VERTEX POISSON ALGEBRAS AND MIURA OPERS II

VASILY KRYLOV

From now on, we assume that X = D. Let me recall that last time we proved the following proposition.

Proposition 0.1. There exists a natural Der O-equivariant isomorphism

(1)
$$\operatorname{MOp}_{G}(D)_{\operatorname{gen}} \simeq \operatorname{Conn}(\Omega_{D}^{\rho}).$$

Composing the identification (1) with the natural map

$$\operatorname{MOp}_G(D) \to \operatorname{Op}_G(D), \ (\mathcal{F}, \nabla, \mathcal{F}_B, \mathcal{F}'_B) \mapsto (\mathcal{F}, \nabla, \mathcal{F}_B)$$

we obtain the morphism

$$\mu \colon \operatorname{Conn}(\Omega_X^{\rho}) \to \operatorname{Op}_G(X)$$

called the *Miura transformation*. We will see that μ is dominant so induces the embedding

 μ^* : Fun $\operatorname{Op}_G(X) \hookrightarrow \operatorname{Fun} \operatorname{Conn}(\Omega_X^{\check{\rho}}).$

We will also recall the identification Fun $\operatorname{Conn}(\Omega_X^{\check{\rho}}) \simeq \pi_0$ constructed by Zeyu in [Wa, Section 7] and show that the image of μ^* coincides with the intersection of kernels of the operators $V_i[1]$, $i = 1, \ldots, \ell$. This will imply the desired Der \mathcal{O} -equivariant identification

$$W(\mathfrak{g}) \simeq \operatorname{Fun} \operatorname{Op}_G(D).$$

We will then compute the character of $W(\mathfrak{g})$ (by computing the one for Fun $\operatorname{Op}_G(D)$) and conclude that the embedding

$$\mathfrak{z}(\widehat{\mathfrak{g}}) \hookrightarrow W({}^L\mathfrak{g})$$

is actually an isomorphism. In other words, we finish the proof of the main theorem.

Theorem 0.2. There exists an Aut \mathcal{O} -equivariant isomorphism:

$$\mathfrak{z}(\widehat{\mathfrak{g}}) \xrightarrow{\sim} W({}^{L}\mathfrak{g}).$$

0.1. Miura transformation: explicit realization for X = D. We fix a coordinate t on the disc, then it follows from [Bo1, Corollary 3.18] that we have an identification:

$$\operatorname{Op}_G(D) \simeq \{\partial_t + S[[t]]\},\$$

where $S = p_{-1} + \mathfrak{z}_{\mathfrak{g}}(p_1) \subset \mathfrak{g}$ is the Konstant slice. In other words, every element of $\operatorname{Op}_G(D)$ has a canonical representative

$$\partial_t + p_{-1} + \sum_{i=1}^{\ell} v_i(t)c_i,$$

where $\{c_i\}$ is some fixed basis in $V = \mathfrak{z}_\mathfrak{g}(p_1)$, consisting of eigenvectors of $2\check{\rho} = [p_1, p_{-1}]$ and

$$v_i(t) = \sum_{\substack{n < 0 \\ 1}} v_{i,n} t^{-n-1}.$$

Thus,

Fun
$$\operatorname{Op}_G(D) = \mathbb{C}[v_{i,n}]_{i=1,\ldots,\ell; n<0}.$$

Now, by the proof of Proposition 0.1, each generic Miura oper can be represented by a connection operator

$$\partial_t + p_{-1} + u(t), \ u(t) \in \mathfrak{h}[[t]].$$

Set $u_i(t) := \alpha_i(u(t))$ and write

$$u_i(t) = \sum_{n < 0} u_{i,n} t^{-n-1}.$$

We see that

Fun
$$\operatorname{MOp}_G(D)_{\operatorname{gen}} = \operatorname{Fun} \operatorname{Conn}(\Omega_D^{\check{\rho}}) = \mathbb{C}[u_{i,n}]_{i=1,\ldots,\ell; n<0}.$$

In these terms, the identification $\operatorname{MOp}_G(D)_{\operatorname{gen}} \simeq \operatorname{Conn}(\Omega_D^{\check{\rho}})$ is given by $\partial_t + p_{-1} + u(t) \mapsto \partial_t + u(t)$ and the morphism $\mu \colon \operatorname{Conn}(\Omega_D^{\check{\rho}}) \to \operatorname{Op}_G(D)$ sends $\partial_t + u(t)$ to the class of $\partial_t + p_{-1} + u(t)$ in

$$\operatorname{Op}_{G}(D) = \{\partial_{t} + p_{-1} + \mathfrak{b}[[t]]\}/N[[t]].$$

Example 0.3. Let us compute the Miura transformation μ for $\mathfrak{g} = \mathfrak{sl}_2$. We start with a generic Miura oper

(2)
$$\partial_t + \begin{pmatrix} \frac{1}{2}u(t) & 0\\ 1 & -\frac{1}{2}u(t) \end{pmatrix}$$

and now consider it as an element of the quotient $\{\partial_t + p_{-1} + \mathfrak{b}[[t]]\}/N[[t]]$.

To compute μ , we need to find an element $g(t) \in N[[t]]$ such that under the gauge action of g(t), (2) goes to an element of the form $\partial_t + \begin{pmatrix} 0 & v(t) \\ 1 & 0 \end{pmatrix}$.

It is an exercise to check that

$$\begin{pmatrix} 1 & -\frac{1}{2}u(t) \\ 0 & 1 \end{pmatrix} \cdot \left(\partial_t + \begin{pmatrix} \frac{1}{2}u(t) & 0 \\ 1 & -\frac{1}{2}u(t) \end{pmatrix}\right) = \partial_t + \begin{pmatrix} 0 & \frac{1}{4}u(t)^2 + \frac{1}{2}\partial_t u(t) \\ 1 & 0 \end{pmatrix}$$

so we conclude that

$$\mu(u(t))=\frac{1}{4}u(t)^2+\frac{1}{2}\partial_t u(t)$$

Let us finish this section by recalling how $\text{Der}(\mathcal{O})$ acts on $\text{Fun}\operatorname{Conn}(\Omega_D^{\hat{\rho}})$ (see [Wa, Section 7]).

Lemma 0.4. The action of $Der(\mathcal{O})$ on $Fun Conn(\Omega_D^{\check{\rho}})$ is given by:

$$L_n \cdot u_{i,m} = -mu_{i,n+m}, \ n < -m_i,$$

$$L_n \cdot u_{i,-n} = -n(n+1), \ n > 0,$$

$$L_n \cdot u_{i,m} = 0, \ n > -m.$$

Comparing this lemma with [Kr, Lemma 2.11] we see that we have a $\operatorname{Der} \mathcal{O}\text{-}$ equivariant isomorphisms

Fun
$$\operatorname{MOp}_G(D)_{\operatorname{gen}} \simeq \operatorname{Fun} \operatorname{Conn}(\Omega_D^{\rho}) \simeq \pi_0(\mathfrak{g}).$$

In particular, the action of L_0 induces the grading on both of our algebras and the isomorphism is compatible with this action. Note that

$$\deg u_{i,m} = -m$$

 $\mathbf{2}$

0.2. The image of the pullback under Miura map vs screening operators. Our goal in this section will be to prove that the Miura transformation μ is *surjective* and identifies the image of μ^* : Fun $\operatorname{Op}_G(D) \hookrightarrow \operatorname{Fun} \operatorname{Conn}(\Omega_D^{\check{\rho}})$ with $W(\mathfrak{g}) \subset \pi_0(\mathfrak{g})$.

We start with the following lemma that we will later use to give another description of $\operatorname{MOp}_G(D)_{\operatorname{gen}}$.

Lemma 0.5. Let ∇ be a connection in a *G*-bundle \mathcal{F} on a disc *D*. For every right *B*-torsor $\mathcal{F}'_{B,0} \subset \mathcal{F}|_0$ there exist the unique *B*-reduction $\mathcal{F}'_B \subset \mathcal{F}$ preserved by ∇ and equal to $\mathcal{F}'_{B,0}$ at 0.

Proof. Standard. If we use a small disc instead of a formal one, we parallel-transport $\mathcal{F}'_{B,0}$ to the other points. By parallel-transport we mean the following.

Recall (see [Bo1]) that a connection on \mathcal{F} is a *G*-equivariant section

$$\omega\colon \mathcal{O}_{\mathcal{F}}\otimes_{\mathbb{C}}\mathfrak{g}^*\to \Omega^1_{\mathcal{F}}$$

of the natural (surjective) map $\Omega^1_{\mathcal{F}} \twoheadrightarrow \mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{C}} \mathfrak{g}^*$. We can compose ω with the natural embedding $\mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{C}} (\mathfrak{g}/\mathfrak{b})^* \hookrightarrow \mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{C}} \mathfrak{g}^*$ and obtain a *B*-equivariant map:

$$\mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{C}} (\mathfrak{g}/\mathfrak{b})^* \to \Omega^1_{\mathcal{F}}$$

which (from *B*-invariance) descends to \mathcal{F}/B with the image lying in $\Omega^1_{\mathcal{F}/B}$:

$$\omega_{/B} \colon \mathcal{F} \times^B (\mathfrak{g}/\mathfrak{b})^* \to \Omega^1_{\mathcal{F}/B}$$

Map $\omega_{/B}$ is a section of the (surjective) map $\varphi \colon \Omega^1_{\mathcal{F}/B} \twoheadrightarrow \mathcal{F} \times^B (\mathfrak{g}/\mathfrak{b})^*$ appearing in the exact sequence:

$$0 \to f_B^* \Omega_D^1 \to \Omega_{\mathcal{F}/B}^1 \twoheadrightarrow \mathcal{F} \times^B (\mathfrak{g}/\mathfrak{b})^* \to 0,$$

where $f_B: \mathcal{F}/B \twoheadrightarrow D$ is the natural map. Passing to the dual sequence

(3)
$$0 \to \mathcal{F} \times^B (\mathfrak{g}/\mathfrak{b}) \to \mathcal{T}_{\mathcal{F}/B} \to f_B^* \mathcal{T}_D \to 0$$

we see that $\omega_{/B}^*$ defines the splitting of every fiber of $\mathcal{T}_{\mathcal{F}/B}$ into the direct sum of "horizontal" and "vertical" directions.

A section $s: D \hookrightarrow \mathcal{F}/B$ is preserved by the connection ∇ iff

(4)
$$s^*\omega_{/B} \circ (ds)^* = 0.$$

Here, we consider the exact sequence

(5)
$$0 \to s^*(\mathcal{F} \times^B (\mathfrak{g}/\mathfrak{b})) \to s^*\mathcal{T}_{\mathcal{F}/B} \to \mathcal{T}_D \to 0$$

on D (obtained as a pull back of (3) via s^*) and denote by $(ds)^* \colon \mathcal{T}_D \to s^* \mathcal{T}_{\mathcal{F}/B}$ the morphism dual to $ds \colon s^* \Omega^1_{\mathcal{F}/B} \to \Omega^1_D$.

Now, using $\omega_{/B}^*$, we can parallel-transport $\mathcal{F}'_{B,0} \in (\mathcal{F}/B)|_0$.

Let $\mathcal{F}_{univ} \to \operatorname{Op}_{G}(D)$ be the *universal G*-bundle on $\operatorname{Op}_{G}(D)$ whose fiber at $(\mathcal{F}, \nabla, \mathcal{F}_B)$ is \mathcal{F}_0 . Let $\mathcal{F}_{B,univ}$ be the universal *B* bundle whose fiber at $(\mathcal{F}, \nabla, \mathcal{F}_B)$ is $\mathcal{F}_{B,0}$ (note that $\mathcal{F}_{B,univ}$ is a *B*-reduction of \mathcal{F}_{univ}).

Corollary 0.6. We have natural isomorphisms

$$\mathcal{F}_{\text{univ}} \times^G (G/B) \xrightarrow{\sim} \mathrm{MOp}_G(D), \ \mathcal{F}_{B,\text{univ}} \times^B (Bw_0B)/B \xrightarrow{\sim} \mathrm{MOp}_G(D)_{\text{gen}}.$$

In particular, the Miura morphism μ is the trivial principal N-bundle (we choose the trivialization of $\Omega_D^{\check{\rho}}$ that induces the trivialization of $\mathcal{F}_B = \Omega_D^{\check{\rho}} \times^H B$, which, in turn, induces the trivialization of $\mathcal{F}_{B,\text{univ}}$).

VASILY KRYLOV

Proof. The first identification directly follows from Lemma 0.5: note that a point of $\mathcal{F}_{\text{univ}} \times^G (G/B)$ is nothing else but an oper $(\mathcal{F}, \nabla, \mathcal{F}_B)$ together with a choice of a *B*-torsor $\mathcal{F}'_{B,0} \subset \mathcal{F}|_0$. The second identification follows from the first identification.

Warning 0.7. Note that there is no similar description of $MOp_G(X)$ for an arbitrary curve X. For example, morphism $MOp_G(X) \to Op_G(X)$ may fail to be surjective.

So, we conclude that:

$$\operatorname{Fun}\operatorname{Op}_G(D) = (\operatorname{Fun}\operatorname{MOp}_G(D)_{\operatorname{gen}})^N = (\operatorname{Fun}\operatorname{MOp}_G(D)_{\operatorname{gen}})^{\mathfrak{n}}.$$

Recall now that Fun $\operatorname{MOp}_G(D)_{\operatorname{gen}} \simeq \operatorname{Fun} \operatorname{Conn}(\Omega_D^{\check{\rho}})$ so by transport de structure we obtain an action of N and n on Fun $\operatorname{Conn}(\Omega_D^{\check{\rho}}) = \mathbb{C}[u_{i,n}]$. Our next goal will be to understand this action.

Choose $e_j \in \mathfrak{n}$, $j = 1, \ldots, \ell$ such that $(e_j, [e_j, f_j], f_j)$ is an \mathfrak{sl}_2 -triple. Note that \mathfrak{n} is generated by the elements e_j (as a Lie algebra), so

Fun Op_G(D) =
$$\bigcap_{i=1}^{\ell} \mathbb{C}[u_{i,n}]^{e_j}$$
.

In the remaining part of this section, we will explicitly compute the action of e_j and will see that it acts via the operator $V_j[1]$. As a corollary, we will obtain the desired identification $\operatorname{Fun}\operatorname{Op}_G(D) \simeq W(\mathfrak{g})$.

Let us now describe the action of $N \curvearrowright \operatorname{Conn} \Omega_D^{\check{\rho}}$. We fix a trivialization φ of $\Omega_D^{\check{\rho}}$. Recall the space $\widetilde{\operatorname{Op}}_G(D) = \{\partial_t + p_{-1} + \mathfrak{b}[[t]]\}$ introduced in [Bo1, Definition 3.9]. This space is a moduli space of $(\mathcal{F}, \nabla, \mathcal{F}_B, \psi)$, where $(\mathcal{F}, \nabla, \mathcal{F}_B) \in \operatorname{Op}_G(D)$ and ψ is a trivialization of \mathcal{F}_B that becomes equal to φ on $\Omega_D^{\check{\rho}} = \mathcal{F}_B/N$.

Now, we have an embedding

$$\operatorname{MOp}_G(D) \hookrightarrow \operatorname{Op}_G(D)$$

sending $(\mathcal{F}, \nabla, \mathcal{F}_B, \mathcal{F}'_B)$ to $(\mathcal{F}, \nabla, \mathcal{F}_B, \psi)$, where ψ is induced by the identification $\mathcal{F}_B \simeq \Omega_D^{\check{\rho}} \times^H B$ (comming from the *H*-reduction in \mathcal{F}_B induced by \mathcal{F}'_B , see [Kr, Lemma 3.4]) and the trivialization φ . After the identification $\operatorname{Conn} \Omega_D^{\check{\rho}} \simeq$ $\operatorname{MOp}_G(D)$, the embedding above is given by

$$\partial_t + u(t) \mapsto \partial_t + p_{-1} + u(t).$$

Now, the action of N on $\operatorname{MOp}_G(D)_{\operatorname{gen}}$ sends $(\mathcal{F}, \nabla, \mathcal{F}_B, \mathcal{F}'_B)$ to $(\mathcal{F}, \nabla, \mathcal{F}_B, {}^n\mathcal{F}'_B)$, so their images in $\widetilde{\operatorname{Op}}_G(D)$ are $(\mathcal{F}, \nabla, \mathcal{F}_B, \psi)$, $(\mathcal{F}, \nabla, \mathcal{F}_B, {}^n\psi)$, where ${}^n\psi$ is some trivialization of \mathcal{F}_B depending on n. Recall now that N[[t]] acts on $\widetilde{\operatorname{Op}}_G(D)$ by changing the trivialization ψ (after the identification $\widetilde{\operatorname{Op}}_G(D) = \{\partial_t + p_{-1} + \mathfrak{b}[[t]]\}$, this action becomes the action via gauge transformations). It follows from the definitions that the points $(\mathcal{F}, \nabla, \mathcal{F}_B, \psi)$, $(\mathcal{F}, \nabla, \mathcal{F}_B, {}^n\psi)$ in $\widetilde{\operatorname{Op}}_G(D)$ differ by the action of $g(t) \in N[[t]]$ such that g(0) = n.

Now, $(\mathcal{F}, \nabla, \mathcal{F}_B, \mathcal{F}'_B)$ corresponds to some $\partial_t + u(t) \in \operatorname{Conn}(\Omega_D^{\check{\rho}})$. Reformulating, we have a map

$$a_{u(t)} = a \colon N \to N[[t]], \ n \mapsto g(t)$$

and the action of n on $\partial_t + u(t)$ is equal to $\partial_t + \tilde{u}(t)$, where $\tilde{u}(t) \in \mathfrak{h}[[t]]$ is such that

$$\partial_t + g(p_{-1} + u(t))g^{-1} - g^{-1}(\partial_t g) = \partial_t + p_{-1} + \tilde{u}(t) \in \partial_t + p_{-1} + \mathfrak{h}[[t]]$$

4

Remark 0.8. Note that g(t) is determined uniquely by the containment

$$\partial_t + g(p_{-1} + u(t))g^{-1} - g^{-1}(\partial_t g) \in \partial_t + p_{-1} + \mathfrak{h}[[t]]$$

together with the condition g(0) = n. This is an exercise: use that the action of N[[t]] on $\partial_t + p_{-1} + \mathfrak{b}[[t]]$ is free together with the fact that

$$N \setminus \operatorname{Conn} \Omega^{\rho} = \operatorname{Op}_G(D) = N[[t]] \setminus (\partial_t + p_{-1} + \mathfrak{b}[[t]]).$$

Let us also emphasize that the map a depends on the point u(t) and is not a homomorphism in general.

We want to compute the infinitesimal action of $e_i \in \mathfrak{g}_{\alpha_i} \subset \mathfrak{n}$. Recall that \mathfrak{g}_{α_i} integrates to the subgroup $N_i \subset N$ (isomorphic to \mathbb{G}_a). We claim that the map a restricts to the map $N_i \to N_i[[t]]$. To see that, it is enough (by Remark 0.8) to prove the existence of the map $a_i \colon N_i \to N_i[[t]]$ such that for $n \in N_i$ and $g := a_i(n)$, we have

(6)
$$\partial_t + g(p_{-1} + u(t))g^{-1} - g^{-1}(\partial_t g) \in \partial_t + p_{-1} + \mathfrak{h}[[t]] \text{ and } g(0) = n.$$

Recall that we have the decomposition $\mathfrak{h}[[t]] = \mathfrak{h}_i[[t]] \oplus \mathfrak{h}_i^{\perp}[[t]]$, where $\mathfrak{h}_i \subset \mathfrak{h}$ is the Cartan subalgebra for $\mathfrak{sl}_2 = \langle e_i, [e_i, f_i], f_i \rangle$. Decompose $u(t) = {}^i u(t) + {}^i u^{\perp}(t)$. We can also write $p_{-1} = f_i + p'$, where $p' := \sum_{j \neq i} f_j$. We see that for $g \in N_i[[t]]$

$$\partial_t + g(p_{-1} + u(t))g^{-1} - g^{-1}(\partial_t g) = \partial_t + g(f_i + iu(t))g^{-1} - g^{-1}(\partial_t g) + p' + iu^{\perp}(t).$$

In other words, $g \in N_i[[t]]$ satisfies the conditions (6) iff

(7)
$$g(f_i + {}^i u)g^{-1} - g^{-1}(\partial_t g) \in f_i + \mathfrak{h}_i[[t]], \ g(0) = n$$

This proves the existence of a_i as above (since we already know that it exists for \mathfrak{sl}_2) and moreover reduces the computation of a_i to the case of $\mathfrak{g} = \mathfrak{sl}_2$.

Now, we fix a point $\begin{pmatrix} \frac{1}{2}u(t) & 0\\ 0 & -\frac{1}{2}u(t) \end{pmatrix} \in \mathfrak{h}[[t]]$ and we want to find ψ_i in the following form:

$$a_i \colon \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & zx_z(t) \\ 0 & 1 \end{pmatrix}, \ x_z(0) = 1, \ z \in \mathbb{C}.$$

The condition (7) is equivalent to

(8)
$$x'_{z}(t) = -u(t)x_{z}(t) - zx_{z}(t)^{2}, \ x_{z}(0) = 1.$$

Clearly, this equation has a unique solution (note also that this solution clearly depends on u(t)).

Recall now that our goal was to compute the infinitesimal action of e_i . In other words, we need to compute $x(t) := x_0(t)$ in (8). By (8), x(t) is the solution of the equation

(9)
$$x'(t) = -u(t)x(t), \ x(0) = 1.$$

It is an exercise to check that the unique solution is

(10)
$$x(t) = \sum_{n \leqslant 0} x_n t^{-n} = \exp\left(-\sum_{m>0} \frac{u_{-m}}{m} t^m\right).$$

So, we have computed x(t) and conclude that e acts on Fun Conn $\Omega_D^{\dot{\rho}} = \mathbb{C}[u_n]$ as follows: function

$$\begin{pmatrix} \frac{1}{2}u(t) & 0\\ 0 & -\frac{1}{2}u(t) \end{pmatrix} \mapsto u(t)$$

maps to the difference of diagonal entries of

$$\begin{bmatrix} \begin{pmatrix} 0 & x(t) \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \frac{1}{2}u(t) & 0 \\ 1 & -\frac{1}{2}u(t) \end{pmatrix} \end{bmatrix} - \begin{pmatrix} 0 & x'(t) \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} x(t) & 0 \\ 0 & -x(t) \end{pmatrix}.$$
So,
(11)
$$e \cdot u(t) = 2x(t).$$

Remark 0.9. Recall that in the formula (11) we are dealing with $\mathfrak{g} = \mathfrak{sl}_2$, from the discussion above it follows that for arbitrary \mathfrak{g} the action of e_i on $u_j(t)$ is given by $x_i(t)\langle \alpha_j, \check{\alpha}_i \rangle = a_{ij}x_i(t)$.

In other words, e acts by the derivation

$$2\sum_{n\leqslant 0}x_n\frac{\partial}{\partial u_{n-1}},$$

where x_n are the coefficients of (10).

Remark 0.10. Again, for arbitrary \mathfrak{g} , we see that e_i acts by the derivation

$$\sum_{j=1}^{\ell} a_{ij} \sum_{n \leqslant 0} x_{i,n} \frac{\partial}{\partial u_{j,n-1}}.$$

Recall now that $W(\mathfrak{sl}_2) \subset \pi_0(\mathfrak{sl}_2)$ is the kernel of the operator

$$V[1] = \sum_{m \leqslant 0} V[m] D_{b_{m-1}},$$

where

$$D_{b_m}b_n = 2\delta_{n,m}$$

and

$$\sum_{n \leqslant 0} V[n] z^{-n} = \exp\left(-\sum_{m>0} \frac{b_{-m}}{m} z^m\right).$$

We see that after the identifications $u_{-m} \mapsto b_{-m}$, operators $e \cdot -$, V[1] become the same. It follows that for arbitrary simple \mathfrak{g} and adjoint G we have

Fun
$$\operatorname{Op}_G(D) \simeq W(\mathfrak{g}).$$

0.3. Character of $W(\mathfrak{g}) \simeq \operatorname{Fun} \operatorname{Op}_G(D)$ and the main theorem. We are now ready to compute the character of $W(\mathfrak{g})$ and then finish the proof of Theorem 0.2.

Recall that the algebra Fun $\operatorname{Op}_G(D)$ is graded via $L_0 = -t\partial_t$. Derivation $-t\partial_t$ is the Lie derivative at $\epsilon = 1$ of the family of automorphisms of \mathcal{O} given by $t \mapsto \epsilon^{-1}t$. Recall now that

$$\operatorname{Op}_G(D) \simeq \{\partial_t + S[[t]]\}$$

and it follows from [Bo2, Section 1] that the action of the automorphism $t \mapsto \epsilon^{-1}t$ is given by:

$$\partial_t + p_{-1} + v(t) \mapsto \partial_t + p_{-1} + \tilde{v}_{\epsilon}(t),$$

where

$$\tilde{v}_{\epsilon}(t) = \epsilon \check{\rho}(\epsilon) v(\epsilon t) \check{\rho}(\epsilon)^{-1}.$$

We see that the infinitesimal action is given by

(12)
$$L_0 \cdot v(t) = v(t) + [\check{\rho}, v(t)] + (t\partial_t)v(t).$$

Recall now that

$$V = \mathfrak{z}_{\mathfrak{g}}(p_1) = \bigoplus_{i=1}^{\ell} V_{d_i},$$

where d_i are exponents (degrees of the free generators of $\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}}$ minus one). The action of $\check{\rho}$ on V_{d_i} is via the multiplication by d_i . We conclude that the character of Fun $\operatorname{Op}_G(D)$ (w.r.t. L_0) is equal to

$$\operatorname{ch}_{L_0}\operatorname{Fun}\operatorname{Op}_G(D) = \prod_{i=1}^{\ell} \prod_{n_i \ge d_i+1} \frac{1}{1-q^{n_i}}.$$

This is nothing else but the character of $\mathfrak{z}(\hat{\mathfrak{g}})$ (see [MF, Section 8.1.2]). We obtain the following corollary.

Corollary 0.11. We have

$$\operatorname{ch}_{L_0} W(\mathfrak{g}) = \operatorname{ch}_{L_0} \operatorname{Fun} \operatorname{Op}_G(D) = \operatorname{ch}_{L_0} \mathfrak{z}(\widehat{\mathfrak{g}})$$

so the embedding $\mathfrak{z}(\widehat{\mathfrak{g}}) \hookrightarrow W({}^{L}\mathfrak{g})$ is an isomorphism.

We have finally proved the main theorem.

Theorem 0.12. There is a commutative diagram (of vertex Poisson algebras) preserving the (Der \mathcal{O} , Aut \mathcal{O})-actions:

$$\pi_{0}(\mathfrak{g}) \xrightarrow{\simeq} \pi_{0}^{\vee}({}^{L}\mathfrak{g}) \xrightarrow{\simeq} \operatorname{Fun}\operatorname{Conn}(\Omega_{D}^{\delta})$$

$$\uparrow \qquad \uparrow \qquad \uparrow$$

$$\mathfrak{g}(\widehat{\mathfrak{g}}) \xrightarrow{\simeq} W({}^{L}\mathfrak{g}) \xrightarrow{\simeq} \operatorname{Fun}\operatorname{Op}_{{}^{L}G}(D)$$

vertical arrows are embeddings, and the upper arrows are given by $b_{i,n} \mapsto -\mathbf{b}'_{i,n} \mapsto -u_{i,n}$.

Remark 0.13. Feigin and Frenkel proved that for generic values of κ_0 , there exists an isomorphism $W_{\kappa_0}(\mathfrak{g}) \simeq W_{\kappa_0^{\vee}}({}^L\mathfrak{g})$ between the corresponding W-algebras. Theorem 0.12 should be considered as a limit at the critical level of this identification.

References

- [Bo1] E. Bogdanova, Seminar notes, Part I
- [Bo2] E. Bogdanova, Seminar notes, Part II
- [DuI] I. Dumanski, Seminar notes, part I, 2024.
- [DuII] I. Dumanski, Seminar notes, part II, 2024.
- [Fr] E. Frenkel, Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, vol. 103, Cambridge University Press, Cambridge, 2007. MR 2332156
- [Kl] D. Klyuev, Seminar notes, 2024.
- [Kr] V. Krylov, Seminar notes, part I, 2024.
- [MF] C. Morton-Ferguson, Seminar notes, 2024.
- [Wa] Zeyu Wang, Seminar notes, 2024.