifies with bwoB-wo = bB_ for some b € B (since Fp
and F; are in generic realive position). So, the intersection (Fg|,;) N (Fp_|s) gets
identified with BNbB_ = b(B N B_) = bH which is clearly a (right) H-torsor. O

We are now ready to prove Proposition 3.3.

Proof. Note that Lemmas 3.4, 3.5 imply that if (F,V,Fg, Fp) is a generic Miura
oper, then we have canonical identifications

Fo e xa, Fpe Q5 x" B, Fiy~ (9% x" B_)w,

So, to obtain the identification from Proposition 3.3 we just need to construct a
connection V in F starting with a connection Vv in Q;; and vice versa.

Let us construct a map from the LHS to the RHS. The connection V preserves
the B-bundle FJ so induces a connection V on the H-bundle F}; and so on f ~
Fu ~ Fpwo (see Lemma 3.5). This is the connection on Q7 that we need. This
gives rise to a map f: MOpg(D)gen — Conn(Q5), V V.

Let us construct a map in the opp031te direction (it was sketched in [Wa, Section
7]). We start with a connection ¥ on Q%. The connection V¥ induces a connection

on F = Q”X xH G to be denoted by the same symbol.
Observe now that the space Conn(F) of connections on F is the affince space
over the vector space I'(X, gr ®o, 2%), where

g]_—:}"xcngg}ngng; h@@ga pr [)EB@Ql Bp.),
aEA aEA
So, we can identify Conn(F) with the space
Conn(Q%) x T'(X, @ (@h)&Perth))

aEA
For every negative simple root —a;, we see that the term (Ql)‘g’( p—ai) 1) g just
the structure sheaf Ox, so the choice of a generator f; € . defines the element
=3 fi e T(X, P, a2 ”’O‘H‘l)). Now V := V 4 p_;. It follows from
the deﬁmtlons that the maps V — V and V — V are inverse to each other. (]
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