### SINGULAR SYMPLECTIC MODULI SPACES

#### YINBANG LIN

ABSTRACT. These are notes of a talk given at the NEU-MIT graduate student seminar. It is based on the paper by Kaledin-Lehn-Sorger, showing examples of singular symplectic moduli spaces of sheaves that do not admit a symplectic resolution.

#### 1. Introduction

Let X be a projective K3 surface and H be an ample divisor. Let  $v \in H^{\text{even}}(X,\mathbb{Z})$  be the Mukai vector of a sheaf. Let  $M_v$  be the moduli space of Gieseker semistable sheaves with respect to the polarization H. Suppose

$$v = mv_0$$

for a primitive  $v_0$ , i.e. not an integral multiple of another Mukai vector, and  $m \in \mathbb{N}$ .

When v is primitive, that is m = 1, and H is generic, we know that  $M_v$  is an irreducible symplectic manifold. This reflects the geometry of the surface. Barbara Bolognese [Bol16] has demonstrated an example that the moduli space is actually a K3 surface. When the moduli space has higher dimension, Isabel Vogt [Vog16] has explained that it is deformation equivalent to Hilbert scheme of points.

When v is not primitive, the moduli space  $M_v$  is singular. However, the stable locus  $M_v^s$  still admits a non-degenerate 2-form. We are interested in the question whether the 2-form can be extended to resolutions of singularities of  $M_v$ . (Actually, if it extends to one, it extends to all.) Bolognese [Bol16] has shown us O'Grady's example [O'G99] where the answer is positive. This article is primarily interested in the cases where the 2-form does not extend to a resolution of singularities.

These are summarized in Table 2. In this article, we will concentrate on the case where  $v_0 = (r_0, c_0, a_0)$  and m satisfy the following conditions.

- (1) Either  $r_0 > 0$  and  $c_0 \in NS(X)$ , or r = 0,  $c_0 \in NS(X)$  is effective, and  $a_0 \neq 0$ .
- (2)  $m \ge 3$  and  $\langle v_0, v_0 \rangle \ge 2$ , or m = 2 and  $\langle v_0, v_0 \rangle \ge 4$ .

The first condition makes sure that  $v_0$  is the Mukai vector of a coherent sheaf. In the rest of this article, we will assume that  $v_0$  and m satisfy these conditions.

We aim to demonstrate the following result.

**Theorem.** If either  $m \ge 2$  and  $\langle v_0, v_0 \rangle > 2$  or m > 2 and  $\langle v_0, v_0 \rangle \ge 2$ , then  $M_{mv_0}$  is a locally factorial singular symplectic variety, which does not admit a proper symplectic resolution.

<sup>&</sup>lt;sup>1</sup>Similar statements also hold for abelian surfaces.

We have summarized the beautiful argument by Kaledin-Lehn-Sorger in Table 1. For the reader's convenience, we recall the Serre's condition  $(S_k)$  and regularity  $(R_k)$  in codimension k.

 $(S_k)$ : A ring A satisfies condition  $S_k$  if for every prime ideal  $\mathfrak{p} \subset A$ , depth  $A_{\mathfrak{p}} \geq \min\{k, \operatorname{ht}(\mathfrak{p})\}$ .

 $(R_k)$ : A ring A satisfies condition  $S_k$  if for every prime ideal  $\mathfrak{p} \subset A$  such that  $\operatorname{ht}(\mathfrak{p}) \leq k$ ,  $A_{\mathfrak{p}}$  is regular.

#### 2. Preliminaries

2.1. Construction of moduli spaces. Let v = v(E) be a Mukai vector and  $P_v$  be the corresponding Hilbert polynomial, i.e.  $P_v(m) = \chi(E \otimes \mathscr{O}_X(mH))$ . Suppose k is sufficiently large,  $N = P_v(k)$ , and  $\mathcal{H} = \mathscr{O}_X(-kH)^{\oplus N}$ . Let

$$R \subset \operatorname{Quot}_{X,H}(\mathcal{H}, P_v)$$

be the Zariski closure of the following subscheme

$$\{[q:\mathcal{H}\to E]\mid q \text{ GIT-semistable},\ H^0(q(kH)) \text{ isom.}\},$$

equipped with a PGL(N)-linearized ample line bundle. Let

$$R^s \subset R^{ss} \subset R$$

be the open subscheme of stable points and semistable points. The moduli space  $M_v$  of semistable sheaves is the GIT quotient

$$\pi: \mathbb{R}^{ss} \to \mathbb{R}^{ss} /\!\!/ \operatorname{PGL}(N) \cong M_v.$$

The orbit of [q] is closed in  $\mathbb{R}^{ss}$  if and only if E is polystable. In that case, the stabilizer subgroup of [q] in  $\operatorname{PGL}(N)$  is isomorphic to

$$\operatorname{PAut}(E) = \operatorname{Aut}(E)/\mathbb{C}^*$$
.

Moreover, by Luna's slice theorem, there is a  $\mathrm{PAut}(E)$ -invariant subscheme  $[q] \in S \hookrightarrow R^{ss}$  such that

$$(\operatorname{PGL}(N) \times S) /\!\!/ \operatorname{PAut}(E) \to R^{ss} \quad \text{and} \quad S /\!\!/ \operatorname{PAut}(E) \to M_v$$

are étale and

$$T_{[q]}S \cong \operatorname{Ext}^1(E,E).$$

2.2. Kuranishi map and the key proposition. Let  $\mathbb{C}[\operatorname{Ext}^1(E,E)]$  be the ring of polynomial functions on  $\operatorname{Ext}^1(E,E)$ . Let

$$A \coloneqq \mathbb{C}[\operatorname{Ext}^1(E, E)]^{\wedge}$$

be the completion at the maximal ideal  $\mathfrak{m}$  of functions vanishing at 0. We denote the kernel of the trace map  $\operatorname{Ext}^2(E,E) \to H^2(\mathscr{O}_X)$  by  $\operatorname{Ext}^2(E,E)_0$ . The automorphism group  $\operatorname{Aut}(E)$  naturally acts on  $\operatorname{Ext}^1(E,E)$  and  $\operatorname{Ext}^2(E,E)_0$  by conjugation. Since scalars act trivially, this induces an action of  $\operatorname{PAut}(E)$ .

There is a linear map

$$\kappa : \operatorname{Ext}^{2}(E, E)_{0}^{*} \to \mathbb{C}[\operatorname{Ext}^{1}(E, E)]^{\hat{}},$$

called the Kuranishi map, with the following properties.

- (1) The map  $\kappa$  is PAut(E)-equivariant.
- (2) Let I be the ideal generated by the image of  $\kappa$ . Then there are isomorphisms of complete rings

$$\hat{\mathscr{O}}_{S,[q]} \cong A/I$$
 and  $\hat{\mathscr{O}}_{M_{v,[E]}} \cong (A/I)^{\operatorname{PAut}(E)}$ .

(3) For every linear form  $\phi \in \operatorname{Ext}^2(E,E)_0^*$  and  $e \in \operatorname{Ext}^1(E,E)$ ,

$$\kappa(\phi)(e) = \frac{1}{2}\phi(e \cup e) + \text{ higher order terms in e.}$$

Denote the quadratic part of the Kuranishi map by

$$\kappa_2 : \operatorname{Ext}^2(E, E)_0^* \to S^2 \mathbb{C}[\operatorname{Ext}^1(E, E)]^*,$$

$$\phi \mapsto (e \mapsto \frac{1}{2}\phi(e \cup e)).$$

Let  $J \subset \mathbb{C}[\operatorname{Ext}^1(E, E)]$  be ideal generated by the image of  $\kappa_2$ . Then J is the defining ideal of  $F = \mu^{-1}(0)$  where  $\mu$  is the following map

$$\mu : \operatorname{Ext}^{1}(E, E) \to \operatorname{Ext}^{2}(E, E)_{0},$$

$$e \mapsto \frac{1}{2}(e \cup e).$$

Ideals  $I \subset \mathbb{C}[\operatorname{Ext}^1(E,E)]^{\wedge}$  and  $J \subset \mathbb{C}[\operatorname{Ext}^1(E,E)]$  are related as follows. First, notice the graded ring gr A associated to the  $\mathfrak{m}$ -adic filtration of  $\mathbb{C}[\operatorname{Ext}^1(E,E)]^{\wedge}$  is canonically isomorphic to  $\mathbb{C}[\operatorname{Ext}^1(E,E)]$ . For any ideal  $\mathfrak{a} \subset A$ , let in( $\mathfrak{a}$ )  $\subset$  gr A denote the ideal generated by the leading terms (lowest degree terms) in(f), for all  $f \in \mathfrak{a}$ . Then,

$$J \subset \operatorname{in}(I)$$
.

and we have the following inequalities

$$\dim F = \dim \operatorname{gr} A/J$$

$$\geq \dim \operatorname{gr} A/\operatorname{in}(I) = \dim \operatorname{gr}(A/I)$$

$$= \dim(A/I) \geq \operatorname{ext}^{1}(E, E) - \operatorname{ext}^{2}(E, E)_{0}.$$

Suppose  $v = mv_0$  where  $v_0$  and m satisfy the conditions in the introduction. Then, the inequalities above are all equalities:

**Proposition 1.** The null-fiber F is an irreducible normal complete intersection of dimension  $ext^1(E, E) - ext^2(E, E)_0$ . Moreover, it satisfies  $R_3$ .

This statement actually holds more generally for a class of symplectic moment map. This is the key proposition in the paper [KLS06].

## 3. Normality, regularity and factoriality

In this section, we will show various regularity results.

**Proposition 2.** Let H be an arbitrary ample divisor Let  $E = \bigoplus_{i=1}^{s} E_i^{\oplus n_i}$  be a polystable sheaf such that  $v(E_i) \in Nv_0$ . Consider  $[q : \mathcal{H} \to E] \in R^{ss}$  and a slice  $S \subset R^{ss}$  to the orbit of [q]. Then,  $\mathscr{O}_{S,[q]}$  is a normal complete intersection domain of dimension

(2) 
$$\operatorname{ext}^{1}(E, E) - \operatorname{ext}^{2}(E, E)_{0}$$

that has property  $R_3$ .

*Proof.* By Proposition 1,  $F = \mu^{-1}(0) = \operatorname{Spec}(\operatorname{gr} A/J)$  is a normal complete intersection variety of dimension (2). Thus, we have equalities at all places in (1). Therefore,  $J = \operatorname{in}(I)$ . It follows that

(3) 
$$\operatorname{gr}\hat{\mathcal{O}}_{S,[q]} = \operatorname{gr}(A/I) = \operatorname{gr}A/\operatorname{in}(I) = \Gamma(F, \mathcal{O}_F)$$

is a normal complete intersection. In particular,  $\operatorname{gr}(\hat{\mathcal{O}}_{S,[q]})$  is Cohen-Macaulay, hence satisfies  $S_k$  for all  $k \in \mathbb{N}$ .

Moreover,  $\operatorname{gr}(\mathscr{O}_{S,[q]}) = \operatorname{gr}(\hat{\mathscr{O}}_{S,[q]})$  is smooth in codimension 3. Then by Proposition 3,  $\mathscr{O}_{S,[q]}$  itself is a normal complete intersection which satisfies  $R_3$ .

Equalities (3) is crucial to the argument, relating the slice to the key proposition, Proposition 1.

The following statement in commutative algebra allows us to recover regularity properties of a local ring from those of its associated graded ring.

**Proposition 3.** Let  $(B, \mathfrak{m})$  be a noetherian local ring with residue field  $B/\mathfrak{m} \cong \mathbb{C}$ . Let  $\operatorname{gr} B$  be the graded ring associated to the  $\mathfrak{m}$ -adic filtration. Then,  $\dim B = \dim \operatorname{gr} B$  and if  $\operatorname{gr} B$  is an integral domain, normal or a complete intersection, then the same is true for B. Moreover, if  $\operatorname{gr} B$  satisfies  $R_k$  and  $S_{k+1}$ , for some  $k \in \mathbb{N}$ , then B satisfies  $R_k$ .

The following result of  $R^{ss}$  being local factorial will be the basis to apply Drezet's result to prove the  $M_v$  is local factorial.

- **Proposition 4.** (1) Let H be a v-general ample divisor. Then  $R^{ss}$  is normal and locally a complete intersection of dimension  $\langle v, v \rangle + 1 + N^2$ . It satisfies  $R_3$  and hence is locally factorial.
  - (2) Suppose that  $E = E_0^{\oplus m}$  for some stable sheaf  $E_0$  with  $v(E_0) = v_0$ . Let H be an arbitrary ample divisor. There is an open neighborhood U of  $[E] \in M_v$  such that  $\pi^{-1}(U) \subset R^{ss}$  is locally factorial of dimension  $\langle v, v \rangle + 1 + N^2$ .
- Proof. (1) Let  $[q: \mathcal{H} \to E] \in R^{ss}$  be a point with closed orbit, and let  $S \subset R^{ss}$  be a PAut(E)-invariant slice through [q]. By Proposition 2, the local ring  $\mathscr{O}_{S,[q]}$  is a normal complete intersection satisfying  $R_3$ . Being normal, locally a complete intersection, or having property  $R_3$  are open properties [Gro61, 19.3.3, 6.12.9]. Hence there is a neighborhood U of [q] in S that is normal, locally a complete intersection and has property  $R_3$ .

The natural morphism  $\operatorname{PGL}(N) \times S \to R^{ss}$  is smooth. Therefore, every closed orbit in  $R^{ss}$  has a neighborhood that has the same properties.

Finally, every PGL(N) orbit of  $R^{ss}$  meets such an open neighborhood. Then,  $R^{ss}$  has the same properties. Hence,  $R^{ss}$  is locally factorial due to the following theorem of Grothendieck [Gro62, XI Corollary 3.14].

(2) The second assertion follows analogously.

**Theorem 1** (Grothendieck). Let B be a noetherian local ring. If B is a complete intersection and regular in codimension  $\leq 3$ , then B is factorial.

Then, a result of Drezet [Dre91, Theorem A] implies that

**Theorem 2.** Let H be a v-general ample divisor. The moduli space  $M_v$  is locally factorial.

*Remark.* This is the property that distinguishes the examples studied here from O'Grady's examples. The examples studied here do not admit symplectic resolution.

### 4. Irreducibility

Before showing the irreducibility, let us first state the following preparatory result: if the moduli space has a "nice" connected component, then the component will be all of the moduli space.

**Theorem 3.** Let X be a projective K3 or abelian surface. Suppose  $Y \subset M_v$  be a connected component parametrizing only stable sheaves. Then  $M_v = Y$ .

The idea of the proof of this theorem is as follows. Fix a point  $[F] \in Y$  and suppose that there is a point  $[G] \in M_v \backslash Y$ . We can assume that there is a universal family  $\mathbb{E} \in \text{Coh}(Y \times X)$ . Let  $p: Y \times X \to Y$  and  $q: Y \times X \to X$  be the projections. Since F and G are numerically equal, the same is true for the relative Ext-sheaves  $\text{Ext}_p^{\bullet}(q^*F, \mathbb{E})$  and  $\text{Ext}_p^{\bullet}(q^*G, \mathbb{E})$ , by Grothendieck-Riemann-Roch. This will lead to a contradiction. For details of the argument, see [KLS06].

This theorem has the following important consequence.

**Theorem 4.** Let  $v = mv_0$  and H be a v-general ample divisor. Then,  $M_v$  is a normal irreducible variety of dimension  $2 + \langle v, v \rangle$ .

*Proof.* By Proposition 4,  $R^{ss}$  is normal, therefore  $M_v$  is normal.

If m = 1,  $M_v = M_{v_0}$  parametrizes stable sheave and hence  $M_v$  is smooth. Theorem 3 implies that  $M_v$  is irreducible.

By induction, assume now  $m \ge 2$  and assertions have been proved for  $1 \le m' < m$ . For every partition m = m' + m'', such that  $1 \le m' \le m''$ , consider

(4) 
$$\phi(m', m''): M_{m'v_0} \times M_{m''v_0} \rightarrow M_{mv_0},$$

$$([E'], [E'']) \mapsto [E' \oplus E''],$$

and let  $Y(m', m'') \subset M_v$  denote its image. Then, Y(m', m'') are irreducible components of strictly semistable locus of  $M_v$ . Since all Y(m', m'') are irreducible (by induction) and

intersect in the points of the form  $[E_0^{\oplus m}]$ ,  $[E_0] \in M_{v_0}$ , the strictly semistable locus is connected. Since  $M_v$  is normal, connected components are irreducible. In particular, there is a unique irreducible component that meets the strictly semistable locus. Theorem 3 excludes the possibility of other components. Therefore,  $M_v$  is irreducible.

#### 5. Proof of the main theorem

We will first show that the moduli space is indeed singular, and the singular locus has high comdimension.

**Proposition 5.** The singular locus  $M_{v,\text{sing}}$  of  $M_v$  is nonempty and equals to the locus of strictly semistable sheaves. The irreducible components of  $M_{v,\text{sing}}$  correspond to integers m',  $1 \le m' \le m/2$ , and have codimension  $2m'(m-m')\langle v_0, v_0 \rangle - 2$ , respectively. In particular, codim  $M_{v,\text{sing}} \ge 4$ .

*Proof.* Recall that the strictly semistable locus is the union of Y(m', m''), (4). Also notice that

$$\phi(m', m''): M_{m'v_0} \times M_{m''v_0} \to Y(m', m'')$$

is finite and surjective. A simple dimension calculation shows that they have the desired codimension.

Since  $M_v$  is smooth at stable points, it suffices to show that strictly semistable points are singular. It is enough to show that  $M_v$  is singular at a generic

$$[E' \oplus E''] \in Y(m', m''),$$

where E' and E'' are stable. In this case,  $\mathrm{PAut}(E) \cong \mathbb{C}^*$ ,  $\mathrm{Ext}^2(E,E) \cong \mathbb{C}$ , and the Kuranishi map is completely determine by an invariant  $f \in \mathbb{C}[\mathrm{Ext}^1(E,E)]^{\wedge}$ . Moreover, according to properties of Kuranishi map,

$$\hat{\mathscr{O}}_{M_{2},[E]} \cong (\mathbb{C}[\operatorname{Ext}^{1}(E,E)]^{\wedge})^{\mathbb{C}^{*}}/(f).$$

The group  $\mathbb{C}^*$  acts on

$$\operatorname{Ext}^1(E,E) \cong \operatorname{Ext}^1(E',E') \oplus \operatorname{Ext}^1(E',E'') \oplus \operatorname{Ext}^1(E'',E') \oplus \operatorname{Ext}^1(E'',E'')$$

with weights 0, 1, -1, and 0. Then

$$\operatorname{Ext}^1(E,E) /\!\!/ \mathbb{C}^* = \operatorname{Ext}^1(E',E') \times C \times \operatorname{Ext}^1(E'',E'')$$

where  $C \subset M(d, \mathbb{C})$  is the cone of matrices of rank  $\leq 1$  and  $d = \operatorname{ext}^1(E', E'') = m'm''\langle v_0, v_0 \rangle \geq 2$ . In particular, C is singular. The quotient of a singular local ring by a non-zero divisor cannot become regular. Therefore,  $\hat{\mathcal{O}}_{M_v,[E]}$  is singular.

A more precise statement of the main theorem is as follows

**Theorem 5.** The moduli space  $M_v$  is a locally factorial symplectic variety of dimension  $2 + \langle v, v \rangle$ . The singular locus is non-empty and has codimension  $\geq 4$ . All singularities are symplectic, but there is no open neighborhood of a singular point in  $M_v$  that admits a projective symplectic resolution.

Symplectic singularities are in the sense of Beauville [Bea00]. A normal variety V has symplectic singularities if the nonsingular locus  $V_{\text{reg}}$  carries a closed symplectic 2-form whose pull-back in any resolution  $Y \to V$  extends to a holomorphic 2-form on Y. In particular, this last condition is automatic if the singular locus  $V_{\text{sing}}$  has codimension  $\geq 4$ , by Flenner [Fle88].

*Proof.* We have seen that  $M_v$  is locally factorial.

Mukai constructed a closed non-degenerate 2-form on  $M_v^s$ . We also know that the singular locus has codimension  $\geq 4$ . Therefore, singularities are symplectic.

Let  $[E] \in M_v$  be a singular point and  $U \subset M_v$  a neighborhood of [E]. Suppose there is a projective symplectic resolution  $\sigma: U' \to U$ . A result of Kaledin [Kal06] implies that  $\sigma$  is semismall. Let E be the exceptional locus and  $d = \dim E - \dim U_{\text{sing}}$ . Then  $\dim U_{\text{sing}} + 2d \leq \dim U'$ . This, combined with codim  $U_{\text{sing}} = 4$ , implies

## $\operatorname{codim} E \geq 2$ .

On the other hand, since  $\mathcal{O}_{M_v,[E]}$  is factorial, the exceptional locus has codimension 1 (see [Deb01]), contradiction.

#### References

- [Bea00] A. Beauville, Symplectic singularities, Invent. Math. 139(3), 541–549, 2000.
- [Bol16] B. Bolognese, Examples of hyperkähler manifolds as moduli spaces of sheaves on K3 surfaces, preprint.
- [Deb01] O. Debarre, *Higher-dimensional algebraic geometry*, Universitext, Springer-Verlag, New York, xiv+233 pp., 2001.
- [Dre91] J.-M. Drezet, Points non factoriels de variétés de modules de faisceaux semi-stables sur une surface rationnelle, J. Reine. Angew.Math. 413, 99–126, 1991.
- [Fle88] Extendability of differential forms on non-isolated singularities, Invent. Math. 94(2), 317–326, 1988.
- [Gro61] A. Grothendieck, Éléments de géométrie algébrique. III. Étude cohomologique des faisceaux cohérents. I., Inst. Hautes Études Sci. Publ. Math. No. 11, 1961, 167 pp.
- [Gro62] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2). Sminaire de Géométrie Algébrique du Bois-Marie, 1962. North-Holland Publishing Co., Amsterdam, 1968.
- [Kal06] D. Kaledin, Symplectic singularities from the Poisson point of view, J. Reine Angew. Math. 600, 135–156, 2006.
- [KLS06] D. Kaledin, M. Lehn, and Ch. Sorger, Singular symplectic moduli spaces, Invent. Math. 164 (3), 591–614, 2004.
- [O'G99] K. O'Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math. 512, 49–117, 1999.
- [Vog16] I. Vogt, Deformation types of moduli spaces of stable sheaves on a K3 surface, preprint.

### YINBANG LIN

# Table 1. Road map



Table 2.  $M_{mv_0}$ 

|                                  | m = 1                                                                         | $m \ge 2$                                         |
|----------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------|
| $\langle v_0, v_0 \rangle = -2$  | (Mukai) $M_{v_0} = \{ [E_0] \}$                                               | $M_v = \{ [E_0^{\oplus m}] \}$                    |
|                                  | (Mukai) $X = K3$ or abelian surface                                           | $M_v = S^m(M_{v_0})$                              |
| $\langle v_0, v_0 \rangle = 0$   | $\Rightarrow M_{v_0} = \text{K3 or abelian surface}$                          | • sing. in codim. 2                               |
|                                  |                                                                               | • admits symp. resolution $M_{v_0}^{[n]} \to M_v$ |
|                                  | (Mukai, Huybrechts, O'Grady, Yoshioka)                                        | $m = 2  \&  \langle v_0, v_0 \rangle = 2$         |
|                                  | $\bullet$ $X = \text{K3} \Rightarrow$                                         | (O'Grady, Rapagnetta, Lehn-Sorger)                |
|                                  | $M_{v_0}$ def. equ. to $X^{[1+\frac{1}{2}\langle v_0,v_0\rangle]}$            | $M_v$ admits symp. desing.                        |
|                                  | • $X = ab$ . surf. $\Rightarrow$                                              | by blowing up reduced singular locus              |
| $\langle v_0, v_0 \rangle \ge 2$ | $M_{v_0}$ def. equ. to $\mathrm{Pic}_0(X) \times X^{[\frac{1}{2}(v_0, v_0)]}$ |                                                   |
|                                  |                                                                               | else (Kaledin-Lehn-Sorger)                        |
|                                  |                                                                               | • $M_{mv_0}$ loc. fact. sing. symp. var.          |
|                                  |                                                                               | $\bullet$ does not admit proper symp. resolution  |