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1. Introduction

The goal of the next two talks is to
(1) discuss a class of integrable connections associated to root systems
(2) describe their monodromy in terms of quantum groups

These connections come in two forms:
• Rational form leading to representations of braid groups (this week)
• Trigonometric form leading to representations of affine braid groups (next week)

The relevance of these connections is that
A: the quantum differential equations for Nakajima quiver varieties are of trigono-

metric type
B: the description of their monodromy in terms of quantum groups constitutes a

step towards proving Roman Bezrukanikov’s conjectures that the monodromy lifts
to/comes from a braid group action on the derived category.

2. Flat connections on hyperplane complements

Reference of this section is section 2 of [14]. Rational connections are more generally
associated to hyperplane arrangements which are not necessarily of root type. So let’s
consider this more general case.

Let B be a finite dimensional complex vector space, andA = {Hi}i∈I be a finite collec-
tion of linear hyperplanes.

Let X = B \ A be the hyperplane complement.
Consider trivial vector bundles V = X × F on X, with fibers F a finite dimensional

vector space. We consider the following meromorphic connection on the trivial vector
bundleV = X × F over X:

(1) ∇ = d −
∑
i∈I

dφi

φi
ri,
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where φi ∈ B
∗ are linear functions on B, such thatHi = Ker(φi), and ri ∈ EndF are called

residues.
The following lemma gives a criterion for flatness of above connection, see [8].

Lemma 2.1 (Kohno). The above connection is flat if and only if for any subcollection
of linear forms {φ j}i∈J which is maximal for the property that their span in B∗ is two
dimensional, one has

[r j,
∑
j′∈J

r j′ ] = 0,

for any j ∈ J.

Proof. Necessity of the criterion: since the form dφi
φi

are closed, the curvature Ω of the
above connection is

Ω =
1
2

∑
φi,φ j

dφi

φi
∧

dφ j

φ j
[ri, r j]

In general, let H ⊂ X be a hyperplane defined by s = 0. We shall need to define the
residue along H of a 2-form on X.

Lemma 2.2. Let φ be a closed regular form on X \ H, with a polar singularity of order 1
along H. Then, there exist regular forms ψ, and θ of H, such that

φ =
ds
s
∧ ψ + θ

Note that ψ|H is a closed form only depends on φ, we call ψ|H the residue form of φ
along the hyperplane H.

Take the residue of Ω along {φi = 0}, we get a one-form, then take the residue of the one
form res{φi=0} along {φ j = 0}, we get a function [ri,

∑
j′∈J r j′ ], where J is spanned by φi, φ j.

Thus, Ω = 0 implies the vanishing of [ri,
∑

j′∈J r j′ ].
Sufficiency of the criterion:
Let us denote by Π the set of two dimensional subspaces of B∗ spanned by subsets of

X = {φi}i∈I . Clearly Π is in bijection with the set of all subcollections J ⊂ I, maximal with
respect to property given in the statement of the lemma.

Define for any π ∈ Π,

Ωπ =
∑

x,y∈π∩X

dx
x
∧

dy
y

[rx, ry],

so we have Ω =
∑
π∈Π Ωπ.

Let B = 〈x; y〉 be a two dimensional space and let z ∈ B be a non-zero vector. Then a
simple calculation shows that

dx
x
∧

dy
y

=
dx
x
∧

dz
z

+
dz
z
∧

dy
y
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For any π ∈ Π, fix a non-zero element zπ,

Ωπ =
∑

x,y∈X∩π

dx
x
∧

dy
y

[rx, ry]

=
∑

x,y∈X∩π

(
dx
x
∧

dzπ

zπ
+

dzπ

zπ
∧

dy
y

)[rx, ry]

=
∑

x∈X∩π

dx
x
∧

dzπ

zπ
[rx,

∑
y∈X∩π

ry] −
∑

y∈X∩π

dy
y
∧

dzπ

zπ
[
∑

x∈X∩π

rx, ry]

= 0

by the commutation relations. Using Ω =
∑
π∈Π Ωπ, we get that Ω = 0. �

Example 2.3. If B is two dimensional, we have an arrangement of lines in the plane, and
then the condition is just

[r j,
∑
j′∈I

r j′ ] = 0,

for any r j ∈ I.

Definition 2.4. The holonomy Lie algebra a(A) of the arrangement A is the quotient of
the free Lie algebra generated by symbols ri, i ∈ I, by the relations in Kohno’s Lemma.

Thus, in other words, any linear representation π : a(A)→ EndF of a(A) is equivalent
to a flat connection on X × F of the form (1).

Since the relations satisfied by ri are homogeneous, π gives rise to a one-parameter
family of flat connections labeled by h ∈ C, namely:

∇ = d − h
∑
i∈I

dφi

φi
ri,

and therefore to a one-parameter family of monodromy representations of the fundamental
group π1(X) of X. These analytically deform the trivial representation of π1(X) on F which
is obtained by setting h = 0.

2.1. Example: Knizhnik-Zamolodchikov (KZ) connection. Let B = Cn with coordi-
nate z1, . . . , zn. TakeA = {zi = z j}i, j. So

Xn = Cn \
⋃
i, j

{zi = z j}

is the configuration space of n distinct ordered points in C. We write:

Xn = Cn \
⋃

1≤i< j≤n

∆i j

where ∆i j = {(z1, . . . , zn) ∈ Cn | zi = z j}, so that Xn is a hyperplane complement.
The connection we are considering is

(2) ∇ = d −
∑
i, j

d(zi − z j)
zi − z j

ri j,

Applying Lemma 2.1 to the above connection, we see that it is flat iff the following
holds:

[ri j, r jk + rik] = 0, [ri j, rkl] = 0
for i, j, k, l all distinct.
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To construct the Knizhnik-Zamolodchikov (KZ) connection on Xn, we fix a complex,
semi-simple Lie algebra g with a non-degenerate, invariant inner product (, ), one of its
finite-dimensional representations V and set F = V⊗n. The residue matrices ri j are usually
denoted by Ωi j are given by

Ωi j =
∑

a

πi(Xa)π j(Xa),

where πk(X) denotes the action of X ∈ g on the kth tensor factor in V⊗n, and {Xa}, {Xa} are
dual basis of g.

A simple application of Kohno’s lemma then shows that

∇KZ := d − h
∑

1≤i< j≤n

d(zi − z j)
zi − z j

Ωi j,

is a flat connection on Xn × V⊗n for any h ∈ C. Check: the relations holds. To check that
[Ωi j,Ω jk+Ωik] = 0, it suffices to show that i = 1, j = 2, k = 3, note that [Ω, X⊗1+1⊗X] = 0,
for any X ∈ g.

[Ω ⊗ 1, Xa ⊗ 1 ⊗ Xa + 1 ⊗ Xa ⊗ Xa] = [Ω, Xa ⊗ 1 + 1 ⊗ Xa] ⊗ Xa = 0

For distinct i, j, k, l, we have

Ωi jΩkl =
∑

a

∑
b

πi(Xa)π j(Xa)πk(Xb)πl(Xb)

=
∑

b

∑
a

πk(Xb)πl(Xb)πi(Xa)π j(Xa)

= ΩklΩi j

Thus, [Ωi j,Ωkl] = 0.
Its monodromy yields one-parameter family of representations of Artin’s pure braid

group on n strands

Pn = π1(Cn \ {zi = z j})→ GL(V⊗n)

which deforms the trivial representation of Pn on V⊗n.
We can however do a little better by noticing that the symmetric group S n acts on V⊗n

and Xn. ∇KZ is readily seen to be equivariant for the combination of these two actions
and therefore descends to a flat connection on the quotient bundle (Xn × V⊗n)/S n over
X̃n = Xn/S n i.e., the configuration space of n unordered points inC. Taking its monodromy,
we obtain a one-parameter family of representations of Artin’s braid group on n strands:

ρh : Bn = π1(Cn \ {zi = z j}/S n)→ GL(V⊗n)

ρh depends analytically in h and deforms the natural action of S n on V⊗n, since ρ0 factors
through this action.

Recall that Bn is presented on elements Ti, 1 ≤ i ≤ n − 1, subject to Artin’s braid
relations

• TiTi+1Ti = Ti+1TiTi+1, i = 1, . . . , n − 1,
• TiT j = T jTi, |i − j| ≥ 2.

Each Ti may be realized as a small loop in X̃n around the image of the hyperplane {zi =

zi+1}.
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Example 2.5. Take g = glm with the vector representation V = Cm and the inner prod-
uct 〈X,Y〉 = trV (XY). If e1, . . . , en is the standard basis of V and Ei jek = δ jkei are the
corresponding elementary matrices then, on V⊗2,

Ω12(ek ⊗ el) =
∑

1≤i, j≤m

Ei j ⊗ E ji(ek ⊗ el) = el ⊗ ek

so that Ωi j acts on V⊗n as the transposition (i j).

2.2. Example: Coxeter-KZ connection. Reference for this subsection, see: Page 161, of
[14].

The connection described below was introduced by Cherednik in [2], to whom the re-
sults of this section are due, and is usually referred to as the KZ connection. In order to
distinguish it from the one introduced in the previous subsection, we shall use the term
Coxeter-KZ(CKZ) connection instead. Another name is Dunkl connection.

Example 2.6. From Example 2.5, the operator Ω12 acting on V ⊗ V is the same as the
action of (1, 2). Rewrite the KZ-connection in this case, we get:

∇ = d −
∑
i< j

h
d(zi − z j)

zi − z j
(i, j)

What about the other reflection groups?
Let W be a Weyl group (more genereally, W could be a finite Coxeter group, but trigono-

metric connections, to be defined in the next chapter, only exist for Weyl groups), with
complexified reflection representation h � Cr, and root system R = {α} ⊂ h∗. The base
space and arrangement are chosen by: B = h and A =

⋃
α∈R Ker(α), so that X = hreg of

regular elements in h. Set F = U, where U is a finite dimensional W-module and let the
residue rα be given by the reflection sα ∈ W.

Theorem 2.7 (Cherednik). For any choice of weights kα ∈ C satisfying kwα = kα, for all
w ∈ W, the connection

∇CKZ := d −
∑
α>0

kα
dα
α

sα,

is a W-equivariant, flat connection on hreg × U.

Remark 2.8. The above connection is independent of the choice of a system of positive
roots. Indeed, since d log a = d log(−a), it may be rewritten as

∇CKZ := d −
∑
α∈R

kα
2

dα
α

sα.

Proof. Let T be the set of reflections in W, thus, the set T is in bijection with the set of
positive roots R+. Let S ⊂ T be a subset maximal with respect to the property in Kohno’s
lemma. Claim that: for any s, t ∈ S , we have sts ∈ S .

By Kohno’s lemma, the flatness of ∇CKZ is equivalent to the following commutation
relation for every S ⊂ T as above:

[s,
∑
t∈S

ktt] = 0,

for every s ∈ S . Now the left hand side of the required commutation relation can be written
as:

[s,
∑
t∈S

ktt] = (s
∑
t∈S

ktts−1 −
∑
t∈S

ktt)s
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and let s′ = sts−1 ∈ S by the claim above, we get:

s
∑
t∈S

ktts−1 =
∑
t∈S

kt sts−1 =
∑
t∈S

kss′ s−1 s′ =
∑
s′∈S

ks′ s′

Thus,
[s,

∑
t∈S

ktt] = 0,

for every s ∈ S .
Next we prove W-equivariance of ∇CKZ . Note that W acting on End(U) by conjugation.

For any s ∈ T be a reflection, let Hs = Ker(s − 1) be the reflection hyperplane, denote αs

be the positive root that perpendicular to Hs. Thus, s = sαs .
Moreover, wαt is proportional to αwtw−1 . Combining these observations we have:

w∗∇CKZ = d −
∑
t∈Φ+

kt
d(w.αt)

w.αt
wtw−1

= d −
∑
t∈Φ+

kt
dαwtw−1

αwtw−1
wtw−1

= ∇CKZ

again by using the fact that kt = ksts. �

The monodromy of ∇CKZ yields a family of representation of the generalized pure braid
group PW of type W,

ρh : Pw = π1(hreg)→ GL(U)

Use the action of W on hreg and U to push ∇CKZ down to the quotient hreg/W. Since the
connection is W-equivariant. This yields a representation of the generalized braid group:

ρh : Bw = π1(hreg/W)→ GL(U)

Note W being a Coxter group, there exist a choice of simple reflections s1, ..., sr, such
that W is generated by s1, ..., sr, modulo the relations:

s2
i = 1, (sis j)mi j = 1

By Brieskorn’s theorem [1], BW is presented on generators S 1, ..., S r labelled by the same
choice of simple reflections s1, ..., sr in W with relations:

S iS j . . .︸   ︷︷   ︸
mi j

= S jS i . . .︸   ︷︷   ︸
mi j

,

for any 1 ≤ i < j ≤ r, where the number mi j is equal to the order of sis j in W.
An explicit choice of representatives of S 1, . . . , S n in π1(hreg/W) may be given as fol-

lows. See [16], Let t ∈ hreg lie in the fundamental Weyl chamber so that 〈t, α〉 > 0 for any
α ∈ R+. Note that for any simple root αi, the intersection tαi = t − 1

2 〈t, αi〉α
∨
i of the affine

line t + Cα∨i with Ker(αi) does not lie in any other root hyperplane Ker(β), β ∈ R \ {αi}.
Indeed, if 〈tαi , β〉 = 0, then

〈t, β〉 = 〈t, αi〉〈α
∨
i , β〉 = 〈t, β − siβ〉

whence 〈t, β〉 = −〈t, siβ〉, a contradiction since si permutes positive roots different from αi.
Let now D be an open disc in t +Cα∨i of center tαi such that its closure D does not intersect
any root hyperplane other than Ker(αi). Consider the path γi : [0, 1] → t + Cα∨i from t to
sit determined by γi|[0, 1

3 ]∪[ 2
3 ,1] is affine and lies in t +Rα∨ \D, γi( 1

3 ), γi( 2
3 ) ∈ ∂D and γi|[ 1

3 ,
2
3 ]
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is a semicircular arc in ∂D, positively oriented with respect to the natural orientation of
t + Cα∨i . Then, the image of γi in hreg/W is a representative of S i in π1(hreg/W, t). [1]

2.3. Example: Casimir connection. Fix a Cartan subalgebra h ⊂ g and let R = {α} ⊂ h∗

be the corresponding root system. The base space and arrangement are the same as those
of the Coxeter-KZ connection for the Weyl group W of g, so that

X = h \
⋃
α∈R

Ker(α) = hreg

The fibre F of the vector bundle is now a finite-dimensional g-module U. To describe the
residue matrices rα, recall that for any root α, there is a corresponding subalgebra slα2 ⊂ g
spanned by the triple eα, fα, hα, where hα = α∨ ∈ h is the corresponding coroot and eα, fα
are a choice of root vectors normalized by [eα, fα] = hα. The restriction of the inner product
〈, 〉 of g to slα2 determines a canonical Casimir element

Cα =
〈α, α〉

2
(eα fα + fαeα +

1
2

h2
α) ∈ Uslα2 ⊂ Ug.

which we shall use as the residue on the hyperplane Ker(α). The following result was
discovered by De Concini around 1995(unpublished), and independently by J.Millson and
V. Toledano Laredo [11], [16], see also [4]:

Theorem 2.9 (De Concini, Felder-Markov-Tarasov-Varchenko, Millson-Toledano Lare-
do). For any h ∈ C, the Casimir connection

∇C = d − h
∑
α>0

dα
α

Cα

a flat connection on hreg × U.

Proof. Again applying Kohno’s lemma, we have to prove that for any two dimensional
subspace B ⊂ h∗ spanned by a subset of Φ we have:

[Cα,
∑
β∈B

Cβ] = 0

In order to show this let gB be subalgebra of g corresponding to rank 2 system B ∩ Φ:

gB :=
⊕

α∈B∩Φ+

gα ⊕ g−α ⊕ [gα, g−α]

It is clear from the definitions that
∑
β∈B Cβ is same as the Casimir operator of gB modulo

terms from Uh. Hence we are done using the fact that each Cα commutes with elements
from Uh. �

We now wish to push the Casimir connection down to the quotient hreg/W to get a family
of monodromy representations of the generalized braid group Bg = BW . This requires a
little work because the Weyl group W does not act on U and its Tits extension W̃, while
acting on U, does not act freely on hreg. For example, for G = S L2, the generator of W = Z2
cannot be lifted to S L2.

The reference of the following is [15], Appendix:

Definition 2.10. The Tits extension of W is the group W̃ with generators s̃i, i ∈ I and
relations

• s̃i s̃ j . . .︸ ︷︷ ︸
mi j

= s̃ j s̃i . . .︸ ︷︷ ︸
mi j

,
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• s̃i
4

= 1,
• s̃i

2 s̃ j
2

= s̃ j
2 s̃i

2,
• s̃i s̃ j

2 s̃i
−1

= s̃ j
2(s̃i

2)−a ji .

Recall that a representation V of g is finite-dimensional representation if h ⊂ g acts
semi-simply with finite-dimensional eigenspaces and ei, fi act locally nilpotently.

Proposition 2.11. Let V be an integrable representation of g. Then, the triple exponentials

exp(ei) exp(− fi) exp(ei)

are well-defined elements of GL(V) and the assignment s̃i 7→ exp(ei) exp(− fi) exp(ei) yields
a representation of V mapping s̃i

2 to exp(π
√
−1α∨i ).

Proposition 2.12. W̃ is an extension of W by the abelian group Z generated by the elements
s̃i

2. Z is isomorphic, as W-module to Q∨/2Q∨ � ZI
2.

We pullback the Casimir connection ∇C to the universal cover

p : h̃reg → hreg.

From the presentation of W̃, we know W̃ is a quotient of Bg, the latter acts on U and,
freely, on the universal cover h̃reg. Consider the flat vector bundle (h̃reg ×U, p∗∇C)/Bg, note
that the fundamental group of h̃reg/Bg is isomorphic to Bg. Thus, taking the monodromy
of the flat vector bundle (h̃reg × U, p∗∇C)/Bg gives the desired one-parameter family ρh of
representations of Bg.

3. Monodromy of rational connections

The following is a result we will need repeatedly. The statements can be found in [14],
and the proofs of those statements can be found in [13].

Lemma 3.1. Consider the ordinary differential equation

(3)
d f
dz

= (
A0

z
+ A(z)) f ,

where A(z) ∈ Mn(C) is holomorphic in the neighborhood of 0. Assume that A0 is non-
resonant, that is the eigenvalues of A0 do not differ by non-zero integers. Then, there exists
a unique fundamental solution of the form

Φ(z) = H(z)zA0 ,

where H(z) holomorphic near 0 and is normalized so as to have H(0) = 1.

Proof. We solve the system (3) formally, i.e, assume that a fundamental solution of re-
quired form exists with:

H(z) = H0 + H1z + · · · + Hkzk + . . .

where H0 = 1. Substituting Φ(z) = H(z)zA0 in (3) we get

H′zA0 + HzA0 z−1A0 = z−1AHzA0 ,

which is equivalent to the following:∑
m≥1

mHmzm−1 +
∑
m≥0

HmA0zm−1 =
∑
m≥0

(
m∑

r=0

ArHm−r)zm−1
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Comparing the coefficients of zm from both sides of the equation we get the following
recursive system: Coefficient of z−1: H0A0 = A0H0 holds by assumption that H0 = 1. For
every m ≥ 1, we have:

mHm + HmA0 = A0Hm + A1Hm−1 + · · · + Am−1H1 + Am

which can be equivalently written as:

(m − ad(A0))Hm = A1Hm−1 + · · · + Am−1H1 + Am

where ad(A0) is operator on Mn(C) defined as: X 7→ A0X − XA0. The assumption that
the eigenvalues of A0 do not differ by non-zero integers implies the operator m − ad(A0)
is an invertible operator on Mn(C) for each m ≥ 1, thus, the above system has a unique
solution. �

3.1. Hecke algebras and monodromy representation of CKZ-connections. Recall by
Brieskorn’s theorem , BW is presented on generators S 1, ..., S r labelled by a choice of
simple reflections s1, ..., sr in W with relations:

S iS j . . .︸   ︷︷   ︸
mi j

= S jS i . . .︸   ︷︷   ︸
mi j

,

for any 1 ≤ i < j ≤ r, where the number mi j is equal to the order of sis j in W.

Definition 3.2. Given invertible elements vi of a ring R, such that vi = v j whenever the
reflections si and s j are conjugate in W, the Hecke algebra HW (vi) of W is the quotient of
the group algebra RBW by the relations

(S i − vi)(S i + v−1
i ) = 0.

In particular, when vi = 1, the Hecke algebra HW (1) = CW.

Proposition 3.3. Assume ki <
1
2Z, then, the monodromy of ∇CKZ over hreg around Ker(α)

is conjugate to e2π
√
−1kαi sαi .

Proof. Consider an affine C−plane πα, complementary to Ker(α), that is, πα is given by
x0 + zα∨, for z ∈ C, and x0 ∈ Ker(α) \ ∪β,α Ker(β). The loop γα is described by x0 +

e2π
√
−1tα∨, for t ∈ [0, 1].

Now restrict the connection ∇CKZ to πα, we get

∇CKZ |πα = d −
∑
β∈Φ+

kβ
β(α∨)

β(x0 + zα∨)
dz

= d − kαsα
dz
z
−

∑
β,α,β(α∨),0

kβ
dz

z +
β(x0)
β(α∨)

,

where β(x0)
β(α∨) , 0.

Now the connection ∇CKZ |πα has the form (3), with A0 = kαsα, which is non-resonant
precisely when kα < 1

2Z. Using the lemma above, we get a fundamental solution Φ(z) =

H(z)zkα sα .
Thus, monodromy around ker(α) is µΦ(γ) = Φ(γ(0))−1Φ(γ(1)) = e2π

√
−1kα sα . �

Proposition 3.4. Assume ki <
1
2Z, the monodromy of ∇CKZ over hreg/W around Ker(α) is

conjugate to sieπ
√
−1kαi sαi , for any i ∈ I.
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Proof. The proof is similar as the proof of above Proposition 3.3. First the C-plane πi in
the proof of Proposition 3.3 is invariant under si. Since πi = x0 + Cα∨i , and x0 ∈ Ker(αi),
thus, the action of si simply corresponds to the negation z 7→ −z.

Now we have a connection on C of the form d − A(z)dz, which is equivariant under the
action of Z2 = Z/2Z, let σ be an automorphism by which the generator of Z2 acts on the
fiber U of ∇CKZ . then, we have:

(4) A(−z) = −Ad(σ)A(z)

Assume now that A(z) =
A0
z + A(z), and note that (4) implies that Ad(σ)A0 = A0.

If A0 is non-resonant, we have a unique canonical solution Ψ(z) = H(z)zA0 in the neigh-
borhood of z = 0. The equivariance implies that

Ad(σ)(H(−z)) = H(z)

Let z0 , 0 be a base point in C. Now the monodromy along the half loop γ = z0eπit,
where 0 ≤ t ≤ 1, is

Ψ(z0)−1σΨ(−z0),

where σ is used to identify the fiber of the vector bundle at z0 and the fiber at −z0.

z−A0
0 H(z0)−1σH(−z0)(−z0)A0

=z−A0
0 H(z0)−1 Ad(σ)(H(−z0))(−z0)A0σ

=z−A0
0 (−z0)A0σ

= exp(iπA0)σ
=σ exp(iπA0)since σ commutes with A0.

Note that here we get exp(iπA0) instead of exp(−iπA0) is because we are taking the mon-
odromy along the half loop γ = z0eπit, where 0 ≤ t ≤ 1. �

Remark 3.5. It’s not true that one can simultaneously conjugate all the S i to the corre-
sponding sieπ

√
−1kαi sαi .

Each simple reflection sαi has two eigenvalues ±1 in U, which implies the operator
µk(S i) is semisimple, with eigenvalues ±e±π

√
−1kαi = ±v±1

i . Thus, the quadratic relations
holds:

(S i − vi)(S i + v−1
i ) = 0,

for all generic ki. Since the S i vary continuously (in fact analytically) in ki, the relation
(S i − vi)(S i + v−1

i ) = 0 must hold for all ki.
That is, monodromy of ∇CKZ factors through the Hecke algebra HW (vi), with vi =

eπ
√
−1kαi .

(5) CBW //

$$

End(U)

HW (vi)

99

Choosing U to be the direct sum of the irreducible representations of W, so that End(U) �
CW, and the weights kα to be generic, the monodromy does in fact yield an algebra iso-
morphism of HW (vi) � CW.



DIFFERENTIAL EQUATIONS ON HYPERPLANE COMPLEMENTS 11

One way to see the isomorphism is, if working over C[[ki]], then (by a Theorem of
Tits) HW is a flat deformation of CW. Now we have a map HW → C[[ki]]W which is an
isomorphism mod ki and therefore is an isomorphism.

For numerical ki, by the same result of Tits that dim HW = dimCW for vi are nonzero,
then we have a family of monodromy maps labeled by nonzero vi between two vector
spaces of the same dimension. Since the family is an isomorphism at vi = 1, it is an
isomorphism generically.

3.2. Monodromy of KZ-connection. The Drindeld-Jimbo quantum group U~(g) is a topo-
logical Hopf algebra, which is a deformation of the enveloping algebra Ug of g, i.e., a Hopf
algebra over the ring C[[~]] of formal power series in the variable ~, which is topologically
free as C[[~]]-module and endowed with an isomorphism U~(g)/~U~(g) � Ug of Hopf
algebras.

Definition 3.6. Let g be a semisimple Lie algebra, with Cartan matrix A = (ai j), the
quantum group U~(g) is generated by {Ei, Fi,Hi}1≤i≤n, subject to the following relations:

• [Hi,H j] = 0, [Hi, E j] = ai jE j, [Hi, F j] = −ai jF j;
• [Ei, F j] = δi j

e~diHi/2−e−~di Hi/2

e~di/2−e−~di/2
,

• For i , j,
1−ai j∑
k=0

(−1)k
[
1 − ai j

k

]
qi

Ek
i E jE

1−ai j−k
i = 0

and
1−ai j∑
k=0

(−1)k
[
1 − ai j

k

]
qi

Fk
i F jF

1−ai j−k
i = 0

where qi = e~di/2, and where

sinh x =
ex − e−x

2
,

and

[n]q =
qn − q−n

q − q−1 , [n]q! = [n]q[n − 1]q · · · [1]q

are the usual q-numbers and factorials.

Remark 3.7. Note that ad(x)m(y) =
∑m

k=0(−1)k
(

m
k

)
xkyxm−k, thus the relation in U~(g) is a

deformation of Serre’s relation. And we also have:
sinh(~diHi/2)
~di/2

≡ Hi mod ~

Example 3.8. Assume g = sl2, U~(sl2) is generated by E, F,H, subject to the following
relations:

[H, E] = 2E, [H, F] = −2F,

and

[E, F] =
e~H − e−~H

e~ − e−~

Any finite dimensional representation V of U~(g), i.e., one which is finitely generated
and topologically free as C[[~]]-module, is uniquely determined by the g-module V =

V/~V. Indeed, since H2(g,Ug) = 0, the multiplication in Ug does not possess non-trivial
deformations and U~(g) is isomorphic as C[[~]]-algebra to Ug[[~]].
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Using this to let Ug act on V, we may regard the latter as a deformation of V . Since
H1(g, End(V)) = 0 however,V is isomorphic, as Ug and therefore as U~(g)-module, to the
trivial deformation V[[~]] of V .

Theorem 3.9 (Faddeev-Reshetikhin-Takhtajan, Drinfeld, Jimbo). There exists a universal
R-matrix R ∈ U~(g) ⊗ U~(g), such that the elements R∨1 , . . . ,R

∨
n ∈ GL(V⊗n) given by

R∨i = (i, i + 1) · 1 ⊗ · · · ⊗ 1 ⊗ R ⊗ 1 ⊗ · · · ⊗ 1

commute with U~(g) and satisfy
• the braid relations

(1): R∨i R∨i+1R∨i = R∨i+1R∨i R∨i+1, i = 1, . . . , n.
(2): R∨i R∨j = R∨j R∨i , |i − j| ≥ 2.

• the deformation property: R∨i = (i, i + 1) + o(~).

From above theorem, we have a map Bn → S n o (U~(g))⊗n, Ti 7→ R∨i . Thus, Bn acts on
V⊗n by R-matrix representation of U~(g).

GL(V ⊗ · · · ⊗ V[[~]])

Bn

∇KZ

55

R

))
GL(V ⊗ · · · ⊗ V)

The statement of the following theorem can be found in [14], page 166. See [3] for the
proof.

Theorem 3.10 (Kohno, Drinfeld). The monodromy representation of the KZ equations on
V⊗n[[~]] is equivalent to the R-matrix action of Bn onV⊗n.

3.3. Monodromy Representations of Casimir-connection. Before stating the precise
result, recall that the latter action arises by mapping W̃ to the completion Û(g) of Ug
with respect to its finite-dimensional representations via

s̃i 7→ exp(ei) exp(− fi) exp(ei)

Let qi = e~
〈αi ,αi〉

2 and consider the triple q-exponentials

S i = expq−1
i

(q−1
i Eiq

−Hi
i ) expq−1

i
(−Fi) expq−1

i
(qiEiq

Hi
i ),

where Ei, Fi,Hi are the generators of the subalgebra U~sli2 ⊂ U~g corresponding to the
simple root αi,

expq(x) =
∑
n≥0

q
n(n−1)

2
xn

[nq]!
,

Viewing the S i as lying in the completion Û~g of U~g with respect to its finite-dimensional
representations, we have the following

Theorem 3.11 (Lusztig, Kirillov-Reshetikhin, Soibelman). The elements S 1, . . . , S r satis-
fy

• the braid relations
S iS jS i · · · = S jS iS j · · ·

where there are mi j factors on each side.
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• the deformation property: S i = si + o(~).

The quantum Weyl group action is given by the S i. Just as the operators R∨i , each S i is

local in that it lies in the completion Û~sli2 of U~sli2, and does not square to 1.

GL(V ⊗ · · · ⊗ V[[~]])

Bg

∇C

55

qW

))
GL(V ⊗ · · · ⊗ V)

The statement of the following theorem can be found in [14], and proved in [16] for g = sln.

Theorem 3.12 (V.Toledano Laredo). The monodromy of the Casimir connection ∇C with
values in V[[~]] is equivalent to the quantum Weyl group action of Bg onV.

The quantum Weyl group action deforms the Tits extension W̃ on finite-dimensional
g-modules.

Appendix A. Flat connections and monodromy representations

The reference for this part is [9]

A.1. Flat connections over principal bundles. Let P(M,G) be a principal G-bundle over
a manifold M with group G. For each u ∈ P, let TuP be the tangent space of P at u and Vu

the subspaces of TuP consisting of vectors tangent to the fiber through u.

Definition A.1. A connection ∇ in P is an assignment of a subspace Hu of TuP to each
u ∈ P, such that

(a): TuP = Vu ⊕ Hu;
(b): Qug = (Rg)∗Hu, for every u ∈ P, and g ∈ G, where Rg is the transformation of P

induced by g ∈ G, Rgu = ug;
(c): Hu depends differentiably on u.

Denote π : P → M be the projection. From above definition, the connection ∇ gives a
splitting of Dπ, that is,

0 // Tπ(u)M
∇ // TuP

Dπ

��
Tπ(u)M

The decomposition TuP = Vu ⊕ Hu = Ker(Dπ) ⊕ im(∇).
An equivalent definition is the following:

Definition A.2. A principal G-connection form on P is a 1-form ω ∈ Ω1(P, g) on P with
values in the Lie algebra g of G, such that,

(a): ω(A∗) = A, for any A ∈ g, where A∗ is a vector field on P induced by A ∈ g.
(b): (Rg)∗ω = ad(g−1)ω, for any g ∈ G, where ad denotes the adjoint representation

of G in g.
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Given a connection ∇ in P, we define a 1-form ω as follows: For any X ∈ TuP, we
define ω(X) to be the unique A ∈ g, such that (A∗)u is equal to the vertical component of X.
It’s clear that ω(X) = 0 if and only if X is horizonal.

Conversely, given a form ω, we define

Hu := {X ∈ TuP | ω(X) = 0}.

Definition A.3. The curvature form of a principal G-connection ω is the g-valued 2-form
Ω defined by

Ω = dω +
1
2

[ω ∧ ω].

A connection is called flat if the curvature form vanishes identically.
Given a piecewise differentiable curve τ = xt, 0 ≤ t ≤ 1 in M. A horizontal lift of τ is a

horizontal curve τ∗ = ut, 0 ≤ t ≤ 1 in P, such that π(ut) = xt, for 0 ≤ t ≤ 1. Here horizonal
curve means whose tangent vectors are all horizontal.

Proposition A.4. Notations as above, for any arbitrary point u0 of P with π(u0) = x0,
there exists a unique lift τ∗ = u0, which starts from u0.

Now using above proposition, we define the parallel displacement of fibres as follows.
Let u0 be an arbitrary point of P, with π(u0) = x0. The unique lift τ∗ of τ starting at u0 has
the end point u1, such that π(u1) = x1.

By varying u0 in the fiber π−1(x0), we obtain a mapping of the fiber π−1(x0) onto the
fiber π−1(x1), which maps u0 to u1. We call this mapping the parallel displacement along
the curve τ.

Note τ : π−1(x0)→ π−1(x1) is actually an isomorphism, since:

Proposition A.5. The parallel displacement along any curve τ commutes with the action
of G on P:

τ ◦ Rg = Rg ◦ τ,

for every g ∈ G.

Theorem A.6. If the connection∇ is flat, then the parallel displacement π−1(x0)→ π−1(x1)
is unchanged by homotopies.

Thus, take x0 = x1 ∈ M, the parallel displacement gives a map

π1(M, x0)→ G,

which we call it monodromy of the flat connection ∇.

A.2. Flat connections over vector bundles. Let V be a vector bundle on base space M.

Definition A.7. A connection is a C-linear map

∇ : V → Ω1
M ⊗OM V,

which satisfies the Leibniz rule, that is, for local sections f of OM , and s of V , we have

∇( f s) = d f ⊗ s + f∇(s).

A connection ∇ is flat if the curvature (∇ ◦ ∇) of the connection is zero.

Example A.8. Recall that local systems are locally constant sheaves of finite rank. Let V
be a C-local system on M. Then, there is a canonical connection associated with V on the
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vector bundle V⊗COM . Let U be an open set, where V can be trivialized, and let s1, . . . , sn

be the basis of V(U) given by the trivialization. For a section s =
∑

i fisi ∈ V(U), define

∇(s) =
∑

i

d fi ⊗ si.

The local definition is compatible with the coordinate changes, as they are given by locally
constant matrices, hence it gives rise to a global map ∇. It follows from the definition that
∇ is C-linear and satisfies the Leibniz rule, so ∇ is a connection on V .

In particular, we have ∇(si) = 0, for all i = 1, . . . , n, and even Ker(∇) = V. For locally
on a coordinate neighborhood U of M, where V can be trivialized, we can write the image
∇(s) of a ∈ V(U) as

∇(s) =
∑

i

d fi ⊗ si =
∑

i j

∂ fi
∂zi

dz j ⊗ si

and the set {dz j ⊗ si}i, j is a OM(U)-basis of Ω1
M ⊗OM V(U). Therefore, ∇(s) = 0 implies

∂ fi
∂zi

= 0, and the fi must be locally constant functions.

Proposition A.9. The functor

V 7→ (V ⊗C OM ,∇V),

from the category of C-local systems on M to the category of vector bundles on M equipped
with a flat connection has a quasi-inverse

(V,∇) 7→ Ker(∇).

Proposition A.10. Let M be a path-connected, locally simply connected topological space
with base point x. Then there is an equivalence between the category of C-local systems
on M and the category of π1(X, x)-left modules, given by the functor:

V→ Vx

Proof. Given a path c : [0, 1]→ M, starting at x = c(0), there is a unique way of continuing
a germ v ∈ Vx along γ to an element v′ ∈ Vc(1)(since every germ in Vx produces a unique
section V(U) for some neighborhood U of x). This continuation process only depends on
the homotopy class. Thus, it allows us to define a representation

π1(M, x)→ Aut(Vx).

For the inverse functor, we start with a representation

ρ : π1(M, x)→ Aut(V)

and consider the constant sheaf VM̃ on the universal cover u : M̃ → X. We define an C
local system V on M by taking on an open set U ⊂ X the section f : u−1(U) → V of VM̃
that satisfy:

f (γx) = ρ(γ) f (x)

for all γ ∈ π1(M, x), x ∈ u−1(U). Then V is isomorphic to the constant sheaf VU on a
sufficiently small neighborhood U ⊂ M, so it is a local system. �

Thus, we start with a vector bundle V on M, with fiber F, then the monodromy of a flat
connection ∇ on the vector bundle V gives a representation of π1(M, x0):

π1(M, x0)→ Aut(F).
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