VERTEX POISSON ALGEBRAS AND MIURA OPERS II

VASILY KRYLOV

From now on, we assume that $X=D$. Let me recall that last time we proved the following proposition.

Proposition 0.1. There exists a natural $\operatorname{Der} \mathcal{O}$-equivariant isomorphism

$$
\begin{equation*}
\operatorname{MOp}_{G}(D)_{\operatorname{gen}} \simeq \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right) \tag{1}
\end{equation*}
$$

Composing the identification (1) with the natural map

$$
\operatorname{MOp}_{G}(D) \rightarrow \operatorname{Op}_{G}(D),\left(\mathcal{F}, \nabla, \mathcal{F}_{B}, \mathcal{F}_{B}^{\prime}\right) \mapsto\left(\mathcal{F}, \nabla, \mathcal{F}_{B}\right)
$$

we obtain the morphism

$$
\mu: \operatorname{Conn}\left(\Omega_{X}^{\check{\rho}}\right) \rightarrow \operatorname{Op}_{G}(X)
$$

called the Miura transformation. We will see that μ is dominant so induces the embedding

$$
\mu^{*}: \operatorname{Fun} \mathrm{Op}_{G}(X) \hookrightarrow \operatorname{Fun} \operatorname{Conn}\left(\Omega_{X}^{\check{\rho}}\right)
$$

We will also recall the identification Fun $\operatorname{Conn}\left(\Omega_{X}^{\check{\rho}}\right) \simeq \pi_{0}$ constructed by Zeyu in [Wa, Section 7] and show that the image of μ^{*} coincides with the intersection of kernels of the operators $V_{i}[1], i=1, \ldots, \ell$. This will imply the desired Der \mathcal{O} equivariant identification

$$
W(\mathfrak{g}) \simeq \operatorname{Fun} \mathrm{Op}_{G}(D)
$$

We will then compute the character of $W(\mathfrak{g})$ (by computing the one for Fun $\mathrm{Op}_{G}(D)$) and conclude that the embedding

$$
\mathfrak{z}(\widehat{\mathfrak{g}}) \hookrightarrow W\left({ }^{L} \mathfrak{g}\right)
$$

is actually an isomorphism. In other words, we finish the proof of the main theorem.
Theorem 0.2. There exists an Aut \mathcal{O}-equivariant isomorphism:

$$
\mathfrak{z}(\widehat{\mathfrak{g}}) \xrightarrow{\sim} W\left({ }^{L} \mathfrak{g}\right) .
$$

0.1. Miura transformation: explicit realization for $X=D$. We fix a coordinate t on the disc, then it follows from [Bo1, Corollary 3.18] that we have an identification:

$$
\mathrm{Op}_{G}(D) \simeq\left\{\partial_{t}+S[[t]]\right\}
$$

where $S=p_{-1}+\mathfrak{z}_{\mathfrak{g}}\left(p_{1}\right) \subset \mathfrak{g}$ is the Konstant slice. In other words, every element of $\mathrm{Op}_{G}(D)$ has a canonical representative

$$
\partial_{t}+p_{-1}+\sum_{i=1}^{\ell} v_{i}(t) c_{i}
$$

where $\left\{c_{i}\right\}$ is some fixed basis in $V=\mathfrak{z}_{\mathfrak{g}}\left(p_{1}\right)$, consisiting of eigenvectors of $2 \check{\rho}=$ [p_{1}, p_{-1}] and

$$
v_{i}(t)=\sum_{n<0} v_{i, n} t^{-n-1}
$$

Thus,

$$
\text { Fun } \mathrm{Op}_{G}(D)=\mathbb{C}\left[v_{i, n}\right]_{i=1, \ldots, \ell ; n<0} .
$$

Now, by the proof of Proposition 0.1, each generic Miura oper can be represented by a connection operator

$$
\partial_{t}+p_{-1}+u(t), u(t) \in \mathfrak{h}[[t]] .
$$

Set $u_{i}(t):=\alpha_{i}(u(t))$ and write

$$
u_{i}(t)=\sum_{n<0} u_{i, n} t^{-n-1}
$$

We see that

$$
\text { Fun } \operatorname{MOp}_{G}(D)_{\text {gen }}=\operatorname{Fun} \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right)=\mathbb{C}\left[u_{i, n}\right]_{i=1, \ldots, \ell ; n<0}
$$

In these terms, the identification $\operatorname{MOp}_{G}(D)_{\text {gen }} \simeq \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right)$ is given by $\partial_{t}+$ $p_{-1}+u(t) \mapsto \partial_{t}+u(t)$ and the morphism $\mu: \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right) \rightarrow \mathrm{Op}_{G}(D)$ sends $\partial_{t}+u(t)$ to the class of $\partial_{t}+p_{-1}+u(t)$ in

$$
\mathrm{Op}_{G}(D)=\left\{\partial_{t}+p_{-1}+\mathfrak{b}[[t]]\right\} / N[[t]] .
$$

Example 0.3. Let us compute the Miura transformation μ for $\mathfrak{g}=\mathfrak{s l}_{2}$. We start with a generic Miura oper

$$
\partial_{t}+\left(\begin{array}{cc}
\frac{1}{2} u(t) & 0 \tag{2}\\
1 & -\frac{1}{2} u(t)
\end{array}\right)
$$

and now consider it as an element of the quotient $\left\{\partial_{t}+p_{-1}+\mathfrak{b}[[t]]\right\} / N[[t]]$.
To compute μ, we need to find an element $g(t) \in N[[t]]$ such that under the gauge action of $g(t),(2)$ goes to an element of the form $\partial_{t}+\left(\begin{array}{cc}0 & v(t) \\ 1 & 0\end{array}\right)$.

It is an exercise to check that

$$
\left(\begin{array}{cc}
1 & -\frac{1}{2} u(t) \\
0 & 1
\end{array}\right) \cdot\left(\partial_{t}+\left(\begin{array}{cc}
\frac{1}{2} u(t) & 0 \\
1 & -\frac{1}{2} u(t)
\end{array}\right)\right)=\partial_{t}+\left(\begin{array}{cc}
0 & \frac{1}{4} u(t)^{2}+\frac{1}{2} \partial_{t} u(t) \\
1 & 0
\end{array}\right)
$$

so we conclude that

$$
\mu(u(t))=\frac{1}{4} u(t)^{2}+\frac{1}{2} \partial_{t} u(t) .
$$

Let us finish this section by recalling how $\operatorname{Der}(\mathcal{O})$ acts on Fun $\operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right)$ (see [Wa, Section 7]).
Lemma 0.4. The action of $\operatorname{Der}(\mathcal{O})$ on $\operatorname{Fun} \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right)$ is given by:

$$
\begin{gathered}
L_{n} \cdot u_{i, m}=-m u_{i, n+m}, n<-m \\
L_{n} \cdot u_{i,-n}=-n(n+1), n>0 \\
L_{n} \cdot u_{i, m}=0, n>-m
\end{gathered}
$$

Comparing this lemma with [Kr, Lemma 2.11] we see that we have a Der \mathcal{O} equivariant isomorphisms

$$
\operatorname{Fun} \operatorname{MOp}_{G}(D)_{\text {gen }} \simeq \operatorname{Fun} \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right) \simeq \pi_{0}(\mathfrak{g})
$$

In particular, the action of L_{0} induces the grading on both of our algebras and the isomorphism is compatible with this action. Note that

$$
\operatorname{deg} u_{i, m}=-m
$$

0.2. The image of the pullback under Miura map vs screening operators. Our goal in this section will be to prove that the Miura transformation μ is surjective and identifies the image of $\mu^{*}: \operatorname{Fun} \mathrm{Op}_{G}(D) \hookrightarrow \operatorname{Fun} \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right)$ with $W(\mathfrak{g}) \subset \pi_{0}(\mathfrak{g})$.

We start with the following lemma that we will later use to give another description of $\mathrm{MOp}_{G}(D)_{\text {gen }}$.
Lemma 0.5. Let ∇ be a connection in a G-bundle \mathcal{F} on a disc D. For every right B-torsor $\left.\mathcal{F}_{B, 0}^{\prime} \subset \mathcal{F}\right|_{0}$ there exist the unique B-reduction $\mathcal{F}_{B}^{\prime} \subset \mathcal{F}$ preserved by ∇ and equal to $\mathcal{F}_{B, 0}^{\prime}$ at 0 .
Proof. Standard. If we use a small disc instead of a formal one, we parallel-transport $\mathcal{F}_{B, 0}^{\prime}$ to the other points. By parallel-transport we mean the following.

Recall (see [Bo1]) that a connection on \mathcal{F} is a G-equivariant section

$$
\omega: \mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{C}} \mathfrak{g}^{*} \rightarrow \Omega_{\mathcal{F}}^{1}
$$

of the natural (surjective) map $\Omega_{\mathcal{F}}^{1} \rightarrow \mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{C}} \mathfrak{g}^{*}$. We can compose ω with the natural embedding $\mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{C}}(\mathfrak{g} / \mathfrak{b})^{*} \hookrightarrow \mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{C}} \mathfrak{g}^{*}$ and obtain a B-equivariant map:

$$
\mathcal{O}_{\mathcal{F}} \otimes_{\mathbb{C}}(\mathfrak{g} / \mathfrak{b})^{*} \rightarrow \Omega_{\mathcal{F}}^{1}
$$

which (from B-invariance) descends to \mathcal{F} / B with the image lying in $\Omega_{\mathcal{F} / B}^{1}$:

$$
\omega_{/ B}: \mathcal{F} \times{ }^{B}(\mathfrak{g} / \mathfrak{b})^{*} \rightarrow \Omega_{\mathcal{F} / B}^{1} .
$$

Map $\omega_{/ B}$ is a section of the (surjective) map $\varphi: \Omega_{\mathcal{F} / B}^{1} \rightarrow \mathcal{F} \times{ }^{B}(\mathfrak{g} / \mathfrak{b})^{*}$ appearing in the exact sequence:

$$
0 \rightarrow f_{B}^{*} \Omega_{D}^{1} \rightarrow \Omega_{\mathcal{F} / B}^{1} \rightarrow \mathcal{F} \times{ }^{B}(\mathfrak{g} / \mathfrak{b})^{*} \rightarrow 0
$$

where $f_{B}: \mathcal{F} / B \rightarrow D$ is the natural map. Passing to the dual sequence

$$
\begin{equation*}
0 \rightarrow \mathcal{F} \times{ }^{B}(\mathfrak{g} / \mathfrak{b}) \rightarrow \mathcal{T}_{\mathcal{F} / B} \rightarrow f_{B}^{*} \mathcal{T}_{D} \rightarrow 0 \tag{3}
\end{equation*}
$$

we see that $\omega_{/ B}^{*}$ defines the splitting of every fiber of $\mathcal{T}_{\mathcal{F} / B}$ into the direct sum of "horizontal" and "vertical" directions.

A section $s: D \hookrightarrow \mathcal{F} / B$ is preserved by the connection ∇ iff

$$
\begin{equation*}
s^{*} \omega_{/ B} \circ(d s)^{*}=0 \tag{4}
\end{equation*}
$$

Here, we consider the exact sequence

$$
\begin{equation*}
0 \rightarrow s^{*}\left(\mathcal{F} \times{ }^{B}(\mathfrak{g} / \mathfrak{b})\right) \rightarrow s^{*} \mathcal{T}_{\mathcal{F} / B} \rightarrow \mathcal{T}_{D} \rightarrow 0 \tag{5}
\end{equation*}
$$

on D (obtained as a pull back of (3) via s^{*}) and denote by $(d s)^{*}: \mathcal{T}_{D} \rightarrow s^{*} \mathcal{T}_{\mathcal{F} / B}$ the morphism dual to $d s: s^{*} \Omega_{\mathcal{F} / B}^{1} \rightarrow \Omega_{D}^{1}$.

Now, using $\omega_{/ B}^{*}$, we can parallel-transport $\left.\mathcal{F}_{B, 0}^{\prime} \in(\mathcal{F} / B)\right|_{0}$.

Let $\mathcal{F}_{\text {univ }} \rightarrow \mathrm{Op}_{G}(D)$ be the universal G-bundle on $\mathrm{Op}_{G}(D)$ whose fiber at $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}\right)$ is \mathcal{F}_{0}. Let $\mathcal{F}_{B, \text { univ }}$ be the universal B bundle whose fiber at $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}\right)$ is $\mathcal{F}_{B, 0}$ (note that $\mathcal{F}_{B, \text { univ }}$ is a B-reduction of $\mathcal{F}_{\text {univ }}$).

Corollary 0.6. We have natural isomorphisms

$$
\mathcal{F}_{\text {univ }} \times{ }^{G}(G / B) \xrightarrow{\sim} \operatorname{MOp}_{G}(D), \mathcal{F}_{B, \text { univ }} \times{ }^{B}\left(B w_{0} B\right) / B \xrightarrow{\sim} \mathrm{MOp}_{G}(D)_{\text {gen }}
$$

In particular, the Miura morphism μ is the trivial principal N-bundle (we choose the trivialization of $\Omega_{D}^{\check{\rho}}$ that induces the trivialization of $\mathcal{F}_{B}=\Omega_{D}^{\check{\rho}} \times{ }^{H} B$, which, in turn, induces the trivialization of $\mathcal{F}_{B, \text { univ }}$).

Proof. The first identification directly follows from Lemma 0.5: note that a point of $\mathcal{F}_{\text {univ }} \times^{G}(G / B)$ is nothing else but an oper $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}\right)$ together with a choice of a B-torsor $\left.\mathcal{F}_{B, 0}^{\prime} \subset \mathcal{F}\right|_{0}$. The second identification follows from the first identification.

Warning 0.7. Note that there is no similar description of $\mathrm{MOp}_{G}(X)$ for an arbitrary curve X. For example, morphism $\mathrm{MOp}_{G}(X) \rightarrow \mathrm{Op}_{G}(X)$ may fail to be surjective.

So, we conclude that:

$$
\text { Fun } \operatorname{Op}_{G}(D)=\left(\operatorname{Fun~MOp}_{G}(D)_{\text {gen }}\right)^{N}=\left(\operatorname{Fun~MOp}_{G}(D)_{\text {gen }}\right)^{\mathfrak{n}} .
$$

Recall now that Fun $\operatorname{MOp}_{G}(D)_{\text {gen }} \simeq \operatorname{Fun} \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right)$ so by transport de structure we obtain an action of N and \mathfrak{n} on $\operatorname{Fun} \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right)=\mathbb{C}\left[u_{i, n}\right]$. Our next goal will be to understand this action.

Choose $e_{j} \in \mathfrak{n}, j=1, \ldots, \ell$ such that $\left(e_{j},\left[e_{j}, f_{j}\right], f_{j}\right)$ is an $\mathfrak{s l}_{2}$-triple. Note that \mathfrak{n} is generated by the elements e_{j} (as a Lie algebra), so

$$
\operatorname{Fun} \operatorname{Op}_{G}(D)=\bigcap_{i=1}^{\ell} \mathbb{C}\left[u_{i, n}\right]^{e_{j}}
$$

In the remaining part of this section, we will explicitly compute the action of e_{j} and will see that it acts via the operator $V_{j}[1]$. As a corollary, we will obtain the desired identification Fun $\mathrm{Op}_{G}(D) \simeq W(\mathfrak{g})$.

Let us now describe the action of $N \curvearrowright \operatorname{Conn} \Omega_{D}^{\check{\rho}}$. We fix a trivialization φ of $\Omega_{D}^{\check{\rho}}$. Recall the space $\widetilde{\mathrm{Op}}_{G}(D)=\left\{\partial_{t}+p_{-1}+\mathfrak{b}[[t]]\right\}$ introduced in [Bo1, Definition 3.9]. This space is a moduli space of $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}, \psi\right)$, where $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}\right) \in \mathrm{Op}_{G}(D)$ and ψ is a trivialization of \mathcal{F}_{B} that becomes equal to φ on $\Omega_{D}^{\rho}=\mathcal{F}_{B} / N$.

Now, we have an embedding

$$
\operatorname{MOp}_{G}(D) \hookrightarrow \widetilde{\mathrm{Op}}_{G}(D)
$$

sending $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}, \mathcal{F}_{B}^{\prime}\right)$ to $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}, \psi\right)$, where ψ is induced by the identification $\mathcal{F}_{B} \simeq \Omega_{D}^{\check{\rho}} \times{ }^{H} B$ (comming from the H-reduction in \mathcal{F}_{B} induced by \mathcal{F}_{B}^{\prime}, see $\left[\mathrm{Kr}\right.$, Lemma 3.4]) and the trivialization φ. After the identification Conn $\Omega_{D}^{\check{\rho}} \simeq$ $\mathrm{MOp}_{G}(D)$, the embedding above is given by

$$
\partial_{t}+u(t) \mapsto \partial_{t}+p_{-1}+u(t)
$$

Now, the action of N on $\operatorname{MOp}_{G}(D)_{\text {gen }}$ sends $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}, \mathcal{F}_{B}^{\prime}\right)$ to $\left(\mathcal{F}, \nabla, \mathcal{F}_{B},{ }^{n} \mathcal{F}_{B}^{\prime}\right)$, so their images in $\widetilde{\mathrm{Op}}_{G}(D)$ are $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}, \psi\right),\left(\mathcal{F}, \nabla, \mathcal{F}_{B},{ }^{n} \psi\right)$, where ${ }^{n} \psi$ is some trivialization of \mathcal{F}_{B} depending on n. Recall now that $N[[t]]$ acts on $\widetilde{\mathrm{Op}}_{G}(D)$ by changing the trivialization ψ (after the identification $\widetilde{\mathrm{Op}}_{G}(D)=\left\{\partial_{t}+p_{-1}+\mathfrak{b}[[t]]\right\}$, this action becomes the action via gauge transformations). It follows from the definitions that the points $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}, \psi\right),\left(\mathcal{F}, \nabla, \mathcal{F}_{B},{ }^{n} \psi\right)$ in $\widetilde{\mathrm{Op}}_{G}(D)$ differ by the action of $g(t) \in N[[t]]$ such that $g(0)=n$.

Now, $\left(\mathcal{F}, \nabla, \mathcal{F}_{B}, \mathcal{F}_{B}^{\prime}\right)$ corresponds to some $\partial_{t}+u(t) \in \operatorname{Conn}\left(\Omega_{D}^{\check{\rho}}\right)$. Reformulating, we have a map

$$
a_{u(t)}=a: N \rightarrow N[[t]], n \mapsto g(t)
$$

and the action of n on $\partial_{t}+u(t)$ is equal to $\partial_{t}+\tilde{u}(t)$, where $\tilde{u}(t) \in \mathfrak{h}[[t]]$ is such that

$$
\partial_{t}+g\left(p_{-1}+u(t)\right) g^{-1}-g^{-1}\left(\partial_{t} g\right)=\partial_{t}+p_{-1}+\tilde{u}(t) \in \partial_{t}+p_{-1}+\mathfrak{h}[[t]] .
$$

Remark 0.8. Note that $g(t)$ is determined uniquely by the containment

$$
\partial_{t}+g\left(p_{-1}+u(t)\right) g^{-1}-g^{-1}\left(\partial_{t} g\right) \in \partial_{t}+p_{-1}+\mathfrak{h}[[t]]
$$

together with the condition $g(0)=n$. This is an exercise: use that the action of $N[[t]]$ on $\partial_{t}+p_{-1}+\mathfrak{b}[[t]]$ is free together with the fact that

$$
N \backslash \operatorname{Conn} \Omega^{\check{\rho}}=\mathrm{Op}_{G}(D)=N[[t]] \backslash\left(\partial_{t}+p_{-1}+\mathfrak{b}[[t]]\right)
$$

Let us also emphasize that the map a depends on the point $u(t)$ and is not a homomorphism in general.

We want to compute the infinitesimal action of $e_{i} \in \mathfrak{g}_{\alpha_{i}} \subset \mathfrak{n}$. Recall that $\mathfrak{g}_{\alpha_{i}}$ integrates to the subgroup $N_{i} \subset N$ (isomorphic to \mathbb{G}_{a}). We claim that the map a restricts to the map $N_{i} \rightarrow N_{i}[[t]]$. To see that, it is enough (by Remark 0.8) to prove the existence of the map $a_{i}: N_{i} \rightarrow N_{i}[[t]]$ such that for $n \in N_{i}$ and $g:=a_{i}(n)$, we have

$$
\begin{equation*}
\partial_{t}+g\left(p_{-1}+u(t)\right) g^{-1}-g^{-1}\left(\partial_{t} g\right) \in \partial_{t}+p_{-1}+\mathfrak{h}[[t]] \text { and } g(0)=n \tag{6}
\end{equation*}
$$

Recall that we have the decomposition $\mathfrak{h}[[t]]=\mathfrak{h}_{i}[[t]] \oplus \mathfrak{h}_{i}^{\perp}[[t]]$, where $\mathfrak{h}_{i} \subset \mathfrak{h}$ is the Cartan subalgebra for $\mathfrak{s l}_{2}=\left\langle e_{i},\left[e_{i}, f_{i}\right], f_{i}\right\rangle$. Decompose $u(t)={ }^{i} u(t)+{ }^{i} u^{\perp}(t)$. We can also write $p_{-1}=f_{i}+p^{\prime}$, where $p^{\prime}:=\sum_{j \neq i} f_{j}$. We see that for $g \in N_{i}[[t]]$
$\partial_{t}+g\left(p_{-1}+u(t)\right) g^{-1}-g^{-1}\left(\partial_{t} g\right)=\partial_{t}+g\left(f_{i}+{ }^{i} u(t)\right) g^{-1}-g^{-1}\left(\partial_{t} g\right)+p^{\prime}+{ }^{i} u^{\perp}(t)$.
In other words, $g \in N_{i}[[t]]$ satisfies the conditions (6) iff

$$
\begin{equation*}
g\left(f_{i}+{ }^{i} u\right) g^{-1}-g^{-1}\left(\partial_{t} g\right) \in f_{i}+\mathfrak{h}_{i}[[t]], g(0)=n . \tag{7}
\end{equation*}
$$

This proves the existence of a_{i} as above (since we already know that it exists for $\mathfrak{s l}_{2}$) and moreover reduces the computation of a_{i} to the case of $\mathfrak{g}=\mathfrak{s l}_{2}$.

Now, we fix a point $\left.\left(\begin{array}{cc}\frac{1}{2} u(t) & 0 \\ 0 & -\frac{1}{2} u(t)\end{array}\right) \in \mathfrak{h}[t]\right]$ and we want to find ψ_{i} in the following form:

$$
a_{i}:\left(\begin{array}{ll}
1 & z \\
0 & 1
\end{array}\right) \mapsto\left(\begin{array}{cc}
1 & z x_{z}(t) \\
0 & 1
\end{array}\right), x_{z}(0)=1, z \in \mathbb{C}
$$

The condition (7) is equivalent to

$$
\begin{equation*}
x_{z}^{\prime}(t)=-u(t) x_{z}(t)-z x_{z}(t)^{2}, x_{z}(0)=1 \tag{8}
\end{equation*}
$$

Clearly, this equation has a unique solution (note also that this solution clearly depends on $u(t)$).

Recall now that our goal was to compute the infinitesimal action of e_{i}. In other words, we need to compute $x(t):=x_{0}(t)$ in (8). By (8), $x(t)$ is the solution of the equation

$$
\begin{equation*}
x^{\prime}(t)=-u(t) x(t), x(0)=1 \tag{9}
\end{equation*}
$$

It is an exercise to check that the unique solution is

$$
\begin{equation*}
x(t)=\sum_{n \leqslant 0} x_{n} t^{-n}=\exp \left(-\sum_{m>0} \frac{u_{-m}}{m} t^{m}\right) . \tag{10}
\end{equation*}
$$

So, we have computed $x(t)$ and conclude that e acts on Fun Conn $\Omega_{D}^{\check{\rho}}=\mathbb{C}\left[u_{n}\right]$ as follows: function

$$
\left(\begin{array}{cc}
\frac{1}{2} u(t) & 0 \\
0 & -\frac{1}{2} u(t)
\end{array}\right) \mapsto u(t)
$$

maps to the difference of diagonal entries of

$$
\left[\left(\begin{array}{cc}
0 & x(t) \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{2} u(t) & 0 \\
1 & -\frac{1}{2} u(t)
\end{array}\right)\right]-\left(\begin{array}{cc}
0 & x^{\prime}(t) \\
0 & 0
\end{array}\right)=\left(\begin{array}{cc}
x(t) & 0 \\
0 & -x(t)
\end{array}\right) .
$$

So,

$$
\begin{equation*}
e \cdot u(t)=2 x(t) \tag{11}
\end{equation*}
$$

Remark 0.9. Recall that in the formula (11) we are dealing with $\mathfrak{g}=\mathfrak{s l}_{2}$, from the discussion above it follows that for arbitrary \mathfrak{g} the action of e_{i} on $u_{j}(t)$ is given by $x_{i}(t)\left\langle\alpha_{j}, \check{\alpha}_{i}\right\rangle=a_{i j} x_{i}(t)$.

In other words, e acts by the derivation

$$
2 \sum_{n \leqslant 0} x_{n} \frac{\partial}{\partial u_{n-1}}
$$

where x_{n} are the coefficients of (10).
Remark 0.10 . Again, for arbitrary \mathfrak{g}, we see that e_{i} acts by the derivation

$$
\sum_{j=1}^{\ell} a_{i j} \sum_{n \leqslant 0} x_{i, n} \frac{\partial}{\partial u_{j, n-1}}
$$

Recall now that $W\left(\mathfrak{s l}_{2}\right) \subset \pi_{0}\left(\mathfrak{s l}_{2}\right)$ is the kernel of the operator

$$
V[1]=\sum_{m \leqslant 0} V[m] D_{b_{m-1}}
$$

where

$$
D_{b_{m}} b_{n}=2 \delta_{n, m}
$$

and

$$
\sum_{n \leqslant 0} V[n] z^{-n}=\exp \left(-\sum_{m>0} \frac{b_{-m}}{m} z^{m}\right)
$$

We see that after the identifications $u_{-m} \mapsto b_{-m}$, operators $e \cdot-, V[1]$ become the same. It follows that for arbitrary simple \mathfrak{g} and adjoint G we have

$$
\text { Fun } \mathrm{Op}_{G}(D) \simeq W(\mathfrak{g})
$$

0.3. Character of $W(\mathfrak{g}) \simeq$ Fun $\mathrm{Op}_{G}(D)$ and the main theorem. We are now ready to compute the character of $W(\mathfrak{g})$ and then finish the proof of Theorem 0.2.

Recall that the algebra Fun $\mathrm{Op}_{G}(D)$ is graded via $L_{0}=-t \partial_{t}$. Derivation $-t \partial_{t}$ is the Lie derivative at $\epsilon=1$ of the family of automorphisms of \mathcal{O} given by $t \mapsto \epsilon^{-1} t$. Recall now that

$$
\mathrm{Op}_{G}(D) \simeq\left\{\partial_{t}+S[[t]]\right\}
$$

and it follows from [Bo2, Section 1] that the action of the automorphism $t \mapsto \epsilon^{-1} t$ is given by:

$$
\partial_{t}+p_{-1}+v(t) \mapsto \partial_{t}+p_{-1}+\tilde{v}_{\epsilon}(t)
$$

where

$$
\tilde{v}_{\epsilon}(t)=\epsilon \check{\rho}(\epsilon) v(\epsilon t) \check{\rho}(\epsilon)^{-1} .
$$

We see that the infinitesimal action is given by

$$
\begin{equation*}
L_{0} \cdot v(t)=v(t)+[\check{\rho}, v(t)]+\left(t \partial_{t}\right) v(t) \tag{12}
\end{equation*}
$$

Recall now that

$$
V=\mathfrak{z g}_{\mathfrak{g}}\left(p_{1}\right)=\bigoplus_{i=1}^{\ell} V_{d_{i}}
$$

where d_{i} are exponents (degrees of the free generators of $\mathbb{C}[\mathfrak{g}]^{\mathfrak{g}}$ minus one). The action of $\check{\rho}$ on $V_{d_{i}}$ is via the multiplication by d_{i}. We conclude that the character of $\operatorname{Fun} \mathrm{Op}_{G}(D)$ (w.r.t. L_{0}) is equal to

$$
\operatorname{ch}_{L_{0}} \operatorname{Fun} \mathrm{Op}_{G}(D)=\prod_{i=1}^{\ell} \prod_{n_{i} \geqslant d_{i}+1} \frac{1}{1-q^{n_{i}}}
$$

This is nothing else but the character of $\mathfrak{z}(\widehat{\mathfrak{g}})$ (see [MF, Section 8.1.2]). We obtain the following corollary.

Corollary 0.11. We have

$$
\operatorname{ch}_{L_{0}} W(\mathfrak{g})=\operatorname{ch}_{L_{0}} \operatorname{Fun~Op}_{G}(D)=\operatorname{ch}_{L_{0}} \mathfrak{z}(\widehat{\mathfrak{g}})
$$

so the embedding $\mathfrak{z}(\widehat{\mathfrak{g}}) \hookrightarrow W\left({ }^{L} \mathfrak{g}\right)$ is an isomorphism.
We have finally proved the main theorem.
Theorem 0.12. There is a commutative diagram (of vertex Poisson algebras) preserving the $(\operatorname{Der} \mathcal{O}, \operatorname{Aut} \mathcal{O})$-actions:

vertical arrows are embeddings, and the upper arrows are given by $b_{i, n} \mapsto-\mathbf{b}_{i, n}^{\prime} \mapsto$ $-u_{i, n}$.

Remark 0.13. Feigin and Frenkel proved that for generic values of κ_{0}, there exists an isomorphism $W_{\kappa_{0}}(\mathfrak{g}) \simeq W_{\kappa_{0}^{\vee}}\left({ }^{L} \mathfrak{g}\right)$ between the corresponding W-algebras. Theorem 0.12 should be considered as a limit at the critical level of this identification.

References

[Bo1] E. Bogdanova, Seminar notes, Part I
[Bo2] E. Bogdanova, Seminar notes, Part II
[DuI] I. Dumanski, Seminar notes, part I, 2024.
[DuII] I. Dumanski, Seminar notes, part II, 2024.
[Fr] E. Frenkel, Langlands correspondence for loop groups, Cambridge Studies in Advanced Mathematics, vol. 103, Cambridge University Press, Cambridge, 2007. MR 2332156
[Kl] D. Klyuev, Seminar notes, 2024.
[Kr] V. Krylov, Seminar notes, part I, 2024.
[MF] C. Morton-Ferguson, Seminar notes, 2024.
[Wa] Zeyu Wang, Seminar notes, 2024.

