DIFFERENTIAL EQUATIONS ON HYPERPLANE COMPLEMENTS II

NOTES BY VALERIO TOLEDANO LAREDO AND YAPING YANG

Contents

1. The simply connected torus and the adjoint torus 1
2. Trigonometric connections 3
3. Basic ODE result 5
4. Large volume limit solutions 5
5. Rank 1 reduction 7
6. Affine KZ-connections 9
7. Monodromy of Affine KZ-connections 9
Appendix A. Yangians and Trigonometric Casimir connection 14
Appendix B. Monodromy of trigonometric Casimir connections 16
References 17

1. The simply connected torus and the adjoint torus

1.1. Motivation. We will introduce trigonometric connections associated to root systems. Since quantum differential equations are trigonometric. We will also focus on a special example of AKZ-connection, which corresponds to quantum differential equations on cotangent bundles of flag varieties.
1.2. Let E be a Euclidean vector space, $\Phi \subset E^{*}$ a root system. Denote $Q \subset \mathfrak{b}^{*}$ the root lattice, and $P \subset \mathfrak{h}^{*}$ the weight lattice.

Let $Q^{\vee} \subset E$ be the lattice generated by the coroots $\alpha^{\vee}, \alpha \in \Phi$, the coroot lattice is dual to the weight lattice $P \subset \mathfrak{b}^{*}$, and $P^{\vee} \subset E$ the dual weight lattice, which is dual to the root lattice Q.

Let $H=\operatorname{Hom}_{\mathbb{Z}}\left(P, \mathbb{C}^{*}\right)=Q^{\vee} \otimes_{\mathbb{Z}} \mathbb{C}^{*}$ be the complex algebraic torus with Lie algebra $\mathfrak{h}=Q^{\vee} \otimes_{\mathbb{Z}} \mathbb{C}$. We call H the torus of simply connected type. For any root $\alpha \in \Phi$, we have the following diagram

set

$$
H_{\mathrm{reg}}=H \backslash \bigcup_{\alpha \in \Phi}\left\{e^{\alpha}=1\right\}
$$

Date: October 2, 2013.

The Weyl group W acts on $H_{\text {reg }}$ freely. Since the subtori $\left\{e^{\alpha}=1\right\}$ we are removing are the fixed points of the Weyl group action. Indeed, think $H=Q^{\vee} \otimes \mathbb{C} / \mathbb{Z}$, we have for $s_{\beta} \in W$, $z \in Q^{\vee} \otimes \mathbb{C}$, then, $s_{\beta}(z)=z-(\beta, z) \beta^{\vee}$. Thus,

$$
\begin{aligned}
& s_{\beta}(z)=z \\
\Longleftrightarrow & -(\beta, z) \beta^{\vee} \in Q^{\vee} \otimes \mathbb{Z} \\
\Longleftrightarrow & -(\beta, z) \in \mathbb{Z} \\
\Longleftrightarrow & e^{\beta}(z)=1
\end{aligned}
$$

Let $T=\operatorname{Hom}_{\mathbb{Z}}\left(Q, \mathbb{C}^{*}\right)=P^{\vee} \otimes_{\mathbb{Z}} \mathbb{C}^{*}$ be the complex algebraic torus with Lie algebra $\mathfrak{h}=P^{\vee} \otimes_{\mathbb{Z}} \mathbb{C}$. We call T the adjoint torus. For any root $\alpha \in \Phi$, we have the following diagram

set

$$
T_{\mathrm{reg}}=H \backslash \bigcup_{\alpha \in \Phi}\left\{e^{\alpha}=1\right\}
$$

The action of Weyl group W on $T_{\text {reg }}$ is not free. See the following example
Example 1.1. In the case of $\mathfrak{s l}_{2}$, we have only one positive root α. The root lattice Q is generated by α. The weight lattice is generated by λ, with $2 \lambda=\alpha$. The coroot lattice Q^{\vee} is generated by α^{\vee} and the coweight lattice is generated by λ^{\vee}, with $\alpha^{\vee}=2 \lambda^{\vee}$, and $\left(\alpha, \lambda^{\vee}\right)=1$.

In this case, $H_{\text {reg }}=\mathbb{C}^{*} \backslash\{ \pm 1\}$, while $T_{\text {reg }}=\mathbb{C}^{*} \backslash\{1\}$. The nontrivial element σ in the Weyl group \mathbb{Z}_{2} acts by $z \mapsto z^{-1}$ in both case. It's obvious that W action on $T_{\text {reg }}$ is not free, since it fixes the element -1 .

The fundamental group of H_{reg} / W is called affine Braid group, the following proposition gives a presentation of the affine Braid group, which can be found in [3], Proposition 1.3.

Proposition 1.2. The affine Braid group $\widehat{B_{\mathfrak{g}}}$ is generated by the finite braid group $B_{\mathfrak{g}}$ and the coroot lattice Q^{\vee}, such that the following relations are satisfied for all $1 \leq j \leq n$.

- $S_{j} X_{\mu}=X_{\mu} S_{j}$, if $\left(\mu, \alpha_{j}\right)=0$;
- $S_{j} X_{\mu} S_{j}=X_{s_{j}(\mu)}$, if $\left(\mu, \alpha_{j}\right)=1$;

The orbifold fundamental groups of the space $T_{\text {reg }} / W$ is called extended affine Braid group, the following proposition gives a presentation of the extended affine Braid group.

The presentation of $\widehat{B}_{\mathfrak{g}} \mathrm{ex}$ is described in the following theorem, see [2], page 61, Theorem 1.2.5.
Theorem 1.3. $\widehat{B}_{\mathfrak{g}}^{\mathrm{ex}}$ is generated by the finite braid group $B_{\mathfrak{g}}$ and the coweight lattice P^{\vee}, with the following relations
(1) S_{i} satisfies the braid relations, that is,

$$
\underbrace{S_{i} S_{j} S_{i}}_{m_{i j}} \cdots=\underbrace{S_{j} S_{i} S_{j}}_{m_{i j}} \cdots
$$

where $m_{i j}$ is the order of $s_{i} s_{j}$ is the Weyl group W.
(2) $\left[X_{i}, X_{j}\right]=0$.
(3) $\left[S_{i}, X_{j}\right]=0$, for $i \neq j$.
(4) $S_{i} X_{i} S_{i}=X_{s_{i}\left(\lambda_{i}^{\vee}\right)}$.

Let u^{0} be a base point in $T_{\text {reg }} / W$, The generators X_{i} in ${\widehat{B_{g}}}^{\mathrm{ex}}$ correspond to the path $u^{0}+2 \pi \sqrt{-1} \lambda_{i}^{\vee} t$, for $0 \leq t \leq 1$. That is, the path $\left(u_{1}^{0}, \ldots, u_{j}^{0}+2 \pi \sqrt{-1} t, \ldots, u_{n}^{0}\right)$. While the generator S_{i} corresponds to a path from u^{0} to $s_{i}\left(u^{0}\right)$. More precisely, it's the path $u^{0}+\frac{e^{\pi \sqrt{-1}}-1}{2}\left(u^{0}, \alpha_{i}^{\vee}\right) \alpha_{i}=u^{0}+\frac{\cos (\pi t)-1+\sqrt{-1} \sin (\pi t)}{2} u_{i}^{0} \alpha_{i}^{\vee}$.

Remark 1.4. In the following diagram:

where the left vertical map is given by: $S \mapsto S_{i}$, and $X_{\alpha^{\vee}} \mapsto X_{\alpha_{i}^{\vee}}$.
There is no map from $\widehat{B}_{\mathrm{sl}_{2}}^{\text {ex }}$ to $\widehat{B}_{\mathrm{g}}^{\mathrm{ex}}$. Since, the presentation of $\widehat{B}_{\mathrm{sl}_{2}}^{\text {ex }}$ is giving by T, X, satisfies the relation

$$
T X T=X^{-1}
$$

while in general, the relation in $\widehat{B}_{\mathfrak{g}}^{\text {ex }}$ becomes

$$
S_{i} X_{i} S_{i}=X_{i} X_{\alpha_{i}^{v}}^{-1}
$$

2. Trigonometric connections

Reference for this section, see [7]. We work over the space $T_{\text {reg }} / W$.
Let $A_{\text {trig }}$ be an algebra endowed with the following data:

- a set of elements $\left\{t_{\alpha}\right\}_{\alpha \in \Phi} \subset A_{\text {trig }}$ such that $t_{-\alpha}=t_{\alpha}$.
- a linear map $X: \mathfrak{h} \rightarrow A_{\text {trig }}$.

Consider the $A_{\text {trig }}$-valued connection on $T_{\text {reg }}$ given by

$$
\begin{equation*}
\nabla_{\text {trig }}=d-\sum_{\alpha \in \Phi_{+}} \frac{d \alpha}{e^{\alpha}-1} t_{\alpha}-d u_{i} X\left(u^{i}\right) \tag{4}
\end{equation*}
$$

where $\Phi_{+} \subset \Phi$ is a chosen system of positive roots, $\left\{u_{i}\right\}$ and $\left\{u^{i}\right\}$ are dual bases of \mathfrak{h}^{*} and \mathfrak{h}_{*} respectively, and the summation over i is implicit.

The tail $d u_{i} X\left(u^{i}\right)$ is necessary. There are two reasons for the appearance of the tail:

- One can think the $\operatorname{Conf}_{n} \mathbb{C}^{*}$ as \mathbb{C}^{n} removing $z_{i}=0$, for $i=1, \ldots, n$, and hyperplanes $z_{i}=z_{j}$, for $i \neq j$. For the form of the rational connections discussed in [8], there is one term like $\frac{\Omega_{i} d z_{i}}{z_{i}}$. The appearance of the tail in trigonometric connection comes from this term $\frac{\Omega_{i} d z_{i}}{z_{i}}$.
- Without the tail, the connection is neither flat nor W equivariant.

Remark 2.1. Unlike its rational counterpart, the connection (4) depends upon the choice of the system of positive roots $\Phi_{+} \subset \Phi$. Let however $\Phi_{+}^{\prime} \subset \Phi$ be another such system, then

The connection (4) may be rewritten as

$$
\nabla=d-\sum_{\alpha \in \Phi_{+}^{\prime}} \frac{d \alpha}{e^{\alpha}-1} t_{\alpha}-d u_{i} X^{\prime}\left(u^{i}\right)
$$

where $X^{\prime}: \mathfrak{h} \rightarrow A$ is given by

$$
\begin{equation*}
X^{\prime}(v)=X(v)-\sum_{\alpha \in \Phi_{+} \cap \Phi_{-}^{\prime}} \alpha(v) t_{\alpha} \tag{5}
\end{equation*}
$$

2.1. Delta form. The connection can also be written as

$$
\nabla_{\text {trig }}=d-\sum_{\alpha \in \Phi_{+}} \frac{e^{\alpha}+1}{e^{\alpha}-1} d \alpha t_{\alpha}-d u_{i} Y\left(u^{i}\right)
$$

where $Y: \mathfrak{h} \rightarrow A_{\text {trig }}$ is given by:

$$
Y(v)=X(v)-\frac{1}{2} \sum_{\alpha \in \Phi_{+}} \alpha(v) t_{\alpha}
$$

For a subset $\Psi \subset \Phi$ and subring $R \subset \mathbb{R}$, let $\langle\Psi\rangle_{R} \subset E^{*}$ be the $R-$ span of Ψ.
Definition 2.2. A root subsystem of Φ is a subset $\Psi \subset \Phi$ such that $\langle\Psi\rangle_{\mathbb{Z}} \cap \Phi=\Psi$. Ψ is complete if $\langle\Psi\rangle_{\mathbb{R}} \cap \Phi=\Psi$. If $\Psi \subset \Phi$ is a root subsystem, we set $\Psi_{+}=\Psi \cap \Phi_{+}$.

Example 2.3. Let the root system be B_{2}. See the following picture:

$\Psi=\left\{ \pm \alpha_{2}, \pm\left(\alpha_{1}+\alpha_{2}\right)\right\}$ is not a root subsystem, while $\Psi=\left\{\alpha_{1}, \alpha_{1}+2 \alpha_{2}\right\}$ is a root subsystem.

Theorem 2.4. The connection (4) is flat if, and only if the following relations hold:
(1): ($t t)$: For any rank 2 root subsystem $\Psi \subset \Phi$, and $\alpha \in \Psi$.

$$
\left[t_{\alpha}, \sum_{\beta \in \Psi_{+}} t_{\beta}\right]=0
$$

(XX): For any $u, v \in \mathfrak{h}$,

$$
[X(u), X(v)]=0 .
$$

$(t X):$ For any $\alpha \in \Phi_{+}, w \in W$ such that $w^{-1} \alpha$ is a simple root and $u \in \mathfrak{h}$, such that $\alpha(u)=0$,

$$
\left[t_{\alpha}, X_{w}(u)\right]=0,
$$

where $X_{w}(u)=X(v)-\sum_{\beta \in \Phi_{+} \cap w \Phi_{-}} \beta(v) t_{\beta}$.
(2): Modulo the relations $(t t)$, the relations $(t X)$ are equivalent to ($t Y$):

$$
\left[t_{\alpha}, Y(v)\right]=0
$$

for any $\alpha \in \Phi$ and $v \in \mathfrak{h}$ such that $\alpha(v)=0$.

Example 2.5. In the case of B_{2}, the $(t t)$ relations become:

$$
\left[t_{\alpha_{1}}, t_{\alpha_{1}+2 \alpha_{2}}\right]=0,\left[t_{\gamma}, \sum_{\beta} t_{\beta}\right]=0
$$

while

$$
\left[t_{\alpha_{2}}, t_{\alpha_{1}+\alpha_{2}}\right] \neq 0
$$

2.2. Equivariance under W. Assume now that the algebra $A_{\text {trig }}$ is acted upon by the Weyl group W of Φ.

Proposition 2.6. The connection $\nabla_{\text {trig }}$ is W - equivariant if, and only if
(1): For any $\alpha \in \Phi$, simple reflection $s_{i} \in W$ and $x \in \mathfrak{h}$,

$$
\begin{gather*}
s_{i}\left(t_{\alpha}\right)=t_{s_{i}(\alpha)} \tag{6}\\
s_{i}(X(x))-X\left(\left(s_{i} x\right)\right)=\left(\alpha_{i}, x\right) t_{\alpha_{i}} \tag{7}
\end{gather*}
$$

(2): Modulo (6), the relation (7) is equivalent to W - equivariance of the linear map $Y: \mathfrak{h} \rightarrow A_{\text {trig }}$.

Based on the above criterion of flatness and W - Equivariance of the trigonometric connection, we make the following definition.

Definition 2.7. The holonomy Lie algebra $A_{\text {trig }}$ is an algebra endowed generated by:

- a set of elements $\left\{t_{\alpha}\right\}_{\alpha \in \Phi} \subset A_{\text {trig }}$ such that $t_{-\alpha}=t_{\alpha}$.
- a linear map $X: \mathfrak{h} \rightarrow A_{\text {trig }}$.
satisfy the relations in Theorem 2.4 and Proposition 2.6.
The monodromy of the trigonometric connection (4) gives representation of the extended braid group $\widehat{B}_{\mathfrak{g}}{ }^{\text {ex }}$.

3. Basic ODE result

Proposition 3.1. Let $\mathcal{U} \subset \mathbb{C}$ be a connected neighborhood of $0, A \in \operatorname{End}(F)$, and R : $\mathcal{U} \rightarrow \operatorname{End}(F)$ a holomorphic function. Let $H_{0} \in \operatorname{End}(F)$ be such that $\left[A, H_{0}\right]=0$. Then, there exists a unique holomorphic function $H: \mathcal{U} \rightarrow \operatorname{End}(F)$ such that $H(0)=H_{0}$ and

$$
\frac{d H}{d z}=\frac{[A, H]}{z}+R H
$$

Moreover, H is a holomorphic function of H_{0}.

4. Large volume limit solutions

4.1. Let F be a finite-dimensional complex vector space, and consider a flat connection on the trivial vector bundle over $H_{\text {reg }}$ with fiber F of the form

$$
\begin{equation*}
\nabla=d-\sum_{\alpha \in \Phi_{+}} \frac{d \alpha}{e^{\alpha}-1} t_{\alpha}-d X \tag{8}
\end{equation*}
$$

where $\Phi_{+} \subset \Phi$ is a chosen system of positive roots, $X: \mathfrak{h} \rightarrow \operatorname{End}(F)$ is a linear map, and $d X$ is regarded as a translation-invariant 1 -form on H. Note that if $\left\{u_{i}\right\}$ and $\left\{u^{i}\right\}$ are dual bases of $\mathfrak{h}{ }^{*}$ and \mathfrak{h} respectively, then $d X=d u_{i} X\left(u^{i}\right)$, where the summation over i is implicit.
4.2. The connection ∇ descends to the trivial vector bundle over $T_{\text {reg }}$, where $T \cong \mathfrak{h} / P^{\vee}$ is the adjoint torus corresponding to the root system Φ. Let $\bar{T} \cong \mathbb{C}^{n}$ be the partial compactification determined by the embedding $T \hookrightarrow\left(\mathbb{C}^{*}\right)^{n}$ given by sending $p \in T$ to the point with coordinates $z_{i}=e^{-\alpha_{i}}(p)$, and let us rewrite ∇ with respect to the coordinates z_{i}.

Choosing $u_{i}=\alpha_{i}$ as basis of \mathfrak{h}^{*}, so that the dual basis $\left\{u^{i}\right\}$ of \mathfrak{h} is given by the fundamental coweights $\left\{\lambda_{i}^{\vee}\right\}$ yields $d u_{i}=-d z_{i} / z_{i}$ and

$$
d X=d u_{i} X\left(u^{i}\right)=-\frac{d z_{i}}{z_{i}} X\left(\lambda_{i}^{\vee}\right)
$$

Further, if $\alpha=\sum_{i} m_{\alpha}^{i} \alpha_{i}$ is a positive root, then $e^{\alpha}=\prod_{i} z_{i}^{-m_{\alpha}^{i}}$ so that

$$
\frac{d \alpha}{e^{\alpha}-1}=\frac{e^{-\alpha}}{1-e^{-\alpha}} d \alpha=-\sum_{i: m_{\alpha}^{i} \geq 1} m_{\alpha}^{i} \frac{z_{i}^{m_{\alpha}^{i}-1} \prod_{j \neq i} z_{j}^{m_{\alpha}^{j}}}{1-\prod_{j} z_{j}^{m_{\alpha}^{j}}} d z_{i}
$$

which is a regular on the neighborhood of 0 in \mathbb{C}^{n}. Thus, in the coordinates z_{i}, ∇ takes the form

$$
\begin{equation*}
\nabla=d-\sum_{i=1}^{n} \frac{d z_{i}}{z_{i}} A_{i}-R(z) \tag{9}
\end{equation*}
$$

where $A_{i}=X\left(\lambda_{i}^{\vee}\right)$, and R is a holomorphic 1-form on \mathcal{U} with values in $\operatorname{End}(F)$.
4.3. Existence. Let $\mathcal{U} \subset \mathbb{C}^{n}$ be a polydisc centered at the origin, and ∇ a connection on $\mathcal{U} \times F$ of the form (9), where $A_{i} \in \operatorname{End}(F)$ and $R=\sum_{i} R_{i} d z_{i}$ is a holomorphic 1-form on \mathcal{U} with values in $\operatorname{End}(F)$. The following is straighforward.

Lemma 4.1. The connection ∇ is integrable iff the following holds for any $1 \leq i \neq j \leq n$

$$
\begin{gathered}
{\left[A_{i}, A_{j}\right]=0 \quad\left[A_{i}, R_{j}\right]=0} \\
\partial_{i} R_{j}-\partial_{j} R_{i}=\left[R_{i}, R_{j}\right]
\end{gathered}
$$

Assume that ∇ is integrable and non-resonant, that is such that the eigenvalues of each A_{i} do not differ by non-zero integers.

Proposition 4.2. Let $H_{0} \in G L(F)$ be such that $\left[A_{i}, H_{0}\right]=0$ for any i. Then, there exists a unique holomorphic function $H: \mathcal{U} \rightarrow G L(F)$ such that $H(0)=H_{0}$ and, for any determination of the logarithm, the function

$$
\Psi(z)=H(z) \cdot \prod_{i=1}^{n} z_{i}^{A_{i}}
$$

is a fundamental solution of ∇.
Proof. H is required to satisfy the system of PDEs

$$
\begin{equation*}
\partial_{i} H=\frac{\left[A_{i}, H\right]}{z_{i}}+R_{i} H \tag{10}
\end{equation*}
$$

together with the initial condition $H(0)=H_{0}$. The case $n=1$ is covered by Proposition 3.1. Assume now that $n \geq 2$, set $\mathcal{U}^{(j)}=\mathcal{U} \cap\left\{z_{j}=\cdots=z_{n}=0\right\}$ and assume by induction on $j=1, \ldots, n-1$ the existence and uniqueness of a holomorphic function $H^{(j)}: \mathcal{U}^{(j)} \rightarrow$ $G L(F)$ which satisfies (10) for all $i \leq j$, together with $H^{(j)}(0)=H_{0}$. Since A_{j+1} commutes with A_{i} and R_{i} for $i \leq j,\left[A_{j+1}, H^{(j)}\right]$ is a solution of (10) for any $i \leq j$ with initial condition 0 so that, by uniqueness, A_{j+1} commutes with $H^{(j)}$. For each $\left(z_{1}, \ldots, z_{j}\right) \in \mathcal{U}^{(j)}$, we may apply Proposition 3.1 to find a unique $H^{(j+1)}=H^{(j+1)}\left(z_{j+1} ; z_{1}, \ldots, z_{j}\right)$ which satisfies (10)
for $i=j+1$ together with the initial condition $H^{(j+1)}\left(0 ; z_{1}, \ldots, z_{j}\right)=H^{(j)}\left(z_{1}, \ldots, z_{j}\right)$. Since $H^{(j+1)}$ varies holomorphically in z_{1}, \ldots, z_{j}, there remains to show that it satisfies (10) for $i=1, \ldots, j$. Denote by χ_{i} the covariant derivative $\partial_{i}-z_{i}^{-1} \operatorname{ad}\left(A_{i}\right)-R_{i}$. Since $\left[Q_{k}, Q_{j+1}\right]=0$ for $k=1, \ldots, j, \phi_{k} H^{(j+1)}$ solves (10) for $i=j+1$, with initial condition $\phi_{k} H^{(j)}=0$ whence, by uniqueness $\phi_{k} H^{(j+1)}=0$.
4.4. Fix henceforth a given determination of the logarithm.

Corollary 4.3. If the eigenvalues of each $X\left(\lambda_{i}^{\vee}\right)$ do not differ by non-zero integers, there is a unique fundamental solution of the trigonometric connection (8) of the form

$$
\Psi=H \cdot \prod_{i} z_{i}^{-X\left(\lambda_{i}^{\vee}\right)}
$$

where H is holomorphic on a neighborhood of the point 0 and such that $H(0)=1$.
The fundamental solution Ψ will be called the large volume limit solution of ∇ (another name: asymptotically free).

Corollary 4.4. Assume the eigenvalues of $X\left(\lambda_{i}^{\vee}\right)$ do not differ by non-zero integers, then the monodromy of the generators $X_{\lambda_{j}^{v}}$ is giving by:

$$
\mu_{\Psi}\left(X_{\lambda_{j}^{\vee}}\right)=\exp \left(2 \pi \sqrt{-1} X\left(\lambda_{j}^{\vee}\right)\right)
$$

5. Rank 1 reduction

The reference for this part is [2]. We would like to compute the monodromy of the generators S_{j} in the large volume limit solution Ψ. The idea is to reduce the calculations into rank 1 case.

Fix i, and let D_{i} be the trigonometric connection for the rank 1 root system corresponding to α_{i}, that is,

$$
D_{i}=d-\frac{t_{\alpha_{i}}}{e^{\alpha_{i}}-1}+X\left(\lambda_{i}^{\vee}\right) d \alpha_{i}
$$

Let also Ψ_{i} be the large volume limit solution of D_{i} (corresponding to the neighborhood of the point $z_{i}:=\exp \left(-\alpha_{i}\right)=0$, then,

Theorem 5.1. The monodromy of S_{i} in Ψ is equal to the monodromy of S_{i} in Ψ_{i},

$$
\mu_{\Psi}\left(S_{i}\right)=\mu_{\Psi_{i}}\left(S_{i}\right)
$$

Proof. By the existence of the large volume limit solution, we know that

$$
\Psi(z)=H(z) \prod_{i=1}^{n} z_{i}^{X\left(\lambda_{i}^{\vee}\right)}
$$

Consider

$$
\widetilde{\Psi}_{i}:=\left(\lim _{\left(z_{j} \rightarrow 0, j \neq i\right)} H(z)\right) \prod_{i=1}^{n} z_{i}^{X\left(\lambda_{i}^{\vee}\right)},
$$

Then, the AKZ system satisfied by $\widetilde{\Psi}_{i}$ is

$$
\frac{\partial \widetilde{\Psi}_{i}}{\partial \alpha_{i}}=\left(k \frac{t_{\alpha_{i}}}{e^{\alpha_{i}}-1}+X\left(\lambda_{i}^{\vee}\right)\right) \widetilde{\Psi}_{i}
$$

and

$$
\frac{\partial \widetilde{\Psi}_{i}}{\partial \alpha_{j}}=X\left(\lambda_{j}^{\vee}\right) \widetilde{\Psi}_{i}
$$

Since the monodromy $\mu\left(S_{i}\right)$ does not depend on the base point z^{0}, and the path connecting z^{0} and $s_{i}\left(z^{0}\right)$, the path may be replaced by any deformation in $T_{\text {reg }} / W$. We can also degenerate this system by sending the parameters of such a deformation to the limits if the resulting system is well defined. Then the resulting monodromy will remain unchanged. Using this flexibility, we conclude that

$$
\mu_{\Psi}\left(S_{i}\right)=\mu_{\widetilde{\Psi_{i}}}\left(S_{i}\right)
$$

the latter is the "limiting monodromy" for a path with $z_{j},(j \neq i)$ approaching zero.
Note that the following elements is equivariant under the action of s_{i} :

$$
X\left(\lambda_{j}^{\vee}\right), j \neq i, X\left(\lambda_{i}^{\vee}\right)-\frac{1}{2} X\left(\alpha_{i}^{\vee}\right)
$$

The reason is that:

$$
s_{i}(X(x))-X\left(\left(s_{i} x\right)\right)=\left(\alpha_{i}, x\right) t_{\alpha_{i}}
$$

Thus, $s_{i}\left(X\left(\lambda_{j}^{\vee}\right)\right)=X\left(s_{i}\left(\lambda_{j}^{\vee}\right)\right)$, for $j \neq i$. Note the element

$$
\lambda_{i}^{\vee}-\frac{1}{2} X\left(\alpha_{i}^{\vee}\right)=-\sum_{k \neq i} \frac{\left(\alpha_{i}, \alpha_{k}\right)}{\left(\alpha_{i}, \alpha_{i}\right)} \lambda_{k}^{\vee}
$$

Define $E^{(i)}(z)$ by

$$
E^{(i)}(z)=\prod_{j=1}^{n} z_{j}^{X\left(\lambda \lambda_{j}^{\vee}\right)} \cdot z_{i}^{-X\left(\frac{a_{i}^{V}}{2}\right)}
$$

it enjoys the following properties:

- $E^{(i)}(z)$ commutes with s_{i}, that is, $s_{i} \cdot E^{(i)}(z)=E^{(i)}(z) \cdot s_{i}$, where \cdot means the composition as elements of $\operatorname{End}(F)$.
- $E^{(i)}\left(s_{i}(z)\right)=E^{(i)}(z)$.

The fact that $E^{(i)}(z)$ commutes with s_{i} follows from the observation that the following elements commute with s_{i} :

$$
X\left(\lambda_{j}^{\vee}\right), j \neq i, X\left(\lambda_{i}^{\vee}\right)-\frac{1}{2} X_{\alpha_{i}^{\vee}} .
$$

Setting

$$
\Psi_{i}(z)=\widetilde{\Psi}_{i}(z) E^{(i)}(z)=\left(\lim _{z_{j} \rightarrow 0, j \neq i} H(z)\right) z_{i}^{X\left(\frac{\alpha_{i}^{v}}{2}\right)}
$$

Then, the system of equations satisfied by Ψ_{i} becomes precisely the AKZ equation in the rank A_{1} case:

$$
\frac{\partial \Psi_{i}}{\partial \alpha_{i}}=\left(\frac{t_{\alpha_{i}}}{e^{\alpha_{i}}-1}+\frac{X_{\alpha_{i}^{\vee}}}{2}\right) \Psi_{i},
$$

and for $j \neq i$,

$$
\frac{\partial \Psi_{i}}{\partial \alpha_{j}}=0
$$

Let's check the monodromy of Ψ_{i} coincides with the monodromy of $\widetilde{\Psi}_{i}$ by using the properties of $E^{(i)}(z)$:

$$
\mu_{\Psi_{i}}\left(S_{i}\right)=s_{i}\left(\Psi_{i}\right)^{-1} \Psi_{i}=E^{(i)}(z) s_{i}\left(\widetilde{\Psi}_{i}\right)^{-1} \widetilde{\Psi}_{i} E^{(i)}(z)^{-1}=E^{(i)}(z) \mu_{\widetilde{\Psi}_{i}}\left(S_{i}\right) E^{(i)}(z)^{-1}=\mu_{\widetilde{\Psi}_{i}}\left(S_{i}\right)
$$

where the last equality follows from the relations in the extended affine braid group.

6. Affine KZ-connections

Even in the case of rank 1, the calculations of $\mu_{\Psi}(T)$ is not easy.
Definition 6.1. The degenerate affine Hecke algebra \mathcal{H}^{\prime} is the associative algebra generated by $\mathbb{C} W$ and the symmetric algebra $S \mathfrak{h}$, subject to the relations,

$$
s_{i} x_{u}-x_{s_{i}(u)} s_{i}=k_{i}\left(u, \alpha_{i}\right)
$$

for for any simple reflection $s_{i} \in W$ and linear generator x_{u}, for $u \in \mathfrak{h}$, and k_{α} a complex number.

Consider the following \mathcal{H}^{\prime} connection on X

$$
\nabla_{A K Z}=d-\sum_{\alpha \in R_{+}} \frac{k_{\alpha} s_{\alpha} d \alpha}{e^{\alpha}-1}-d u_{i} x_{u^{i}}
$$

By Proposition 2.6, the defining relations of \mathcal{H}^{\prime} are equivalent to integrability and equivariance of the AKZ connection. Thus, the connection is flat and W-equivariant if and only if s_{α}, x_{j} satisfy the relations from the definition of degenerate affine Hecke algebra \mathcal{H}^{\prime}.

Definition 6.2. The affine Hecke algebra \mathbb{H}_{g} associated with root system R is the quotient of the group algebra $\mathbb{C} \widehat{B_{\mathfrak{g}}}$ modulo the following quadratic relations

$$
\left(S_{i}-q_{i}\right)\left(S_{i}+q_{i}^{-1}\right)=0
$$

Proposition 6.3. The monodromy of the flat connection $\nabla_{A K Z}$ factors through the affine Hecke algebra.
Proof. Let $z_{i}:=e^{-\alpha_{i}}$, choose a point $u \in \mathbb{C}^{* n}$, such that, $u_{i}=1$, but $u_{j}>1$, for $j \neq i$. Restrict the AKZ connection to the 1-dimensional subtorus $u \mathbb{C}^{*}=\{u \cdot t\}$, for $t \in \mathbb{C}^{*}$. We get

$$
\left.\nabla_{A K Z}\right|_{u \mathbb{C}^{*}}=d+\frac{k_{\alpha_{i}} s_{\alpha_{i}}}{1-t} d t+R,
$$

where R is a regular form around the neighborhood of $t=1$. Since assume $\alpha \neq \alpha_{j}$, then, there exists some j, such that $m_{\alpha}^{j} \neq 0$, and $u_{j}>1$. In this case, since $1-\prod_{k} u_{k}^{m_{\alpha}^{k}}<1$, then the term $\sum_{\alpha \neq \alpha_{i}} \sum_{k} m_{\alpha}^{k} \frac{t^{-1} \prod_{k} u_{k}^{m_{\alpha}^{k}} \frac{\eta_{\alpha}^{k}}{1-\prod_{\alpha}^{k} s_{\alpha}} u_{k}^{m_{\alpha}^{k}} t_{\alpha}^{m_{\alpha}^{k}}}{1 s}$ regular around the neighborhood of $t=1$.

THen, $\left.\nabla_{A K Z}\right|_{u \mathrm{C}^{*}}$ around $e_{i}^{\alpha}=1$ has a unique solution $\Phi=H\left(z_{i}\right)\left(1-z_{i}\right)^{s_{\alpha_{i}}}$, if $k s_{\alpha_{i}}$ is non-resonant and $H\left(z_{i}\right)$ is regular around $z_{i}=1$.

Since eigenvalues of $s_{\alpha_{i}}$ are ± 1, thus, eigenvalues of $\mu_{\Phi}\left(S_{i}\right)$ are $\pm e^{ \pm \pi \sqrt{-1} k_{\alpha_{i}}}$, which gives the relation:

$$
\left(\mu\left(S_{i}\right)-q_{i}\right)\left(\mu\left(S_{i}\right)+q_{i}^{-1}\right)=0
$$

with $q_{i}=e^{\pi \sqrt{-1} k_{\alpha_{i}}}$.

7. Monodromy of Affine KZ-connections

7.1. Let $\operatorname{Rep}_{f . d}^{n . r .}\left(\mathcal{H}^{\prime}\right)$ be a category consisting of finite dimensional representation of \mathcal{H}^{\prime}, such that the eigenvalues of $x\left(\lambda_{i}^{\vee}\right)$ don't differ by \mathbb{Z}^{*}, for any $i=1, \ldots, n$. (where n.r. $=$ non-resonant=representations where the eigenvalues of $x\left(\lambda_{i}^{\vee}\right)$ do not differ by non-zero integers). Under the non-resonant condition, the large volume limit solution Ψ exists.

Proposition 7.1. The monodromy functor μ_{Ψ} induces an exact, faithful functor:

$$
\mu_{\Psi}: \operatorname{Rep}_{f . d}^{n . r}\left(\mathcal{H}^{\prime}\right) \rightarrow \operatorname{Rep}_{f . d}\left(\mathbb{H}_{g}\right) .
$$

This functor has a right-sided inverse.
Remark 7.2. The functor μ_{Ψ} is consistent with the inclusions of rank 1 subalgebras of degenerate affine Hecke algebra

$$
\mathcal{H}_{s l_{2}^{l}}^{\prime}=\left\langle S_{i}, \frac{X_{\alpha_{i}^{\vee}}}{2}\right\rangle \hookrightarrow \mathcal{H}_{\mathfrak{g}}^{\prime},
$$

and affine Hecke algebra $\mathbb{H}_{s l_{2}^{i}} \hookrightarrow \mathbb{H}_{\mathfrak{g}}$, that is, we have the following commuting diagram:

where the vertical maps are restrictions induced by the inclusions of algebras in diagram (3).
7.2. We wish to compute the monodromy of the AKZ connection on any finite dimensional non-resonant representation M of \mathcal{H}^{\prime}. By the rank 1 reduction, it suffices to do this when $W=\mathbb{Z}_{2}$.

Let \mathcal{H}^{\prime} be the rank 1 degenerate affine Hecke algebra. Then, \mathcal{H}^{\prime} is generated by $s, x=$ $x_{\lambda^{v}}$, with the relations

$$
s^{2}=1, s x+x s=k
$$

Since $M=\mathcal{H}^{\prime} \otimes_{\mathcal{H}^{\prime}} M$, it suffices to do this when M is \mathcal{H}^{\prime} with the left regular action. But, this is an infinite-dimensional representation, so monodromy is not defined a priori.

However, as a $\left(\mathcal{H}^{\prime}, \mathbb{C}[x]\right)$-bimodule, \mathcal{H}^{\prime} is the space of (algebraic) sections of the vector bundle I over \mathbb{C} with fibre at $m \in \mathbb{C}$ over a given by the (finite-dimensional) induced module

$$
I_{m}:=\mathcal{H}^{\prime} \otimes_{\mathbb{C}[x]} \mathbb{C}_{m},
$$

where \mathbb{C}_{m} is endowed with the $\mathbb{C}[x]$ module structure given by evaluation at m. By the PBW theorem for $\mathcal{H}^{\prime} . I_{m}$ is isomorphic to $\mathbb{C Z}_{2}$ as a left \mathbb{Z}_{2} - module.

Since \mathcal{H}^{\prime} acts fibrewise on \mathcal{I}, the monodromy is well defined on those fibres which are non-resonant. Let's determine the point m for which I_{m} is non-resonant.

Choose a basis of I_{m} to be $\frac{s+e}{2} \otimes 1$, and $\frac{-s+e}{2} \otimes 1$. Then, the action of s under this basis is giving by the matrix:

$$
s=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Use the relation $s x+x s=k$, we get $x(s \otimes 1)=m(-s \otimes 1)+k(e \otimes 1), x(-s \otimes 1)=$ $m(s \otimes 1)-k(e \otimes 1)$, and $x(e \otimes 1)=m(e \otimes 1)$.

Then, the action of x under this basis $\frac{s+e}{2} \otimes 1$, and $\frac{-s+e}{2} \otimes 1$ is giving by the matrix:

$$
x=\left(\begin{array}{cc}
\frac{k}{2} & \frac{k}{2}+m \\
-\frac{k}{2}+m & -\frac{k}{2}
\end{array}\right)
$$

Then, $\operatorname{det}(x-\lambda)=\lambda^{2}-m^{2}$, which implies that the eigenvalues of x are $\pm m$.
Thus, the induced representation I_{m} is non-resonant, if and only if $m \notin \frac{\mathbb{Z}}{2}$.

Since $x_{\alpha^{\vee}}=2 x$, the matrix for $x_{\alpha^{\vee}}$ is giving by:

$$
x_{\alpha^{\vee}}=\left(\begin{array}{cc}
k & k+2 m \\
-k+2 m & -k
\end{array}\right)=k\left(s-\left(\begin{array}{cc}
0 & -1-\frac{2 m}{k} \\
1-\frac{2 m}{k} & 0
\end{array}\right)\right)
$$

7.3. Rank 1 calculations. The reference for this part is [1]. The goal of this subsection is to show the following explicit formula of $\mu(S)$ acting on the induced representation I_{m}.
Theorem 7.3. Assume $m \notin \frac{\mathbb{Z}}{2}$, then $\mu(S)$ action on I_{m} is giving by:

$$
\begin{equation*}
\mu(S)+\frac{q-q^{-1}}{\mu\left(X_{\alpha^{\vee}}\right)^{-1}-1}=g\left(x_{\alpha^{\vee}}\right)\left(s-k x_{\alpha^{\vee}}^{-1}\right), \tag{12}
\end{equation*}
$$

where $g(v)=\frac{\Gamma^{2}(1+v)}{\Gamma(1+k+v) \Gamma(1-k+v)}$, and Γ is the gamma function.
Remark 7.4. Under the assumption $m \notin \frac{\mathbb{Z}}{2}$, the two operators $\mu\left(X_{\alpha^{\vee}}\right)^{-1}-1$ and $x_{\alpha^{\vee}}$ are invertible.

Let $v=\exp \left(-\alpha_{i}\right)$, then, the $A_{1}-\mathrm{AKZ}$ system becomes

$$
\begin{equation*}
\frac{\partial \Phi}{\partial v}+\left(\frac{k s}{1-v}+\frac{x_{\alpha^{v}}}{2 v}\right) \Phi=0 \tag{13}
\end{equation*}
$$

where $s, x_{\alpha^{\vee}} \in \mathcal{H}^{\prime}$, such that: $s^{2}=1$, and $s x_{\alpha^{\vee}}+x_{\alpha^{\vee}} s=2 k$.
One may assume that

$$
s=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), x_{\alpha^{\vee}}=k S-k\left(\begin{array}{cc}
0 & \lambda \\
\mu & 0
\end{array}\right)
$$

acting on the induced representation I_{m}, where

$$
\lambda=-1-\frac{2 m}{k}, \mu=1-\frac{2 m}{k}
$$

Consider the following vector version of (13) with

$$
\varphi=\binom{v^{-k / 2}(v-1)^{k} f_{1}}{v^{k / 2}(v-1)^{-k} f_{2}}
$$

Plug the above vector version φ in (13), we get

$$
\frac{\partial f_{1}}{\partial v}=k \lambda v^{k}(v-1)^{-2 k} f_{2}
$$

and

$$
\frac{\partial f_{2}}{\partial v}=k \mu v^{-k}(v-1)^{2 k} f_{1}
$$

Take the second derivation of both of them, we get

$$
\frac{\partial^{2} f_{1}}{\partial v^{2}}+\left(\frac{2 k}{v-1}+\frac{1-k}{v}\right) \frac{\partial f_{1}}{\partial v}-\frac{k^{2} \lambda \mu}{4 v^{2}} f_{1}=0
$$

The classical hypergeometric equation is

$$
z(1-z) \frac{\partial^{2} u}{\partial z^{2}}+(c-(a+b+1) v) \frac{\partial u}{\partial z}-a b u=0
$$

It has two solutions $F(a, b, c ; z)$ and $z^{1-c} F(a-c+1, b-c+1,2-c ; z)$. Here $F(a, b, c ; z)$ is the hypergeometric function defined by

$$
F(a, b, c ; z)=1+\frac{a b}{c} z+\frac{a(a+1) b(b+1)}{2 c(c+1)} z^{2}+\frac{a(a+1)(a+2) b(b+1)(b+2)}{2 \cdot 3 c(c+1)(c+2)} z^{3}+\cdots
$$

From the above definition, it's obvious that, $F(a, b, c ; 0)=1$ and

$$
F(a, b, c ; z)=F(b, a, c ; z)
$$

There are two properties of $F(a, b, c ; z)$ we are going to use:
(1) $\frac{\partial F(a, b, c ; z)}{\partial z}=F(a+1, b+1, c+1 ; z)$,
(2) There is a formula, see Page 289 of [10],
$F(a, b, c ; z)=\frac{\Gamma(b-a) \Gamma(c)}{\Gamma(b) \Gamma(c-a)} \frac{F\left(a, 1-c+a, 1-b+a, z^{-1}\right)}{(-z)^{a}}+\frac{\Gamma(a-b) \Gamma(c)}{\Gamma(a) \Gamma(c-b)} \frac{F\left(b, 1-c+b, 1-a+b, z^{-1}\right)}{(-z)^{b}}$,
which computes the parallel transport of $F(a, b, c ; z)$ from $z=0$ to $z=\infty$ in terms of the basis if solutions of the hypergeometric equation at $z=\infty$.
Now the equation satisfied by f_{1} is a variant of hypergeometric equation. Making the change of variable that $f_{1}=v^{\frac{k}{2}(\sqrt{1+\lambda \mu}+1)} F$, then the function F satisfies the classical hypergeometric equation with

$$
a=k+\zeta, b=k, c=1+\zeta
$$

where $\zeta=k \sqrt{1+\lambda \mu}$.
Thus, we get two solutions of f_{1}, that is:
$f_{1}=v^{\frac{k}{2}(\sqrt{1+\lambda \mu}+1)} F(a, b, c, v)$, and $f_{1}=v^{\frac{k}{2}(\sqrt{1+\lambda \mu}+1)} v^{1-c} F(a-c+1, b-c+1,2-c ; z)$, which gives a fundamental solution of Φ :

$$
\Phi=\left(\begin{array}{ll}
\varphi_{1} & \varphi_{1}^{*} \\
\varphi_{2} & \varphi_{2}^{*}
\end{array}\right)
$$

where $\varphi_{1}=v^{\zeta / 2}(v-1)^{k} F(a, b, c, v)$, and $\varphi_{2}=v^{\zeta / 2}(v-1)^{k}\left(a F+2 v a b c^{-1} F(a+1, b+1, c+1, v)\right)$. The notation $f^{*}:=f(-\zeta)$ for any function f depending on ζ.

Using the fact that $F(a, b, c ; v) \rightarrow 1$ as $v \rightarrow 0$, we have: as $v \rightarrow 0$,

$$
\left(\begin{array}{ll}
\varphi_{1} & \varphi_{1}^{*} \\
\varphi_{2} & \varphi_{2}^{*}
\end{array}\right) \rightarrow\left(\begin{array}{cc}
v^{\zeta / 2}(v-1)^{k} & v^{-\zeta / 2}(v-1)^{k} \\
a(k \lambda)^{-1} v^{\zeta / 2}(v-1)^{k} & a^{*}(k \lambda)^{-1} v^{-\zeta / 2}(v-1)^{k}
\end{array}\right)
$$

Denote

$$
G:=\left(\begin{array}{cc}
1 & 1 \\
a(k \lambda)^{-1} & a^{*}(k \lambda)^{-1}
\end{array}\right)
$$

and let $\Phi_{0}(v):=\Phi(v) G^{-1}$, we have, $\Phi_{0}(v)$ is a fundamental solution of $A_{1}-\mathrm{AKZ}$ system.
Lemma 7.5. The solution $\Phi_{0}(v)$ is the large limit volume solution.
Proof. First, let's diagonalize the matrix $x_{\alpha^{\vee}}$, we have

$$
G^{-1} x_{\alpha^{\vee}} G=\left(\begin{array}{cc}
-\zeta & 0 \\
0 & \zeta
\end{array}\right)
$$

To check $\Phi_{0}(v)$ is a large limit volume solution, we need to show that $\Phi_{0}(v) v^{\frac{x_{\alpha} v}{2}} \sim 1$, as $v \rightarrow 0$.

Since

$$
v^{\frac{x_{\alpha} v}{2}}=G\left(\begin{array}{cc}
v^{\frac{-\zeta}{2}} & 0 \\
0 & v^{\frac{\zeta}{2}}
\end{array}\right) G^{-1}
$$

then,

$$
\Phi_{0}(v) v^{\frac{x_{\alpha} v}{2}} \sim\left(\begin{array}{cc}
v^{\zeta / 2} & v^{-\zeta / 2} \\
a(k \lambda)^{-1} v^{\zeta / 2} & a^{*}(k \lambda)^{-1} v^{-\zeta / 2}
\end{array}\right)\left(\begin{array}{cc}
v^{\frac{-\zeta}{2}} & 0 \\
0 & v^{\frac{\zeta}{2}}
\end{array}\right) G^{-1}=1
$$

as $v \rightarrow 0$.

We are going to use the large volume limit solution $\Phi_{0}(v)$ to calculate the function g. By the formula (14), we have as $w=v^{-1} \rightarrow 0$,

$$
\binom{\varphi_{1}}{\varphi_{2}} \rightarrow w^{\zeta / 2}(w-1)^{k} s G\binom{\exp (-\pi i \zeta) \frac{\Gamma(b-a) \Gamma(c)}{\Gamma(b) \Gamma(c-a)}}{\frac{\Gamma(a-b) \Gamma(c)}{\Gamma(a) \Gamma(c-b)}}
$$

Hence the monodromy

$$
\begin{aligned}
\mu_{\Phi}(T) & =(s(\Phi(v)))^{-1} \Phi \\
& =(\Phi(w))^{-1} s \Phi \\
& =\left(\begin{array}{ll}
t_{1} & t_{1}^{*} \\
t_{2} & t_{2}^{*}
\end{array}\right),
\end{aligned}
$$

where

$$
\binom{t_{1}}{t_{2}}=\binom{\exp (-\pi i \zeta) \frac{\Gamma(b-a) \Gamma(c)}{\Gamma(b) \Gamma(c-a)}}{\frac{\Gamma(a-b) \Gamma(c)}{\Gamma(a) \Gamma(c-b)}}
$$

So we get $\mu_{\Phi_{0}}(T)=G \mu_{\Phi}(T) G^{-1}=G\left(\begin{array}{cc}t_{1} & t_{1}^{*} \\ t_{2} & t_{2}^{*}\end{array}\right) G^{-1}$.
To finish the proof, we need the following formulas

$$
x_{\alpha^{\vee}} G=G\left(\begin{array}{cc}
-\zeta & 0 \\
0 & \zeta
\end{array}\right)
$$

and

$$
G^{-1}\left(S-k x_{\alpha^{\vee}}^{-1}\right) G=\zeta^{-1}\left(\begin{array}{cc}
0 & \zeta-k \\
\zeta+k & 0
\end{array}\right)
$$

Now rewrite both sides of the equality:

$$
\mu(T)+\frac{q-q^{-1}}{\mu(X)^{-1}-1}=g\left(x_{\alpha^{\vee}}\right)\left(s-\frac{k}{x_{\alpha^{\vee}}}\right),
$$

We have:

$$
\left(\begin{array}{cc}
t_{1} & t_{1}^{*} \\
t_{2} & t_{2}^{*}
\end{array}\right)+\left(\begin{array}{cc}
* & 0 \\
0 & *
\end{array}\right)=\zeta^{-1}\left(\begin{array}{cc}
0 & g(-\zeta)(\zeta-k) \\
g(\zeta)(\zeta+k) & 0
\end{array}\right)
$$

Compare both sides on the left lower corner of the matrices, we get $g(\zeta)=t_{2} \zeta(\zeta+k)^{-1}$. Use the property of Gamma function that $\Gamma(1+z)=z \Gamma(z)$, we have:

$$
g(\zeta)=t_{2} \zeta(\zeta+k)^{-1}=\frac{\Gamma(a-b) \Gamma(c)}{\Gamma(a) \Gamma(c-b)} \zeta(\zeta+k)^{-1}=\frac{\Gamma(\zeta) \Gamma(1+\zeta) \zeta}{\Gamma(k+\zeta) \Gamma(1+\zeta-k)(\zeta+k)}=\frac{\Gamma^{2}(1+\zeta)}{\Gamma(1+k+\zeta) \Gamma(1+\zeta-k)} .
$$

By the rank 1 reduction, we get the following theorem:
Theorem 7.6. Assume eigenvalues of $x_{\lambda_{i}}$ do not differ by integers, for any $i=1, \ldots, n$, then,

$$
\mu\left(S_{i}\right)+\frac{q_{i}-q_{i}^{-1}}{\mu\left(X_{\alpha_{i}^{\vee}}\right)^{-1}-1}=g\left(x_{\alpha_{i}^{\vee}}\right)\left(s_{i}-k x_{\alpha_{i}^{v}}^{-1},\right.
$$

where $g(x)=\frac{\Gamma^{2}(1+x)}{\Gamma(1+k+x) \Gamma(1-k+x)}$, and Γ is the gamma function.
7.4. Define an adapted completion of \mathcal{H}^{\prime}. Note first that the defining relations of \mathcal{H}^{\prime} can be written as

$$
\begin{equation*}
s f(x)=f(-x) s+k / 2 \frac{(f(x)-f(-x))}{x} \tag{15}
\end{equation*}
$$

where $f \in \mathbb{C}[x]$. Let O be the algebra of meromorphic functions on \mathbb{C} with poles contained in $\frac{\mathbb{Z}}{2}$. We can define an algebra $\widehat{\mathcal{H}}^{\prime}$ as the quotient of $\mathbb{C} W \otimes O$ by the relations (15). Then

- finite dimensional representations of $\widehat{\mathcal{H}}^{\prime}$ are the same as finite dimensional representations of \mathcal{H}^{\prime} supported (as $\mathbb{C}[x]$-modules) away from $\frac{\mathbb{Z}}{2}$.
- the same holds if we restrict to non-resonant representations on both sides.

Since the monodromy can be regarded as a map

$$
\mu: \mathbb{H} \rightarrow \widehat{\mathcal{H}}^{\prime},
$$

it follows that the formula (12) compute the monodromy on finite dimensional non-resonant representations of \mathcal{H}^{\prime} supported away from $\frac{\mathbb{Z}}{2}$.

Appendix A. Yangians and Trigonometric Casimir connection

Recall the definition of Yangian:
Definition A.1. The Yangian $Y(\mathfrak{g})$ is the associative algebra over $\mathbb{C}[\hbar]$ generated by elements $x, J(x), x \in \mathfrak{g}$ subject to the relations
in terms of generators $z, J(z)$, for $z \in \mathfrak{g}$, with the property that

- $\lambda x+\mu y($ in $Y(\mathfrak{g}))=\lambda x+\mu y($ in $\mathfrak{g})$.
- $x y-y x=[x, y]$
- $J(\lambda x+\mu y)=\lambda J(x)+\mu J(y)$
- $[x, J(y)]=J([x, y])$
- $[J(x), J([y, z])]+[J(z), J([x, y])]+[J(y), J([z, x])]=\hbar^{2}\left(\left[x, x_{a}\right],\left[\left[y, x_{b}\right],\left[z, x_{c}\right]\right]\right)\left\{x^{a}, x^{b}, x^{c}\right\}$
- $[[J(x), J(y)],[z, J(w)]]+[[J(z), J(w)],[x, J(y)]]=\hbar^{2}\left(\left[x, x_{a}\right],\left[\left[y, x_{b}\right],\left[[z, w], x_{c}\right]\right]\right)\left\{x^{a}, x^{b}, J\left(x^{c}\right)\right\}$, for any $x, y, z, w \in \mathfrak{g}$ and $\lambda, \mu \in \mathbb{C}$, where $\left\{x_{a}\right\},\left\{x^{a}\right\}$ are dual bases of \mathfrak{g} with respect to $($,$) and$

$$
\left\{z_{1}, z_{2}, z_{3}\right\}=\frac{1}{24} \sum_{\sigma \in S_{3}} z_{\sigma(1)} z_{\sigma(2)} z_{\sigma(3)}
$$

The following is Drinfeld's new realization of $Y(\mathfrak{g})$. Let $a_{i j}:=\frac{2\left(\alpha_{i}, \alpha_{j}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}$ be the entries of the Cartan matrix A of \mathfrak{g}. Set $d_{i}:=\frac{\left(\alpha_{i}, \alpha_{i}\right)}{2}$, so that $d_{i} a_{i j}=d_{j} a_{j i}$ for any $i, j \in I$.

Definition A.2. The Yangian $Y_{\hbar}(\mathfrak{g})$ is the associative algebra, free over $\mathbb{C}[\hbar]$, generated by $X_{i, r}^{ \pm}$, and $H_{i, r}(i \in I, r \in \mathbb{N})$, with the following defining relations

$$
\begin{gather*}
{\left[H_{i_{1}, r_{1}}, H_{i_{2}, r_{2}}\right]=0,\left[H_{i_{1}, 0}, X_{i_{2}, s}^{ \pm}\right]= \pm d_{i_{1}} a_{i_{1}, i_{2}} X_{i_{2}, s}^{ \pm},\left[X_{i_{1}, r_{1}}^{+}, X_{i_{2}, r_{2}}^{-}\right]=\delta_{i_{1} i_{2}} H_{i_{1}, r+s}} \tag{16}\\
{\left[H_{i_{1}, r_{1}+1}, X_{i_{2}, r_{2}}^{ \pm}\right]-\left[H_{i_{1}, r_{1}}, X_{i_{2}, r_{2}+1}^{ \pm}\right]= \pm \hbar \frac{d_{i_{1}} a_{i_{1}, i_{2}}}{2} S\left(H_{i_{1}, r_{1}}, X_{i_{2}, r_{2}}^{ \pm}\right)} \tag{17}\\
{\left[X_{i_{1}, r_{1}+1}^{ \pm}, X_{i_{2}, r_{2}}^{ \pm}\right]-\left[X_{i_{1}, r_{1}}^{ \pm}, X_{i_{2}, r_{2}+1}^{ \pm}\right]= \pm \hbar \frac{d_{i_{1}} a_{i_{1}, i_{2}}}{2} S\left(X_{i_{1}, r_{1}}^{ \pm}, X_{i_{2}, r_{2}}^{ \pm}\right)} \tag{18}\\
\sum_{\pi \in S_{j}}\left[X_{i_{1}, r_{\pi(1)}}^{ \pm},\left[X_{i_{1}, r_{\pi(2)}}^{ \pm}, \ldots,\left[X_{i_{1}, r_{(T)}}^{ \pm}, X_{i_{2}, s}^{ \pm}\right] \ldots\right]\right]=0, \tag{19}
\end{gather*}
$$

where $j=1-a_{i_{1}, i_{2}}, r_{1}, \ldots, r_{j}, s \in \mathbb{N}$.

Choose root vectors $X_{\alpha} \in \mathfrak{g}_{\alpha}$ for any $\alpha \in \Phi$ such that $\left(X_{\alpha}, X_{-\alpha}\right)=1$ and let

$$
\kappa_{\alpha}=X_{\alpha} X_{-\alpha}+X_{-\alpha} X_{\alpha}
$$

be the truncated Casimir operator.
Then, the relation between the two presentations is giving by the following formula:

$$
X_{i, 1}^{ \pm}=J\left(X_{i}^{ \pm}\right)-\lambda \omega_{i}^{ \pm}, H_{i, 1}^{ \pm}=J\left(H_{i}^{ \pm}\right)-\lambda v_{i}^{ \pm},
$$

where

$$
\omega_{i}^{ \pm}= \pm \frac{1}{4} \sum_{\alpha \in \Phi^{+}} S\left(\left[X_{i}^{ \pm}, X_{\alpha}^{ \pm}\right], X_{\alpha}^{\mp}\right)-\frac{1}{4} S\left(X_{i}^{ \pm}, H_{i}\right)
$$

and

$$
v_{i}=\frac{1}{4} \sum_{\alpha \in \Phi^{+}}\left(\alpha_{i}, \alpha\right) \kappa_{\alpha}-\frac{H_{i}^{2}}{2}
$$

Lemma A.3. There is a Lie algebra homomorphism $A_{\text {trig }} \rightarrow Y(\mathfrak{g})$, given by:

$$
t_{\alpha} \mapsto \kappa_{\alpha}
$$

and

$$
Y(t) \mapsto-2 J(t)
$$

In terms of the generator $X(t)$, we have:

$$
X(t) \mapsto \frac{\hbar}{2} \sum_{\alpha \in \Phi_{+}}(t, \alpha) \kappa_{\alpha}-2 J(t)
$$

Definition A.4. The trigonometric Casimir connection of \mathfrak{g} is the connection $\nabla_{\text {trig }, C}$ given by

$$
\nabla_{\mathrm{trig}, C}=d-\sum_{\alpha \in \Phi_{+}} \frac{e^{\alpha}+1}{e^{\alpha}-1} d \alpha \kappa_{\alpha}+2 d u_{i} J\left(u^{i}\right)
$$

Theorem A.5. The trigonometric Casimir connection is flat and W-equivariant.
Remark A.6. Let V be a finite-dimensional $Y(\mathfrak{g})$-module and \mathbb{V} the holomorphically trivial vector bundle over $H_{\text {reg }}$ with fibre V. The connection $\nabla_{\text {trig }, C}$ induces a flat connection on \mathbb{V}. To push it down to the quotient by W we use the "up and down" trick to circumvent the fact that W does not in general act on V.

Specifically, since V is an integrable \mathfrak{g}-module, the triple exponentials

$$
\exp \left(e_{\alpha_{i}}\right) \exp \left(-f_{\alpha_{i}}\right) \exp \left(e_{\alpha_{i}}\right) \in \mathrm{GL}(V)
$$

defined by a choice of simple root vectors $e_{\alpha_{i}} \in \mathfrak{g}_{\alpha_{i}}, f_{\alpha_{i}} \in \mathfrak{g}_{-\alpha_{i}}$ are well-defined elements of $\mathrm{GL}(V)$. They give rise to an action on V of an extension \tilde{W} of W by the sign group $\mathbb{Z}_{2}^{\operatorname{dim} \mathfrak{h}}$ called the Tits extension \tilde{W} of W. It's a fact that \tilde{W} is a quotient of the affine braid group \hat{E}_{g} which may therefore be made to act on V. It is then easy to check that the pull-back of the flat vector bundle (\mathbb{V}, ∇) to the universal cover of $H_{\text {reg }}$ is equivariant under $\hat{B}_{\mathfrak{g}}$ acting by deck transformations on the base and through the \tilde{W}-action on the fibres.
A.1. The affine $\mathbf{K Z}$ connection. The degenerate affine Hecke algebra \mathcal{H}^{\prime} of W is, very roughly speaking, the Weyl group of the Yangian $Y(\mathfrak{g})$. Let K be the vector space of W invariant fuctions $\Phi \rightarrow \mathbb{C}$ and denote the natural linear coordinates on K by $k_{\alpha}, \alpha \in \Phi / W$.
Definition A.7. The degenerate affine Hecke algebra \mathcal{H}^{\prime} associated to Weyl group W is the algebra over $\mathbb{C}[K]$ generated the by group algebra $\mathbb{C} W$ and the symmetric algebra $S \mathfrak{h}$ subject to the relations

$$
s_{i} x_{u}-x_{s_{i}(u)} s_{i}=k_{\alpha_{i}} \alpha_{i}(u),
$$

for any simple reflection $s_{i} \in W$ and linear generator $x_{u}, u \in \mathfrak{h}$, of $S \mathfrak{h}$.
The AKZ connection is the trigonometric, \mathcal{H}^{\prime}-valued connection given by

$$
\nabla_{\mathrm{aff}, K Z}=d-\sum_{\alpha \in \Phi_{+}} \frac{e^{\alpha}+1}{e^{\alpha}-1} d \alpha k_{\alpha} s_{\alpha}-d u_{i} x\left(u^{i}\right)
$$

Appendix B. Monodromy of trigonometric Casimir connections

Similar as the rational Casimir connection, we make a conjecture that the monodromy of the trigonometric Casimir connection $\nabla_{\text {trig }, C}$ is equivalent to action of $\hat{B}_{\mathfrak{g}}$ coming from the quantum Weyl group operators of the quantum loop algebra $U_{\hbar}(L \mathrm{~g})$.

Let $L \mathfrak{g}=\mathfrak{g}\left[t, t^{-1}\right]$ be the loop algebra of \mathfrak{g}.
Definition B.1. The quantum loop algebra $U_{\hbar}(L g)$ is generated by $E_{i} \cdot F_{i}, H_{i}$, for $i=$ $0,1, \ldots, n$, (or $i \in I \sqcup\{0\}$), where: $H_{0}=-H_{\theta}=-\sum_{i \in I} a_{i} H_{i}$, where $\theta \in \mathfrak{b}^{*}$ is the highest root and the integers a_{i} are given by $\theta^{\vee}=\sum_{i} a_{i} \alpha_{i}^{\vee}$. modulo relations.
Proposition B.2. The quantum loop algebra $U_{\hbar}(L g)$ is a Hopf algebra over the ring of formal power series $\mathbb{C}[[\hbar]]$, generated elements $E_{i, k}, F_{i, k}$, and $H_{i, k}$ subject to the following relations:
(QL1): For $i, j \in I$, and $r, s \in \mathbb{Z}$,

$$
\left[H_{i, r}, H_{j, s}\right]=0
$$

(QL2): For any $i, j \in I$, and $k \in \mathbb{Z}$,

$$
\left[H_{i, 0}, E_{j, k}\right]=a_{i j} E_{j, k},\left[H_{i, 0}, F_{j, k}\right]=-a_{i j} F_{j, k}
$$

(QL3): For any $i, j \in I$, and $k \in \mathbb{Z}^{*}$,

$$
\left[H_{i, r}, E_{j, k}\right]=\frac{\left[r a_{i j}\right]_{q_{i}}}{r} E_{j, r+k},\left[H_{i, r}, F_{j, k}\right]=-\frac{\left[r a_{i j}\right]_{q_{i}}}{r} F_{j, r+k}
$$

(QL4): For any $i, j \in I$, and $k \in \mathbb{Z}$,

$$
\begin{aligned}
E_{i, k+1} E_{j, l}-q_{i}^{a_{i j}} E_{j l} E_{i, k+1} & =q_{i}^{a_{i j}} E_{i, k} E_{j, l+1}-E_{j, l+1} E_{i, k} \\
F_{i, k+1} F_{j, l}-q_{i}^{-a_{i j}} F_{j l} F_{i, k+1} & =q_{i}^{-a_{i j}} F_{i, k} F_{j, l+1}-F_{j, l+1} F_{i, k}
\end{aligned}
$$

(QL5): For any $i, j \in I$, and $k, l \in \mathbb{Z}$,

$$
\left[E_{i, k}, F_{j, l}\right]=\delta_{i j} \frac{\psi_{i, k+l}-\phi_{i, k+l}}{q_{i}-q_{i}^{-1}}
$$

(QL6): Let $i \neq j$, and set $m=1-a_{i j}$. For every $k_{1}, \ldots, k_{m} \in \mathbb{Z}$, and $l \in \mathbb{Z}$

$$
\sum_{\pi \in S_{n}} \sum_{s=0}^{m}(-1)^{s}\left[\begin{array}{c}
m \\
s
\end{array}\right]_{q_{i}} E_{i, k_{\pi(1)}} \cdots E_{i, k_{\pi(s)}} E_{j, l} E_{i, k_{\pi(s+1)}} \cdots E_{i, k_{\pi(n)}}=0
$$

$$
\sum_{\pi \in S_{n}} \sum_{s=0}^{m}(-1)^{s}\left[\begin{array}{c}
m \\
s
\end{array}\right]_{q_{i}} F_{i, k_{\pi(1)}} \cdots F_{i, k_{\pi(s)}} F_{j, l} F_{i, k_{\pi(s+1)}} \cdots F_{i, k_{\pi(m)}}=0
$$

where

$$
\psi_{i}(z)=\exp \left(\frac{\hbar d_{i}}{2} H_{i, 0}\right) \exp \left(\left(q_{i}-q_{i}^{-1}\right) \sum_{s \geq 1} H_{i, s} z^{-s}\right)
$$

and

$$
\phi_{i}(z)=\exp \left(\frac{-\hbar d_{i}}{2} H_{i, 0}\right) \exp \left(-\left(q_{i}-q_{i}^{-1}\right) \sum_{s \geq 1} H_{i,-s} z^{s}\right)
$$

By a finite-dimensional representation of $U_{\hbar}(L \mathfrak{g})$, we shall mean a module \mathcal{V} which is topologically free and finitely-generated over $\mathbb{C}[[\hbar]]$. Such a \mathcal{V} is integrable and therefore endowed with a quantum Weyl group action of the affine braid group $\hat{B}_{\mathfrak{g}}$. This action is given by letting the generator corresponding to $i \in \hat{I}=I \sqcup\{0\}$ act by

$$
\bar{S}_{i}^{\hbar} v=\sum_{a, b, c \in \mathbb{Z}, a-b+c=-\lambda\left(\alpha_{i}^{\vee}\right)}(-1)^{b} q_{i}^{b-a c} E_{i}^{a} F_{i}^{b} E_{i}^{c} v
$$

where $v \in \mathcal{V}$ if of weight $\lambda \in \mathfrak{h}^{*}$ and X_{i}^{a} is the divided power $\frac{X^{a}}{[a]_{i}!}$ with

$$
q=e^{\hbar}, q_{i}=q^{\frac{\left(\alpha_{i}, \alpha_{i}\right)}{2}}
$$

It is known that the Yangian $Y(\mathfrak{g})$ and the quantum loop algebra $U_{\hbar}(L \mathfrak{g})$ have the same finite-dimensional representation theory. By analogy with the quantum Weyl group description of the monodromy of the (rational) Casimir connection of \mathfrak{g}, we make the following

Conjecture B. 3 (V. Toledano Laredo). The monodromy of the trigonometric Casimir connection is equivalent to the quantum Weyl group action of the affine braid group \hat{B} on finite-dimensional $U_{\hbar}(L \mathfrak{g})$-modules.

What's known of the above conjecture?
Theorem B. 4 (S. Gautam, V. Toledano Laredo). Let \mathfrak{g} be $\mathfrak{s l}_{2}$ or $\mathfrak{g l}_{2}$, the above conjecture is true.

References

[1] I. Cherednik, Affine extensions of Knizhnik-Zamolodchikov equations and Lusztig's isomorphisms, Special functions (Okayama, 1990), 63-77, ICM-90 Satell. Conf. Proc., Springer, 1991. 7.3
[2] I. Cherednik, Double affine Hecke algebras, London Mathematical Society Lecture Note Series, 319. Cambridge University Press, Cambridge, 2005. xii+434 pp. 1.2, 5
[3] B. Ion, Involutions of Double Affine Hecke Algebras,Compositio Math. 139 (2003), no.1, 67-84. MR 20249651.2
[4] S. Gautam, V. Toledano Laredo, Monodromy of the trigonometric Casimir connection for $s l_{2}$, to appear in the proceedings of the AMS Special Session on Noncommutative Birational Geometry and Cluster Algebras.
[5] I. G. Macdonald, Affine Hecke algebras and orthogonal polynomials. Cambridge Tracts in Mathematics, 157. Cambridge University Press, Cambridge, 2003.
[6] V.Toledano Laredo, Flat connections and quantum groups, Acta Appl. Math. 73, no. 1-2, 155-173, (2002).
[7] V. Toledano Laredo, The trigonometric Casimir connection of a simple Lie algebra, J. Algebra 329, 286327,(2011). MR 27693272
[8] V. Toledano Laredo, Y. Yang, Differential equations on hyperplane complements, part 1, lecture notes. 2
[9] H. van der Lek, Extended Artin groups. Singularities, Part 2 (Arcata, Calif., 1981), 117-121, Proc. Sympos. Pure Math., 40, Amer. Math. Soc., 1983.
[10] E.T. Whittaker, G.N. Watson, A course of modern analysis, Cambridge University Press, Cambridge, 1996. MR 1424469

