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1. The simply connected torus and the adjoint torus

1.1. Motivation. We will introduce trigonometric connections associated to root system-
s. Since quantum differential equations are trigonometric. We will also focus on a spe-
cial example of AKZ-connection, which corresponds to quantum differential equations on
cotangent bundles of flag varieties.

1.2. Let E be a Euclidean vector space, Φ ⊂ E∗ a root system. Denote Q ⊂ h∗ the root
lattice, and P ⊂ h∗ the weight lattice.

Let Q∨ ⊂ E be the lattice generated by the coroots α∨, α ∈ Φ, the coroot lattice is dual
to the weight lattice P ⊂ h∗, and P∨ ⊂ E the dual weight lattice, which is dual to the root
lattice Q.

Let H = HomZ(P,C∗) = Q∨ ⊗Z C∗ be the complex algebraic torus with Lie algebra
h = Q∨ ⊗Z C. We call H the torus of simply connected type. For any root α ∈ Φ, we have
the following diagram

(1) h = C ⊗Z Q∨ α //

exp
����

C

exp
����

H = C∗ ⊗Z Q∨ eα // C∗

set
Hreg = H \

⋃
α∈Φ

{eα = 1}.
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The Weyl group W acts on Hreg freely. Since the subtori {eα = 1} we are removing are the
fixed points of the Weyl group action. Indeed, think H = Q∨ ⊗ C/Z, we have for sβ ∈ W,
z ∈ Q∨ ⊗ C, then, sβ(z) = z − (β, z)β∨. Thus,

sβ(z) = z

⇐⇒− (β, z)β∨ ∈ Q∨ ⊗ Z

⇐⇒− (β, z) ∈ Z

⇐⇒eβ(z) = 1

Let T = HomZ(Q,C∗) = P∨ ⊗Z C∗ be the complex algebraic torus with Lie algebra
h = P∨ ⊗Z C. We call T the adjoint torus. For any root α ∈ Φ, we have the following
diagram

(2) h = C ⊗Z P∨ α //

exp
����

C

exp
����

T = C∗ ⊗Z P∨ eα // C∗

set
Treg = H \

⋃
α∈Φ

{eα = 1}.

The action of Weyl group W on Treg is not free. See the following example

Example 1.1. In the case of sl2, we have only one positive root α. The root lattice Q is
generated by α. The weight lattice is generated by λ, with 2λ = α. The coroot lattice
Q∨ is generated by α∨ and the coweight lattice is generated by λ∨, with α∨ = 2λ∨, and
(α, λ∨) = 1.

In this case, Hreg = C∗ \ {±1}, while Treg = C∗ \ {1}. The nontrivial element σ in the
Weyl group Z2 acts by z 7→ z−1 in both case. It’s obvious that W action on Treg is not free,
since it fixes the element −1.

The fundamental group of Hreg/W is called affine Braid group, the following proposi-
tion gives a presentation of the affine Braid group, which can be found in [3], Proposition
1.3.

Proposition 1.2. The affine Braid group B̂g is generated by the finite braid group Bg and
the coroot lattice Q∨, such that the following relations are satisfied for all 1 ≤ j ≤ n.

• S jXµ = XµS j, if (µ, α j) = 0;
• S jXµS j = Xs j(µ), if (µ, α j) = 1;

The orbifold fundamental groups of the space Treg/W is called extended affine Braid
group, the following proposition gives a presentation of the extended affine Braid group.

The presentation of B̂g
ex

is described in the following theorem, see [2], page 61, Theo-
rem 1.2.5.

Theorem 1.3. B̂g
ex

is generated by the finite braid group Bg and the coweight lattice P∨,
with the following relations

(1) S i satisfies the braid relations, that is,

S iS jS i︸ ︷︷ ︸
mi j

· · · = S jS iS j︸  ︷︷  ︸
mi j

. . . ,

where mi j is the order of sis j is the Weyl group W.
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(2) [Xi, X j] = 0.
(3) [S i, X j] = 0, for i , j.
(4) S iXiS i = Xsi(λ∨i ).

Let u0 be a base point in Treg/W, The generators Xi in B̂g
ex

correspond to the path
u0 + 2π

√
−1λ∨i t, for 0 ≤ t ≤ 1. That is, the path (u0

1, . . . , u
0
j + 2π

√
−1t, . . . , u0

n). While
the generator S i corresponds to a path from u0 to si(u0). More precisely, it’s the path
u0 + eπ

√
−1t−1
2 (u0, α∨i )αi = u0 +

cos(πt)−1+
√
−1 sin(πt)

2 u0
i α
∨
i .

Remark 1.4. In the following diagram:

(3) B̂sl2 //
� _

��

B̂ex
sl2

��
B̂g // B̂ex

g ,

where the left vertical map is given by: S 7→ S i, and Xα∨ 7→ Xα∨i
.

There is no map from B̂ex
sl2

to B̂ex
g . Since, the presentation of B̂ex

sl2
is giving by T, X,

satisfies the relation
T XT = X−1,

while in general, the relation in B̂ex
g becomes

S iXiS i = XiX−1
α∨i
.

2. Trigonometric connections

Reference for this section, see [7]. We work over the space Treg/W.
Let Atrig be an algebra endowed with the following data:
• a set of elements {tα}α∈Φ ⊂ Atrig such that t−α = tα.
• a linear map X : h→ Atrig.

Consider the Atrig-valued connection on Treg given by

(4) ∇trig = d −
∑
α∈Φ+

dα
eα − 1

tα − duiX(ui).

where Φ+ ⊂ Φ is a chosen system of positive roots, {ui} and {ui} are dual bases of h∗ and h∗
respectively, and the summation over i is implicit.

The tail duiX(ui) is necessary. There are two reasons for the appearance of the tail:
• One can think the Confn C

∗ as Cn removing zi = 0, for i = 1, . . . , n, and hyper-
planes zi = z j, for i , j. For the form of the rational connections discussed in [8],
there is one term like Ωidzi

zi
. The appearance of the tail in trigonometric connection

comes from this term Ωidzi
zi

.
• Without the tail, the connection is neither flat nor W equivariant.

Remark 2.1. Unlike its rational counterpart, the connection (4) depends upon the choice
of the system of positive roots Φ+ ⊂ Φ. Let however Φ′+ ⊂ Φ be another such system, then

The connection (4) may be rewritten as

∇ = d −
∑
α∈Φ′+

dα
eα − 1

tα − dui X′(ui)
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where X′ : h→ A is given by

(5) X′(v) = X(v) −
∑

α∈Φ+∩Φ′−

α(v) tα

2.1. Delta form. The connection can also be written as

∇trig = d −
∑
α∈Φ+

eα + 1
eα − 1

dαtα − duiY(ui),

where Y : h→ Atrig is given by:

Y(v) = X(v) −
1
2

∑
α∈Φ+

α(v)tα

For a subset Ψ ⊂ Φ and subring R ⊂ R, let 〈Ψ〉R ⊂ E∗ be the R−span of Ψ.

Definition 2.2. A root subsystem of Φ is a subset Ψ ⊂ Φ such that 〈Ψ〉Z ∩ Φ = Ψ. Ψ is
complete if 〈Ψ〉R ∩ Φ = Ψ. If Ψ ⊂ Φ is a root subsystem, we set Ψ+ = Ψ ∩ Φ+.

Example 2.3. Let the root system be B2. See the following picture:

α2

2α2 + α1α1 + α2α1

−α2

−(2α2 + α1) −(α1 + α2) −α1

Ψ = {±α2,±(α1 + α2)} is not a root subsystem, while Ψ = {α1, α1 + 2α2} is a root
subsystem.

Theorem 2.4. The connection (4) is flat if, and only if the following relations hold:

(1): (tt): For any rank 2 root subsystem Ψ ⊂ Φ, and α ∈ Ψ.

[tα,
∑
β∈Ψ+

tβ] = 0.

(XX): For any u, v ∈ h,

[X(u), X(v)] = 0.

(tX): For any α ∈ Φ+, w ∈ W such that w−1α is a simple root and u ∈ h, such
that α(u) = 0,

[tα, Xw(u)] = 0,

where Xw(u) = X(v) −
∑
β∈Φ+∩wΦ− β(v)tβ.

(2): Modulo the relations (tt), the relations (tX) are equivalent to
(tY):

[tα,Y(v)] = 0,

for any α ∈ Φ and v ∈ h such that α(v) = 0.
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Example 2.5. In the case of B2, the (tt) relations become:

[tα1 , tα1+2α2 ] = 0, [tγ,
∑
β

tβ] = 0.

while
[tα2 , tα1+α2 ] , 0.

2.2. Equivariance under W. Assume now that the algebra Atrig is acted upon by the Weyl
group W of Φ.

Proposition 2.6. The connection ∇trig is W− equivariant if, and only if

(1): For any α ∈ Φ, simple reflection si ∈ W and x ∈ h,

(6) si(tα) = tsi(α)

(7) si(X(x)) − X((six)) = (αi, x)tαi ,

(2): Modulo (6), the relation (7) is equivalent to W− equivariance of the linear map
Y : h→ Atrig.

Based on the above criterion of flatness and W− Equivariance of the trigonometric con-
nection, we make the following definition.

Definition 2.7. The holonomy Lie algebra Atrig is an algebra endowed generated by:

• a set of elements {tα}α∈Φ ⊂ Atrig such that t−α = tα.
• a linear map X : h→ Atrig.

satisfy the relations in Theorem 2.4 and Proposition 2.6.

The monodromy of the trigonometric connection (4) gives representation of the extend-
ed braid group B̂g

ex
.

3. Basic ODE result

Proposition 3.1. Let U ⊂ C be a connected neighborhood of 0, A ∈ End(F), and R :
U → End(F) a holomorphic function. Let H0 ∈ End(F) be such that [A,H0] = 0. Then,
there exists a unique holomorphic function H : U → End(F) such that H(0) = H0 and

dH
dz

=
[A,H]

z
+ RH

Moreover, H is a holomorphic function of H0.

4. Large volume limit solutions

4.1. Let F be a finite–dimensional complex vector space, and consider a flat connection
on the trivial vector bundle over Hreg with fiber F of the form

(8) ∇ = d −
∑
α∈Φ+

dα
eα − 1

tα − dX

where Φ+ ⊂ Φ is a chosen system of positive roots, X : h → End(F) is a linear map, and
dX is regarded as a translation–invariant 1–form on H. Note that if {ui} and {ui} are dual
bases of h∗ and h respectively, then dX = dui X(ui), where the summation over i is implicit.
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4.2. The connection ∇ descends to the trivial vector bundle over Treg, where T � h/P∨ is
the adjoint torus corresponding to the root system Φ. Let T � Cn be the partial compactifi-
cation determined by the embedding T ↪→ (C∗)n given by sending p ∈ T to the point with
coordinates zi = e−αi (p), and let us rewrite ∇ with respect to the coordinates zi.

Choosing ui = αi as basis of h∗, so that the dual basis {ui} of h is given by the funda-
mental coweights {λ∨i } yields dui = −dzi/zi and

dX = dui X(ui) = −
dzi

zi
X(λ∨i )

Further, if α =
∑

i mi
ααi is a positive root, then eα =

∏
i z−mi

α

i so that

dα
eα − 1

=
e−α

1 − e−α
dα = −

∑
i:mi

α≥1

mi
α

zmi
α−1

i
∏

j,i zm j
α

j

1 −
∏

j zm j
α

j

dzi

which is a regular on the neighborhood of 0 in Cn. Thus, in the coordinates zi, ∇ takes the
form

(9) ∇ = d −
n∑

i=1

dzi

zi
Ai − R(z)

where Ai = X(λ∨i ), and R is a holomorphic 1–form onU with values in End(F).

4.3. Existence. Let U ⊂ Cn be a polydisc centered at the origin, and ∇ a connection on
U × F of the form (9), where Ai ∈ End(F) and R =

∑
i Ridzi is a holomorphic 1–form on

U with values in End(F). The following is straighforward.

Lemma 4.1. The connection ∇ is integrable iff the following holds for any 1 ≤ i , j ≤ n

[Ai, A j] = 0 [Ai,R j] = 0
∂iR j − ∂ jRi = [Ri,R j]

Assume that ∇ is integrable and non–resonant, that is such that the eigenvalues of each
Ai do not differ by non–zero integers.

Proposition 4.2. Let H0 ∈ GL(F) be such that [Ai,H0] = 0 for any i. Then, there exists
a unique holomorphic function H : U → GL(F) such that H(0) = H0 and, for any
determination of the logarithm, the function

Ψ(z) = H(z) ·
n∏

i=1

zAi
i

is a fundamental solution of ∇.

Proof. H is required to satisfy the system of PDEs

(10) ∂iH =
[Ai,H]

zi
+ RiH

together with the initial condition H(0) = H0. The case n = 1 is covered by Proposition
3.1. Assume now that n ≥ 2, setU( j) = U ∩ {z j = · · · = zn = 0} and assume by induction
on j = 1, . . . , n − 1 the existence and uniqueness of a holomorphic function H( j) : U( j) →

GL(F) which satisfies (10) for all i ≤ j, together with H( j)(0) = H0. Since A j+1 commutes
with Ai and Ri for i ≤ j, [A j+1,H( j)] is a solution of (10) for any i ≤ j with initial condition
0 so that, by uniqueness, A j+1 commutes with H( j). For each (z1, . . . , z j) ∈ U( j), we may
apply Proposition 3.1 to find a unique H( j+1) = H( j+1)(z j+1; z1, . . . , z j) which satisfies (10)
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for i = j + 1 together with the initial condition H( j+1)(0; z1, . . . , z j) = H( j)(z1, . . . , z j). Since
H( j+1) varies holomorphically in z1, . . . , z j, there remains to show that it satisfies (10) for
i = 1, . . . , j. Denote by ∂\i the covariant derivative ∂i − z−1

i ad(Ai) − Ri. Since [∂\k, ∂\ j+1] = 0
for k = 1, . . . , j, ∂\kH( j+1) solves (10) for i = j+1, with initial condition ∂\kH( j) = 0 whence,
by uniqueness ∂\kH( j+1) = 0. �

4.4. Fix henceforth a given determination of the logarithm.

Corollary 4.3. If the eigenvalues of each X(λ∨i ) do not differ by non–zero integers, there
is a unique fundamental solution of the trigonometric connection (8) of the form

Ψ = H ·
∏

i

z−X(λ∨i )
i

where H is holomorphic on a neighborhood of the point 0 and such that H(0) = 1.

The fundamental solution Ψ will be called the large volume limit solution of ∇ (another
name: asymptotically free).

Corollary 4.4. Assume the eigenvalues of X(λ∨i ) do not differ by non-zero integers, then
the monodromy of the generators Xλ∨j

is giving by:

µΨ(Xλ∨j
) = exp(2π

√
−1X(λ∨j )).

5. Rank 1 reduction

The reference for this part is [2]. We would like to compute the monodromy of the
generators S j in the large volume limit solution Ψ. The idea is to reduce the calculations
into rank 1 case.

Fix i, and let Di be the trigonometric connection for the rank 1 root system correspond-
ing to αi, that is,

Di = d −
tαi

eαi − 1
+ X(λ∨i )dαi

Let also Ψi be the large volume limit solution of Di (corresponding to the neighborhood
of the point zi := exp(−αi) = 0, then,

Theorem 5.1. The monodromy of S i in Ψ is equal to the monodromy of S i in Ψi,

µΨ(S i) = µΨi (S i).

Proof. By the existence of the large volume limit solution, we know that

Ψ(z) = H(z)
n∏

i=1

zX(λ∨i )
i .

Consider

Ψ̃i :=
(

lim
(z j→0, j,i)

H(z)
) n∏

i=1

zX(λ∨i )
i ,

Then, the AKZ system satisfied by Ψ̃i is

∂Ψ̃i

∂αi
= (k

tαi

eαi − 1
+ X(λ∨i ))Ψ̃i,

and
∂Ψ̃i

∂α j
= X(λ∨j )Ψ̃i,
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Since the monodromy µ(S i) does not depend on the base point z0, and the path connecting
z0 and si(z0), the path may be replaced by any deformation in Treg/W. We can also de-
generate this system by sending the parameters of such a deformation to the limits if the
resulting system is well defined. Then the resulting monodromy will remain unchanged.
Using this flexibility, we conclude that

µΨ(S i) = µ
Ψ̃i

(S i).

the latter is the ”limiting monodromy” for a path with z j, ( j , i) approaching zero.
Note that the following elements is equivariant under the action of si:

X(λ∨j ), j , i, X(λ∨i ) −
1
2

X(α∨i ),

The reason is that:
si(X(x)) − X((six)) = (αi, x)tαi

Thus, si(X(λ∨j )) = X(si(λ∨j )), for j , i. Note the element

λ∨i −
1
2

X(α∨i ) = −
∑
k,i

(αi, αk)
(αi, αi)

λ∨k .

Define E(i)(z) by

E(i)(z) =

n∏
j=1

z
X(λ∨j )
j · z−X(

α∨i
2 )

i

it enjoys the following properties:
• E(i)(z) commutes with si, that is, si · E(i)(z) = E(i)(z) · si, where · means the com-

position as elements of End(F).
• E(i)(si(z)) = E(i)(z).

The fact that E(i)(z) commutes with si follows from the observation that the following
elements commute with si:

X(λ∨j ), j , i, X(λ∨i ) −
1
2

Xα∨i
.

Setting

Ψi(z) = Ψ̃i(z)E(i)(z) =

(
lim

z j→0, j,i
H(z)

)
zX(

α∨i
2 )

i

Then, the system of equations satisfied by Ψi becomes precisely the AKZ equation in the
rank A1 case:

∂Ψi

∂αi
= (

tαi

eαi − 1
+

Xα∨i

2
)Ψi,

and for j , i,
∂Ψi

∂α j
= 0,

Let’s check the monodromy of Ψi coincides with the monodromy of Ψ̃i by using the prop-
erties of E(i)(z):

µΨi (S i) = si(Ψi)−1Ψi = E(i)(z)si(Ψ̃i)−1Ψ̃iE(i)(z)−1 = E(i)(z)µ
Ψ̃i

(S i)E(i)(z)−1 = µ
Ψ̃i

(S i)

where the last equality follows from the relations in the extended affine braid group.
�
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6. Affine KZ-connections

Even in the case of rank 1, the calculations of µΨ(T ) is not easy.

Definition 6.1. The degenerate affine Hecke algebra H ′ is the associative algebra gener-
ated by CW and the symmetric algebra S h, subject to the relations,

sixu − xsi(u)si = ki(u, αi),

for for any simple reflection si ∈ W and linear generator xu, for u ∈ h, and kα a complex
number.

Consider the followingH ′ connection on X

∇AKZ = d −
∑
α∈R+

kαsαdα
eα − 1

− duixui

By Proposition 2.6, the defining relations of H ′ are equivalent to integrability and e-
quivariance of the AKZ connection. Thus, the connection is flat and W−equivariant if and
only if sα, x j satisfy the relations from the definition of degenerate affine Hecke algebra
H ′.

Definition 6.2. The affine Hecke algebra Hg associated with root system R is the quotient
of the group algebra CB̂g modulo the following quadratic relations

(S i − qi)(S i + q−1
i ) = 0.

Proposition 6.3. The monodromy of the flat connection ∇AKZ factors through the affine
Hecke algebra.

Proof. Let zi := e−αi , choose a point u ∈ C∗n, such that, ui = 1, but u j > 1, for j , i.
Restrict the AKZ connection to the 1-dimensional subtorus uC∗ = {u · t}, for t ∈ C∗. We
get

∇AKZ |uC∗ = d +
kαi sαi

1 − t
dt + R,

where R is a regular form around the neighborhood of t = 1. Since assume α , α j, then,

there exists some j, such that m j
α , 0, and u j > 1. In this case, since 1 −

∏
k umk

α

k < 1, then

the term
∑
α,αi

∑
k mk

α
t−1 ∏

k umk
α

k tmk
α sα

1−
∏

k umk
α

k tmk
α

is regular around the neighborhood of t = 1.

THen, ∇AKZ |uC∗ around eαi = 1 has a unique solution Φ = H(zi)(1 − zi)sαi , if ksαi is
non-resonant and H(zi) is regular around zi = 1.

Since eigenvalues of sαi are ±1, thus, eigenvalues of µΦ(S i) are ±e±π
√
−1kαi , which gives

the relation:
(µ(S i) − qi)(µ(S i) + q−1

i ) = 0,

with qi = eπ
√
−1kαi .

�

7. Monodromy of Affine KZ-connections

7.1. Let Repn.r.
f .d (H ′) be a category consisting of finite dimensional representation of H ′,

such that the eigenvalues of x(λ∨i ) don’t differ by Z∗, for any i = 1, . . . , n. (where n.r.
=non-resonant=representations where the eigenvalues of x(λ∨i ) do not differ by non-zero
integers). Under the non-resonant condition, the large volume limit solution Ψ exists.
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Proposition 7.1. The monodromy functor µΨ induces an exact, faithful functor:

µΨ : Repn.r.
f .d (H ′)→ Rep f .d(Hg).

This functor has a right-sided inverse.

Remark 7.2. The functor µΨ is consistent with the inclusions of rank 1 subalgebras of
degenerate affine Hecke algebra

H ′sli2
= 〈S i,

Xα∨i

2
〉 ↪→ H ′g,

and affine Hecke algebra Hsli2
↪→ Hg, that is, we have the following commuting diagram:

(11) Repn.r.
f .d (H ′

sli2
)

µΨ
i
// Rep f .d(Hsli2

)

Repn.r.
f .d (H ′g)

µΨ //

OO

Rep f .d(Hg)

OO

where the vertical maps are restrictions induced by the inclusions of algebras in diagram
(3).

7.2. We wish to compute the monodromy of the AKZ connection on any finite dimen-
sional non-resonant representation M ofH ′. By the rank 1 reduction, it suffices to do this
when W = Z2.

Let H ′ be the rank 1 degenerate affine Hecke algebra. Then, H ′ is generated by s, x =

xλ∨ , with the relations
s2 = 1, sx + xs = k.

Since M = H ′ ⊗H ′ M, it suffices to do this when M is H ′ with the left regular action.
But, this is an infinite-dimensional representation, so monodromy is not defined a priori.

However, as a (H ′,C[x])-bimodule,H ′ is the space of (algebraic) sections of the vector
bundle I over C with fibre at m ∈ C over a given by the (finite-dimensional) induced
module

Im := H ′ ⊗C[x] Cm,

where Cm is endowed with the C[x] module structure given by evaluation at m. By the
PBW theorem forH ′. Im is isomorphic to CZ2 as a left Z2− module.

SinceH ′ acts fibrewise on I, the monodromy is well defined on those fibres which are
non-resonant. Let’s determine the point m for which Im is non-resonant.

Choose a basis of Im to be s+e
2 ⊗ 1, and −s+e

2 ⊗ 1. Then, the action of s under this basis
is giving by the matrix:

s =

(
1 0
0 −1

)
Use the relation sx + xs = k, we get x(s ⊗ 1) = m(−s ⊗ 1) + k(e ⊗ 1), x(−s ⊗ 1) =

m(s ⊗ 1) − k(e ⊗ 1), and x(e ⊗ 1) = m(e ⊗ 1).
Then, the action of x under this basis s+e

2 ⊗ 1, and −s+e
2 ⊗ 1 is giving by the matrix:

x =

( k
2

k
2 + m

− k
2 + m − k

2

)
Then, det(x − λ) = λ2 − m2, which implies that the eigenvalues of x are ±m.

Thus, the induced representation Im is non-resonant, if and only if m < Z2 .
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Since xα∨ = 2x, the matrix for xα∨ is giving by:

xα∨ =

(
k k + 2m

−k + 2m −k

)
= k

(
s −

(
0 −1 − 2m

k
1 − 2m

k 0

))
7.3. Rank 1 calculations. The reference for this part is [1]. The goal of this subsection is
to show the following explicit formula of µ(S ) acting on the induced representation Im.

Theorem 7.3. Assume m < Z2 , then µ(S ) action on Im is giving by:

(12) µ(S ) +
q − q−1

µ(Xα∨ )−1 − 1
= g(xα∨ )(s − kx−1

α∨ ),

where g(v) =
Γ2(1+v)

Γ(1+k+v)Γ(1−k+v) , and Γ is the gamma function.

Remark 7.4. Under the assumption m < Z
2 , the two operators µ(Xα∨ )−1 − 1 and xα∨ are

invertible.

Let v = exp(−αi), then, the A1− AKZ system becomes

(13)
∂Φ

∂v
+ (

ks
1 − v

+
xα∨
2v

)Φ = 0

where s, xα∨ ∈ H ′, such that: s2 = 1, and sxα∨ + xα∨ s = 2k.
One may assume that

s =

(
1 0
0 −1

)
, xα∨ = kS − k

(
0 λ
µ 0

)
acting on the induced representation Im, where

λ = −1 −
2m
k
, µ = 1 −

2m
k
.

Consider the following vector version of (13) with

ϕ =

(
v−k/2(v − 1)k f1
vk/2(v − 1)−k f2

)
Plug the above vector version ϕ in (13), we get

∂ f1
∂v

= kλvk(v − 1)−2k f2

and
∂ f2
∂v

= kµv−k(v − 1)2k f1

Take the second derivation of both of them, we get

∂2 f1
∂v2 + (

2k
v − 1

+
1 − k

v
)
∂ f1
∂v
−

k2λµ

4v2 f1 = 0.

The classical hypergeometric equation is

z(1 − z)
∂2u
∂z2 + (c − (a + b + 1)v)

∂u
∂z
− abu = 0.

It has two solutions F(a, b, c; z) and z1−cF(a− c + 1, b− c + 1, 2− c; z). Here F(a, b, c; z) is
the hypergeometric function defined by

F(a, b, c; z) = 1 +
ab
c

z +
a(a + 1)b(b + 1)

2c(c + 1)
z2 +

a(a + 1)(a + 2)b(b + 1)(b + 2)
2 · 3c(c + 1)(c + 2)

z3 + · · ·
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From the above definition, it’s obvious that, F(a, b, c; 0) = 1 and

F(a, b, c; z) = F(b, a, c; z)

There are two properties of F(a, b, c; z) we are going to use:
(1) ∂F(a,b,c;z)

∂z = F(a + 1, b + 1, c + 1; z),
(2) There is a formula, see Page 289 of [10],

(14)

F(a, b, c; z) =
Γ(b − a)Γ(c)
Γ(b)Γ(c − a)

F(a, 1 − c + a, 1 − b + a, z−1)
(−z)a +

Γ(a − b)Γ(c)
Γ(a)Γ(c − b)

F(b, 1 − c + b, 1 − a + b, z−1)
(−z)b ,

which computes the parallel transport of F(a, b, c; z) from z = 0 to z = ∞ in terms
of the basis if solutions of the hypergeometric equation at z = ∞.

Now the equation satisfied by f1 is a variant of hypergeometric equation. Making the
change of variable that f1 = v

k
2 (
√

1+λµ+1)F, then the function F satisfies the classical hyper-
geometric equation with

a = k + ζ, b = k, c = 1 + ζ,

where ζ = k
√

1 + λµ.
Thus, we get two solutions of f1, that is:
f1 = v

k
2 (
√

1+λµ+1)F(a, b, c, v), and f1 = v
k
2 (
√

1+λµ+1)v1−cF(a − c + 1, b − c + 1, 2 − c; z),
which gives a fundamental solution of Φ:

Φ =

(
ϕ1 ϕ∗1
ϕ2 ϕ∗2

)
where ϕ1 = vζ/2(v−1)kF(a, b, c, v), and ϕ2 = vζ/2(v−1)k(aF+2vabc−1F(a+1, b+1, c+1, v)).
The notation f ∗ := f (−ζ) for any function f depending on ζ.

Using the fact that F(a, b, c; v)→ 1 as v→ 0, we have: as v→ 0,(
ϕ1 ϕ∗1
ϕ2 ϕ∗2

)
→

(
vζ/2(v − 1)k v−ζ/2(v − 1)k

a(kλ)−1vζ/2(v − 1)k a∗(kλ)−1v−ζ/2(v − 1)k

)
Denote

G :=
(

1 1
a(kλ)−1 a∗(kλ)−1

)
,

and let Φ0(v) := Φ(v)G−1, we have, Φ0(v) is a fundamental solution of A1−AKZ system.

Lemma 7.5. The solution Φ0(v) is the large limit volume solution.

Proof. First, let’s diagonalize the matrix xα∨ , we have

G−1xα∨G =

(
−ζ 0
0 ζ

)
.

To check Φ0(v) is a large limit volume solution, we need to show that Φ0(v)v
x
α∨

2 ∼ 1, as
v→ 0.

Since

v
x
α∨

2 = G
 v

−ζ
2 0

0 v
ζ
2

G−1,

then,

Φ0(v)v
x
α∨

2 ∼

(
vζ/2 v−ζ/2

a(kλ)−1vζ/2 a∗(kλ)−1v−ζ/2

)  v
−ζ
2 0

0 v
ζ
2

G−1 = 1,

as v→ 0. �
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We are going to use the large volume limit solution Φ0(v) to calculate the function g.
By the formula (14), we have as w = v−1 → 0,

(
ϕ1
ϕ2

)
→ wζ/2(w − 1)k sG


exp(−πiζ) Γ(b−a)Γ(c)

Γ(b)Γ(c−a)

Γ(a−b)Γ(c)
Γ(a)Γ(c−b)


Hence the monodromy

µΦ(T ) = (s(Φ(v)))−1Φ

= (Φ(w))−1sΦ

=

(
t1 t∗1
t2 t∗2

)
,

where (
t1
t2

)
=


exp(−πiζ) Γ(b−a)Γ(c)

Γ(b)Γ(c−a)

Γ(a−b)Γ(c)
Γ(a)Γ(c−b)


So we get µΦ0 (T ) = GµΦ(T )G−1 = G

(
t1 t∗1
t2 t∗2

)
G−1.

To finish the proof, we need the following formulas

xα∨G = G
(
−ζ 0
0 ζ

)
and

G−1(S − kx−1
α∨ )G = ζ−1

(
0 ζ − k

ζ + k 0

)
Now rewrite both sides of the equality:

µ(T ) +
q − q−1

µ(X)−1 − 1
= g(xα∨ )(s −

k
xα∨

),

We have: (
t1 t∗1
t2 t∗2

)
+

(
∗ 0
0 ∗

)
= ζ−1

(
0 g(−ζ)(ζ − k)

g(ζ)(ζ + k) 0

)
Compare both sides on the left lower corner of the matrices, we get g(ζ) = t2ζ(ζ + k)−1.
Use the property of Gamma function that Γ(1 + z) = zΓ(z), we have:

g(ζ) = t2ζ(ζ+k)−1 =
Γ(a − b)Γ(c)
Γ(a)Γ(c − b)

ζ(ζ+k)−1 =
Γ(ζ)Γ(1 + ζ)ζ

Γ(k + ζ)Γ(1 + ζ − k)(ζ + k)
=

Γ2(1 + ζ)
Γ(1 + k + ζ)Γ(1 + ζ − k)

.

By the rank 1 reduction, we get the following theorem:

Theorem 7.6. Assume eigenvalues of xλi do not differ by integers, for any i = 1, . . . , n,
then,

µ(S i) +
qi − q−1

i

µ(Xα∨i
)−1 − 1

= g(xα∨i )(si − kx−1
α∨i

),

where g(x) =
Γ2(1+x)

Γ(1+k+x)Γ(1−k+x) , and Γ is the gamma function.
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7.4. Define an adapted completion ofH ′. Note first that the defining relations ofH ′ can
be written as

(15) s f (x) = f (−x)s + k/2
( f (x) − f (−x))

x
where f ∈ C[x]. Let O be the algebra of meromorphic functions on C with poles contained
in Z2 . We can define an algebra Ĥ ′ as the quotient of CW ⊗ O by the relations (15). Then

• finite dimensional representations of Ĥ ′ are the same as finite dimensional repre-
sentations ofH ′ supported (as C[x]-modules) away from Z

2 .
• the same holds if we restrict to non-resonant representations on both sides.

Since the monodromy can be regarded as a map

µ : H→ Ĥ ′,

it follows that the formula (12) compute the monodromy on finite dimensional non-resonant
representations ofH ′ supported away from Z

2 .

Appendix A. Yangians and Trigonometric Casimir connection

Recall the definition of Yangian:

Definition A.1. The Yangian Y(g) is the associative algebra over C[~] generated by ele-
ments x, J(x), x ∈ g subject to the relations

in terms of generators z, J(z), for z ∈ g, with the property that
• λx + µy (in Y(g)) = λx + µy ( in g).
• xy − yx = [x, y]
• J(λx + µy) = λJ(x) + µJ(y)
• [x, J(y)] = J([x, y])
• [J(x), J([y, z])]+[J(z), J([x, y])]+[J(y), J([z, x])] = ~2([x, xa], [[y, xb], [z, xc]]){xa, xb, xc}

• [[J(x), J(y)], [z, J(w)]]+[[J(z), J(w)], [x, J(y)]] = ~2([x, xa], [[y, xb], [[z,w], xc]]){xa, xb, J(xc)},
for any x, y, z,w ∈ g and λ, µ ∈ C, where {xa}, {xa}are dual bases of g with respect to (, ) and

{z1, z2, z3} =
1
24

∑
σ∈S 3

zσ(1)zσ(2)zσ(3)

The following is Drinfeld’s new realization of Y(g). Let ai j := 2(αi,α j)
(αi,αi)

be the entries of
the Cartan matrix A of g. Set di := (αi,αi)

2 , so that diai j = d ja ji for any i, j ∈ I.

Definition A.2. The Yangian Y~(g) is the associative algebra, free over C[~], generated by
X±i,r, and Hi,r(i ∈ I, r ∈ N), with the following defining relations

(16) [Hi1,r1 ,Hi2,r2 ] = 0, [Hi1,0, X
±
i2,s] = ±di1 ai1,i2 X±i2,s, [X

+
i1,r1

, X−i2,r2
] = δi1i2 Hi1,r+s

(17) [Hi1,r1+1, X±i2,r2
] − [Hi1,r1 , X

±
i2,r2+1] = ±~

di1 ai1,i2

2
S (Hi1,r1 , X

±
i2,r2

)

(18) [X±i1,r1+1, X
±
i2,r2

] − [X±i1,r1
, X±i2,r2+1] = ±~

di1 ai1,i2

2
S (X±i1,r1

, X±i2,r2
)

(19)
∑
π∈S j

[X±i1,rπ(1)
, [X±i1,rπ(2)

, . . . , [X±i1,rπ( j)
, X±i2,s] . . . ]] = 0,

where j = 1 − ai1,i2 , r1, . . . , r j, s ∈ N.
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Choose root vectors Xα ∈ gα for any α ∈ Φ such that (Xα, X−α) = 1 and let

κα = XαX−α + X−αXα

be the truncated Casimir operator.
Then, the relation between the two presentations is giving by the following formula:

X±i,1 = J(X±i ) − λω±i ,H
±
i,1 = J(H±i ) − λν±i ,

where

ω±i = ±
1
4

∑
α∈Φ+

S ([X±i , X
±
α ], X∓α ) −

1
4

S (X±i ,Hi),

and

νi =
1
4

∑
α∈Φ+

(αi, α)κα −
H2

i

2
.

Lemma A.3. There is a Lie algebra homomorphism Atrig → Y(g), given by:

tα 7→ κα

and

Y(t) 7→ −2J(t)

In terms of the generator X(t), we have:

X(t) 7→
~

2

∑
α∈Φ+

(t, α)κα − 2J(t)

Definition A.4. The trigonometric Casimir connection of g is the connection ∇trig,C given
by

∇trig,C = d −
∑
α∈Φ+

eα + 1
eα − 1

dακα + 2duiJ(ui)

Theorem A.5. The trigonometric Casimir connection is flat and W-equivariant.

Remark A.6. Let V be a finite-dimensional Y(g)-module andV the holomorphically trivial
vector bundle over Hreg with fibre V . The connection ∇trig,C induces a flat connection on
V. To push it down to the quotient by W we use the ”up and down” trick to circumvent the
fact that W does not in general act on V .

Specifically, since V is an integrable g-module, the triple exponentials

exp(eαi ) exp(− fαi ) exp(eαi ) ∈ GL(V)

defined by a choice of simple root vectors eαi ∈ gαi , fαi ∈ g−αi are well-defined elements of
GL(V). They give rise to an action on V of an extension W̃ of W by the sign group Zdim h

2
called the Tits extension W̃ of W. It’s a fact that W̃ is a quotient of the affine braid group
Êg which may therefore be made to act on V . It is then easy to check that the pull-back
of the flat vector bundle (V,∇) to the universal cover of Hreg is equivariant under B̂g acting
by deck transformations on the base and through the W̃-action on the fibres.
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A.1. The affine KZ connection. The degenerate affine Hecke algebra H ′ of W is, very
roughly speaking, the Weyl group of the Yangian Y(g). Let K be the vector space of W-
invariant fuctions Φ→ C and denote the natural linear coordinates on K by kα, α ∈ Φ/W.

Definition A.7. The degenerate affine Hecke algebra H ′ associated to Weyl group W is
the algebra over C[K] generated the by group algebra CW and the symmetric algebra S h
subject to the relations

sixu − xsi(u)si = kαiαi(u),

for any simple reflection si ∈ W and linear generator xu, u ∈ h, of S h.

The AKZ connection is the trigonometric,H ′-valued connection given by

∇aff,KZ = d −
∑
α∈Φ+

eα + 1
eα − 1

dαkαsα − duix(ui)

Appendix B. Monodromy of trigonometric Casimir connections

Similar as the rational Casimir connection, we make a conjecture that the monodromy
of the trigonometric Casimir connection ∇trig,C is equivalent to action of B̂g coming from
the quantum Weyl group operators of the quantum loop algebra U~(Lg).

Let Lg = g[t, t−1] be the loop algebra of g .

Definition B.1. The quantum loop algebra U~(Lg) is generated by Ei.Fi,Hi, for i =

0, 1, . . . , n, (or i ∈ I t {0}), where: H0 = −Hθ = −
∑

i∈I aiHi, where θ ∈ h∗ is the high-
est root and the integers ai are given by θ∨ =

∑
i aiα

∨
i . modulo relations.

Proposition B.2. The quantum loop algebra U~(Lg) is a Hopf algebra over the ring of
formal power series C[[~]], generated elements Ei,k, Fi,k, and Hi,k subject to the following
relations:

(QL1): For i, j ∈ I, and r, s ∈ Z,

[Hi,r,H j,s] = 0

(QL2): For any i, j ∈ I, and k ∈ Z,

[Hi,0, E j,k] = ai jE j,k, [Hi,0, F j,k] = −ai jF j,k

(QL3): For any i, j ∈ I, and k ∈ Z∗,

[Hi,r, E j,k] =
[rai j]qi

r
E j,r+k, [Hi,r, F j,k] = −

[rai j]qi

r
F j,r+k

(QL4): For any i, j ∈ I, and k ∈ Z,

Ei,k+1E j,l − qai j

i E jlEi,k+1 = qai j

i Ei,kE j,l+1 − E j,l+1Ei,k

Fi,k+1F j,l − q−ai j

i F jlFi,k+1 = q−ai j

i Fi,kF j,l+1 − F j,l+1Fi,k

(QL5): For any i, j ∈ I, and k, l ∈ Z,

[Ei,k, F j,l] = δi j
ψi,k+l − φi,k+l

qi − q−1
i

(QL6): Let i , j, and set m = 1 − ai j. For every k1, . . . , km ∈ Z, and l ∈ Z∑
π∈S n

m∑
s=0

(−1)s
[
m
s

]
qi

Ei,kπ(1) · · · Ei,kπ(s) E j,lEi,kπ(s+1) · · · Ei,kπ(m) = 0
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∑
π∈S n

m∑
s=0

(−1)s
[
m
s

]
qi

Fi,kπ(1) · · · Fi,kπ(s) F j,lFi,kπ(s+1) · · · Fi,kπ(m) = 0

where

ψi(z) = exp(
~di

2
Hi,0) exp

(qi − q−1
i )

∑
s≥1

Hi,sz−s


and

φi(z) = exp(
−~di

2
Hi,0) exp

−(qi − q−1
i )

∑
s≥1

Hi,−szs


By a finite-dimensional representation of U~(Lg), we shall mean a module V which is

topologically free and finitely-generated over C[[~]]. Such aV is integrable and therefore
endowed with a quantum Weyl group action of the affine braid group B̂g. This action is
given by letting the generator corresponding to i ∈ Î = I t {0} act by

S i
~
v =

∑
a,b,c∈Z,a−b+c=−λ(α∨i )

(−1)bqb−ac
i Ea

i Fb
i Ec

i v,

where v ∈ V if of weight λ ∈ h∗ and Xa
i is the divided power Xa

[a]i!
with

q = e~, qi = q
(αi ,αi )

2

It is known that the Yangian Y(g) and the quantum loop algebra U~(Lg) have the same
finite-dimensional representation theory. By analogy with the quantum Weyl group de-
scription of the monodromy of the (rational) Casimir connection of g, we make the follow-
ing

Conjecture B.3 (V. Toledano Laredo). The monodromy of the trigonometric Casimir con-
nection is equivalent to the quantum Weyl group action of the affine braid group B̂ on
finite-dimensional U~(Lg)-modules.

What’s known of the above conjecture?

Theorem B.4 (S. Gautam, V. Toledano Laredo). Let g be sl2 or gl2, the above conjecture
is true.
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