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From now on, we assume that X = D. Let me recall that last time we proved
the following proposition.

Proposition 0.1. There exists a natural DerO-equivariant isomorphism

(1) MOpG(D)gen ≃ Conn(Ωρ̌
D).

Composing the identification (1) with the natural map

MOpG(D) → OpG(D), (F ,∇,FB ,F ′
B) 7→ (F ,∇,FB)

we obtain the morphism

µ : Conn(Ωρ̌
X) → OpG(X)

called the Miura transformation. We will see that µ is dominant so induces the
embedding

µ∗ : FunOpG(X) ↪→ FunConn(Ωρ̌
X).

We will also recall the identification FunConn(Ωρ̌
X) ≃ π0 constructed by Zeyu in

[Wa, Section 7] and show that the image of µ∗ coincides with the intersection of
kernels of the operators Vi[1], i = 1, . . . , ℓ. This will imply the desired DerO-
equivariant identification

W (g) ≃ FunOpG(D).

We will then compute the character ofW (g) (by computing the one for FunOpG(D))
and conclude that the embedding

z(ĝ) ↪→W (Lg)

is actually an isomorphism. In other words, we finish the proof of the main theorem.

Theorem 0.2. There exists an AutO-equivariant isomorphism:

z(ĝ) ∼−→W (Lg).

0.1. Miura transformation: explicit realization for X = D. We fix a coor-
dinate t on the disc, then it follows from [Bo1, Corollary 3.18] that we have an
identification:

OpG(D) ≃ {∂t + S[[t]]},
where S = p−1 + zg(p1) ⊂ g is the Konstant slice. In other words, every element of
OpG(D) has a canonical representative

∂t + p−1 +

ℓ∑
i=1

vi(t)ci,

where {ci} is some fixed basis in V = zg(p1), consisiting of eigenvectors of 2ρ̌ =
[p1, p−1] and

vi(t) =
∑
n<0

vi,nt
−n−1.

1



2 VASILY KRYLOV

Thus,

FunOpG(D) = C[vi,n]i=1,...,ℓ;n<0.

Now, by the proof of Proposition 0.1, each generic Miura oper can be represented
by a connection operator

∂t + p−1 + u(t), u(t) ∈ h[[t]].

Set ui(t) := αi(u(t)) and write

ui(t) =
∑
n<0

ui,nt
−n−1.

We see that

FunMOpG(D)gen = FunConn(Ωρ̌
D) = C[ui,n]i=1,...,ℓ;n<0.

In these terms, the identification MOpG(D)gen ≃ Conn(Ωρ̌
D) is given by ∂t +

p−1+u(t) 7→ ∂t+u(t) and the morphism µ : Conn(Ωρ̌
D) → OpG(D) sends ∂t+u(t)

to the class of ∂t + p−1 + u(t) in

OpG(D) = {∂t + p−1 + b[[t]]}/N [[t]].

Example 0.3. Let us compute the Miura transformation µ for g = sl2. We start
with a generic Miura oper

(2) ∂t +

(
1
2u(t) 0
1 − 1

2u(t)

)
and now consider it as an element of the quotient {∂t + p−1 + b[[t]]}/N [[t]].

To compute µ, we need to find an element g(t) ∈ N [[t]] such that under the

gauge action of g(t), (2) goes to an element of the form ∂t +

(
0 v(t)
1 0

)
.

It is an exercise to check that(
1 − 1

2u(t)
0 1

)
·
(
∂t +

(
1
2u(t) 0
1 − 1

2u(t)

))
= ∂t +

(
0 1

4u(t)
2 + 1

2∂tu(t)
1 0

)
so we conclude that

µ(u(t)) =
1

4
u(t)2 +

1

2
∂tu(t).

Let us finish this section by recalling how Der(O) acts on FunConn(Ωρ̌
D) (see

[Wa, Section 7]).

Lemma 0.4. The action of Der(O) on FunConn(Ωρ̌
D) is given by:

Ln · ui,m = −mui,n+m, n < −m,

Ln · ui,−n = −n(n+ 1), n > 0,

Ln · ui,m = 0, n > −m.

Comparing this lemma with [Kr, Lemma 2.11] we see that we have a DerO-
equivariant isomorphisms

FunMOpG(D)gen ≃ FunConn(Ωρ̌
D) ≃ π0(g).

In particular, the action of L0 induces the grading on both of our algebras and
the isomorphism is compatible with this action. Note that

deg ui,m = −m.
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0.2. The image of the pullback under Miura map vs screening operators.
Our goal in this section will be to prove that the Miura transformation µ is surjective
and identifies the image of µ∗ : FunOpG(D) ↪→ FunConn(Ωρ̌

D) with W (g) ⊂ π0(g).
We start with the following lemma that we will later use to give another descrip-

tion of MOpG(D)gen.

Lemma 0.5. Let ∇ be a connection in a G-bundle F on a disc D. For every right
B-torsor F ′

B,0 ⊂ F|0 there exist the unique B-reduction F ′
B ⊂ F preserved by ∇

and equal to F ′
B,0 at 0.

Proof. Standard. If we use a small disc instead of a formal one, we parallel-transport
F ′

B,0 to the other points. By parallel-transport we mean the following.

Recall (see [Bo1]) that a connection on F is a G-equivariant section

ω : OF ⊗C g∗ → Ω1
F

of the natural (surjective) map Ω1
F ↠ OF ⊗C g∗. We can compose ω with the

natural embedding OF ⊗C (g/b)∗ ↪→ OF ⊗C g∗ and obtain a B-equivariant map:

OF ⊗C (g/b)∗ → Ω1
F

which (from B-invariance) descends to F/B with the image lying in Ω1
F/B :

ω/B : F ×B (g/b)∗ → Ω1
F/B .

Map ω/B is a section of the (surjective) map φ : Ω1
F/B ↠ F ×B (g/b)∗ appearing

in the exact sequence:

0 → f∗BΩ
1
D → Ω1

F/B ↠ F ×B (g/b)∗ → 0,

where fB : F/B ↠ D is the natural map. Passing to the dual sequence

(3) 0 → F ×B (g/b) → TF/B → f∗BTD → 0

we see that ω∗
/B defines the splitting of every fiber of TF/B into the direct sum of

“horizontal” and “vertical” directions.
A section s : D ↪→ F/B is preserved by the connection ∇ iff

(4) s∗ω/B ◦ (ds)∗ = 0.

Here, we consider the exact sequence

(5) 0 → s∗(F ×B (g/b)) → s∗TF/B → TD → 0

on D (obtained as a pull back of (3) via s∗) and denote by (ds)∗ : TD → s∗TF/B

the morphism dual to ds : s∗Ω1
F/B → Ω1

D.

Now, using ω∗
/B , we can parallel-transport F ′

B,0 ∈ (F/B)|0.
□

Let Funiv → OpG(D) be the universal G-bundle on OpG(D) whose fiber at
(F ,∇,FB) is F0. Let FB,univ be the universal B bundle whose fiber at (F ,∇,FB)
is FB,0 (note that FB,univ is a B-reduction of Funiv).

Corollary 0.6. We have natural isomorphisms

Funiv ×G (G/B) ∼−→ MOpG(D), FB,univ ×B (Bw0B)/B ∼−→ MOpG(D)gen.

In particular, the Miura morphism µ is the trivial principal N -bundle (we choose

the trivialization of Ωρ̌
D that induces the trivialization of FB = Ωρ̌

D ×H B, which, in
turn, induces the trivialization of FB,univ).
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Proof. The first identification directly follows from Lemma 0.5: note that a point of
Funiv ×G (G/B) is nothing else but an oper (F ,∇,FB) together with a choice of a
B-torsor F ′

B,0 ⊂ F|0. The second identification follows from the first identification.
□

Warning 0.7. Note that there is no similar description of MOpG(X) for an ar-
bitrary curve X. For example, morphism MOpG(X) → OpG(X) may fail to be
surjective.

So, we conclude that:

FunOpG(D) = (FunMOpG(D)gen)
N = (FunMOpG(D)gen)

n.

Recall now that FunMOpG(D)gen ≃ FunConn(Ωρ̌
D) so by transport de structure

we obtain an action of N and n on FunConn(Ωρ̌
D) = C[ui,n]. Our next goal will be

to understand this action.
Choose ej ∈ n, j = 1, . . . , ℓ such that (ej , [ej , fj ], fj) is an sl2-triple. Note that

n is generated by the elements ej (as a Lie algebra), so

FunOpG(D) =

ℓ⋂
i=1

C[ui,n]ej .

In the remaining part of this section, we will explicitly compute the action of ej
and will see that it acts via the operator Vj [1]. As a corollary, we will obtain the
desired identification FunOpG(D) ≃W (g).

Let us now describe the action of N ↷ ConnΩρ̌
D. We fix a trivialization φ of

Ωρ̌
D. Recall the space ÕpG(D) = {∂t + p−1 + b[[t]]} introduced in [Bo1, Definition

3.9]. This space is a moduli space of (F ,∇,FB , ψ), where (F ,∇,FB) ∈ OpG(D)

and ψ is a trivialization of FB that becomes equal to φ on Ωρ̌
D = FB/N .

Now, we have an embedding

MOpG(D) ↪→ ÕpG(D)

sending (F ,∇,FB ,F ′
B) to (F ,∇,FB , ψ), where ψ is induced by the identifica-

tion FB ≃ Ωρ̌
D ×H B (comming from the H-reduction in FB induced by F ′

B , see

[Kr, Lemma 3.4]) and the trivialization φ. After the identification ConnΩρ̌
D ≃

MOpG(D), the embedding above is given by

∂t + u(t) 7→ ∂t + p−1 + u(t).

Now, the action of N on MOpG(D)gen sends (F ,∇,FB ,F ′
B) to (F ,∇,FB ,

nF ′
B),

so their images in ÕpG(D) are (F ,∇,FB , ψ), (F ,∇,FB ,
nψ), where nψ is some

trivialization of FB depending on n. Recall now that N [[t]] acts on ÕpG(D) by

changing the trivialization ψ (after the identification ÕpG(D) = {∂t+ p−1+ b[[t]]},
this action becomes the action via gauge transformations). It follows from the

definitions that the points (F ,∇,FB , ψ), (F ,∇,FB ,
nψ) in ÕpG(D) differ by the

action of g(t) ∈ N [[t]] such that g(0) = n.

Now, (F ,∇,FB ,F ′
B) corresponds to some ∂t+u(t) ∈ Conn(Ωρ̌

D). Reformulating,
we have a map

au(t) = a : N → N [[t]], n 7→ g(t)

and the action of n on ∂t+u(t) is equal to ∂t+ ũ(t), where ũ(t) ∈ h[[t]] is such that

∂t + g(p−1 + u(t))g−1 − g−1(∂tg) = ∂t + p−1 + ũ(t) ∈ ∂t + p−1 + h[[t]].
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Remark 0.8. Note that g(t) is determined uniquely by the containment

∂t + g(p−1 + u(t))g−1 − g−1(∂tg) ∈ ∂t + p−1 + h[[t]]

together with the condition g(0) = n. This is an exercise: use that the action of
N [[t]] on ∂t + p−1 + b[[t]] is free together with the fact that

N\ConnΩρ̌ = OpG(D) = N [[t]]\(∂t + p−1 + b[[t]]).

Let us also emphasize that the map a depends on the point u(t) and is not a
homomorphism in general.

We want to compute the infinitesimal action of ei ∈ gαi
⊂ n. Recall that gαi

integrates to the subgroup Ni ⊂ N (isomorphic to Ga). We claim that the map
a restricts to the map Ni → Ni[[t]]. To see that, it is enough (by Remark 0.8) to
prove the existence of the map ai : Ni → Ni[[t]] such that for n ∈ Ni and g := ai(n),
we have

(6) ∂t + g(p−1 + u(t))g−1 − g−1(∂tg) ∈ ∂t + p−1 + h[[t]] and g(0) = n.

Recall that we have the decomposition h[[t]] = hi[[t]] ⊕ h⊥i [[t]], where hi ⊂ h is
the Cartan subalgebra for sl2 = ⟨ei, [ei, fi], fi⟩. Decompose u(t) = iu(t) + iu⊥(t).
We can also write p−1 = fi + p′, where p′ :=

∑
j ̸=i fj . We see that for g ∈ Ni[[t]]

∂t + g(p−1 + u(t))g−1 − g−1(∂tg) = ∂t + g(fi +
iu(t))g−1 − g−1(∂tg) + p′ + iu⊥(t).

In other words, g ∈ Ni[[t]] satisfies the conditions (6) iff

(7) g(fi +
iu)g−1 − g−1(∂tg) ∈ fi + hi[[t]], g(0) = n.

This proves the existence of ai as above (since we already know that it exists for
sl2) and moreover reduces the computation of ai to the case of g = sl2.

Now, we fix a point

(
1
2u(t) 0
0 − 1

2u(t)

)
∈ h[[t]] and we want to find ψi in the

following form:

ai :

(
1 z
0 1

)
7→

(
1 zxz(t)
0 1

)
, xz(0) = 1, z ∈ C.

The condition (7) is equivalent to

(8) x′z(t) = −u(t)xz(t)− zxz(t)
2, xz(0) = 1.

Clearly, this equation has a unique solution (note also that this solution clearly
depends on u(t)).

Recall now that our goal was to compute the infinitesimal action of ei. In other
words, we need to compute x(t) := x0(t) in (8). By (8), x(t) is the solution of the
equation

(9) x′(t) = −u(t)x(t), x(0) = 1.

It is an exercise to check that the unique solution is

(10) x(t) =
∑
n⩽0

xnt
−n = exp

(
−

∑
m>0

u−m

m
tm

)
.

So, we have computed x(t) and conclude that e acts on FunConnΩρ̌
D = C[un]

as follows: function (
1
2u(t) 0
0 − 1

2u(t)

)
7→ u(t)
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maps to the difference of diagonal entries of[(0 x(t)
0 0

)(
1
2u(t) 0
1 − 1

2u(t)

)]
−
(
0 x′(t)
0 0

)
=

(
x(t) 0
0 −x(t)

)
.

So,

(11) e · u(t) = 2x(t).

Remark 0.9. Recall that in the formula (11) we are dealing with g = sl2, from the
discussion above it follows that for arbitrary g the action of ei on uj(t) is given by
xi(t)⟨αj , α̌i⟩ = aijxi(t).

In other words, e acts by the derivation

2
∑
n⩽0

xn
∂

∂un−1
,

where xn are the coefficients of (10).

Remark 0.10. Again, for arbitrary g, we see that ei acts by the derivation

ℓ∑
j=1

aij
∑
n⩽0

xi,n
∂

∂uj,n−1
.

Recall now that W (sl2) ⊂ π0(sl2) is the kernel of the operator

V [1] =
∑
m⩽0

V [m]Dbm−1
,

where

Dbmbn = 2δn,m

and ∑
n⩽0

V [n]z−n = exp
(
−

∑
m>0

b−m

m
zm

)
.

We see that after the identifications u−m 7→ b−m, operators e · −, V [1] become
the same. It follows that for arbitrary simple g and adjoint G we have

FunOpG(D) ≃W (g).

0.3. Character of W (g) ≃ FunOpG(D) and the main theorem. We are now
ready to compute the character of W (g) and then finish the proof of Theorem 0.2.

Recall that the algebra FunOpG(D) is graded via L0 = −t∂t. Derivation −t∂t is
the Lie derivative at ϵ = 1 of the family of automorphisms of O given by t 7→ ϵ−1t.
Recall now that

OpG(D) ≃ {∂t + S[[t]]}
and it follows from [Bo2, Section 1] that the action of the automorphism t 7→ ϵ−1t
is given by:

∂t + p−1 + v(t) 7→ ∂t + p−1 + ṽϵ(t),

where

ṽϵ(t) = ϵρ̌(ϵ)v(ϵt)ρ̌(ϵ)−1.

We see that the infinitesimal action is given by

(12) L0 · v(t) = v(t) + [ρ̌, v(t)] + (t∂t)v(t).
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Recall now that

V = zg(p1) =

ℓ⊕
i=1

Vdi
,

where di are exponents (degrees of the free generators of C[g]g minus one). The
action of ρ̌ on Vdi is via the multiplication by di. We conclude that the character
of FunOpG(D) (w.r.t. L0) is equal to

chL0 FunOpG(D) =

ℓ∏
i=1

∏
ni⩾di+1

1

1− qni
.

This is nothing else but the character of z(ĝ) (see [MF, Section 8.1.2]). We obtain
the following corollary.

Corollary 0.11. We have

chL0 W (g) = chL0 FunOpG(D) = chL0 z(ĝ)

so the embedding z(ĝ) ↪→W (Lg) is an isomorphism.

We have finally proved the main theorem.

Theorem 0.12. There is a commutative diagram (of vertex Poisson algebras) pre-
serving the (DerO,AutO)-actions:

π0(g)
≃ // π∨

0 (
Lg)

≃ // FunConn(Ωρ̌
D)

z(ĝ)

OO

≃ // W (Lg)

OO

≃ // FunOpLG(D)

OO

vertical arrows are embeddings, and the upper arrows are given by bi,n 7→ −b′
i,n 7→

−ui,n.

Remark 0.13. Feigin and Frenkel proved that for generic values of κ0, there exists an
isomorphism Wκ0

(g) ≃Wκ∨
0
(Lg) between the corresponding W -algebras. Theorem

0.12 should be considered as a limit at the critical level of this identification.
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