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YINBANG LIN

Abstract. These are notes of a talk given at the NEU-MIT graduate student seminar.
It is based on the paper by Kaledin-Lehn-Sorger, showing examples of singular symplectic
moduli spaces of sheaves that do not admit a symplectic resolution.

1. Introduction

Let X be a projective K3 surface and H be an ample divisor. Let v ∈ Heven(X,Z) be the
Mukai vector of a sheaf. Let Mv be the moduli space of Gieseker semistable sheaves with
respect to the polarization H. Suppose

v =mv0

for a primitive v0, i.e. not an integral multiple of another Mukai vector, and m ∈ N.
When v is primitive, that is m = 1, and H is generic, we know that Mv is an irreducible

symplectic manifold. This reflects the geometry of the surface. Barbara Bolognese [Bol16]
has demonstrated an example that the moduli space is actually a K3 surface. When the
moduli space has higher dimension, Isabel Vogt [Vog16] has explained that it is deformation
equivalent to Hilbert scheme of points.

When v is not primitive, the moduli space Mv is singular. However, the stable locus
M s

v still admits a non-degenerate 2-form. We are interested in the question whether the
2-form can be extended to resolutions of singularities of Mv. (Actually, if it extends to one,
it extends to all.) Bolognese [Bol16] has shown us O’Grady’s example [O’G99] where the
answer is positive. This article is primarily interested in the cases where the 2-form does not
extend to a resolution of singularities.

These are summarized in Table 2.1 In this article, we will concentrate on the case where
v0 = (r0, c0, a0) and m satisfy the following conditions.

(1) Either r0 > 0 and c0 ∈ NS(X), or r = 0, c0 ∈ NS(X) is effective, and a0 /= 0.
(2) m ≥ 3 and ⟨v0, v0⟩ ≥ 2, or m = 2 and ⟨v0, v0⟩ ≥ 4.

The first condition makes sure that v0 is the Mukai vector of a coherent sheaf. In the rest of
this article, we will assume that v0 and m satisfy these conditions.

We aim to demonstrate the following result.

Theorem. If either m ≥ 2 and ⟨v0, v0⟩ > 2 or m > 2 and ⟨v0, v0⟩ ≥ 2, then Mmv0 is a locally
factorial singular symplectic variety, which does not admit a proper symplectic resolution.

1Similar statements also hold for abelian surfaces.
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We have summarized the beautiful argument by Kaledin-Lehn-Sorger in Table 1. For the
reader’s convenience, we recall the Serre’s condition (Sk) and regularity (Rk) in codimension
k.

(Sk): A ring A satisfies condition Sk if for every prime ideal p ⊂ A, depthAp ≥

min{k,ht(p)}.
(Rk): A ring A satisfies condition Sk if for every prime ideal p ⊂ A such that
ht(p) ≤ k, Ap is regular.

2. Preliminaries

2.1. Construction of moduli spaces. Let v = v(E) be a Mukai vector and Pv be the
corresponding Hilbert polynomial, i.e. Pv(m) = χ(E ⊗OX(mH)). Suppose k is sufficiently
large, N = Pv(k), and H = OX(−kH)⊕N . Let

R ⊂ QuotX,H(H, Pv)

be the Zariski closure of the following subscheme

{[q ∶ H → E] ∣ q GIT-semistable, H0(q(kH)) isom.},

equipped with a PGL(N)-linearized ample line bundle. Let

Rs ⊂ Rss ⊂ R

be the open subscheme of stable points and semistable points. The moduli space Mv of
semistable sheaves is the GIT quotient

π ∶ Rss → Rss � PGL(N) ≅Mv.

The orbit of [q] is closed in Rss if and only if E is polystable. In that case, the stabilizer
subgroup of [q] in PGL(N) is isomorphic to

PAut(E) = Aut(E)/C∗.

Moreover, by Luna’s slice theorem, there is a PAut(E)-invariant subscheme [q] ∈ S ↪ Rss

such that

(PGL(N) × S) � PAut(E)→ Rss and S � PAut(E)→Mv

are étale and

T[q]S ≅ Ext1(E,E).

2.2. Kuranishi map and the key proposition. Let C[Ext1(E,E)] be the ring of poly-
nomial functions on Ext1(E,E). Let

A ∶= C[Ext1(E,E)]∧

be the completion at the maximal ideal m of functions vanishing at 0. We denote the kernel
of the trace map Ext2(E,E)→H2(OX) by Ext2(E,E)0. The automorphism group Aut(E)

naturally acts on Ext1(E,E) and Ext2(E,E)0 by conjugation. Since scalars act trivially,
this induces an action of PAut(E).
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There is a linear map

κ ∶ Ext2(E,E)∗0 → C[Ext1(E,E)]∧,

called the Kuranishi map, with the following properties.

(1) The map κ is PAut(E)-equivariant.
(2) Let I be the ideal generated by the image of κ. Then there are isomorphisms of

complete rings

ÔS,[q] ≅ A/I and ÔMv,[E]
≅ (A/I)PAut(E).

(3) For every linear form φ ∈ Ext2(E,E)∗0 and e ∈ Ext1(E,E),

κ(φ)(e) =
1

2
φ(e ∪ e) + higher order terms in e.

Denote the quadratic part of the Kuranishi map by

κ2 ∶ Ext2(E,E)∗0 → S2C[Ext1(E,E)]∗,

φ ↦ (e↦
1

2
φ(e ∪ e)).

Let J ⊂ C[Ext1(E,E)] be ideal generated by the image of κ2. Then J is the defining ideal
of F = µ−1(0) where µ is the following map

µ ∶ Ext1(E,E) → Ext2(E,E)0,

e ↦
1

2
(e ∪ e).

Ideals I ⊂ C[Ext1(E,E)]∧ and J ⊂ C[Ext1(E,E)] are related as follows. First, notice
the graded ring grA associated to the m-adic filtration of C[Ext1(E,E)]∧ is canonically
isomorphic to C[Ext1(E,E)]. For any ideal a ⊂ A, let in(a) ⊂ grA denote the ideal generated
by the leading terms (lowest degree terms) in(f), for all f ∈ a. Then,

J ⊂ in(I).

and we have the following inequalities

dimF = dim grA/J

≥ dim grA/in(I) = dim gr(A/I)

= dim(A/I) ≥ ext1(E,E) − ext2(E,E)0.(1)

Suppose v = mv0 where v0 and m satisfy the conditions in the introduction. Then, the
inequalities above are all equalities:

Proposition 1. The null-fiber F is an irreducible normal complete intersection of dimension
ext1(E,E) − ext2(E,E)0. Moreover, it satisfies R3.

This statement actually holds more generally for a class of symplectic moment map. This
is the key proposition in the paper [KLS06].
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3. Normality, regularity and factoriality

In this section, we will show various regularity results.

Proposition 2. Let H be an arbitrary ample divisor Let E = ⊕s
i=1E

⊕ni
i be a polystable sheaf

such that v(Ei) ∈ Nv0. Consider [q ∶ H → E] ∈ Rss and a slice S ⊂ Rss to the orbit of [q].
Then, OS,[q] is a normal complete intersection domain of dimension

(2) ext1(E,E) − ext2(E,E)0

that has property R3.

Proof. By Proposition 1, F = µ−1(0) = Spec (grA/J) is a normal complete intersection variety
of dimension (2). Thus, we have equalities at all places in (1). Therefore, J = in(I). It follows
that

(3) grÔS,[q] = gr(A/I) = grA/in(I) = Γ(F,OF )

is a normal complete intersection. In particular, gr(ÔS,[q]) is Cohen-Macaulay, hence satisfies
Sk for all k ∈ N.

Moreover, gr(OS,[q]) = gr(ÔS,[q]) is smooth in codimension 3. Then by Proposition 3, OS,[q]

itself is a normal complete intersection which satisfies R3. �

Equalities (3) is crucial to the argument, relating the slice to the key proposition, Propo-
sition 1.

The following statement in commutative algebra allows us to recover regularity properties
of a local ring from those of its associated graded ring.

Proposition 3. Let (B,m) be a noetherian local ring with residue field B/m ≅ C. Let grB be
the graded ring associated to the m-adic filtration. Then, dimB = dim grB and if grB is an
integral domain, normal or a complete intersection, then the same is true for B. Moreover,
if grB satisfies Rk and Sk+1, for some k ∈ N, then B satisfies Rk.

The following result of Rss being local factorial will be the basis to apply Drezet’s result
to prove the Mv is local factorial.

Proposition 4. (1) Let H be a v-general ample divisor. Then Rss is normal and locally
a complete intersection of dimension ⟨v, v⟩+1+N2. It satisfies R3 and hence is locally
factorial.

(2) Suppose that E = E⊕m
0 for some stable sheaf E0 with v(E0) = v0. Let H be an arbitrary

ample divisor. There is an open neighborhood U of [E] ∈Mv such that π−1(U) ⊂ Rss

is locally factorial of dimension ⟨v, v⟩ + 1 +N2.

Proof. (1) Let [q ∶ H → E] ∈ Rss be a point with closed orbit, and let S ⊂ Rss be a
PAut(E)-invariant slice through [q]. By Proposition 2, the local ring OS,[q] is a
normal complete intersection satisfying R3. Being normal, locally a complete inter-
section, or having property R3 are open properties [Gro61, 19.3.3, 6.12.9]. Hence
there is a neighborhood U of [q] in S that is normal, locally a complete intersection
and has property R3.

The natural morphism PGL(N)×S → Rss is smooth. Therefore, every closed orbit
in Rss has a neighborhood that has the same properties.
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Finally, every PGL(N) orbit of Rss meets such an open neighborhood. Then, Rss

has the same properties. Hence, Rss is locally factorial due to the following theorem
of Grothendieck [Gro62, XI Corollary 3.14].

(2) The second assertion follows analogously.
�

Theorem 1 (Grothendieck). Let B be a noetherian local ring. If B is a complete intersection
and regular in codimension ≤ 3, then B is factorial.

Then, a result of Drezet [Dre91, Theorem A] implies that

Theorem 2. Let H be a v-general ample divisor. The moduli space Mv is locally factorial.

Remark. This is the property that distinguishes the examples studied here from O’Grady’s
examples. The examples studied here do not admit symplectic resolution.

4. Irreducibility

Before showing the irreducibility, let us first state the following preparatory result: if
the moduli space has a “nice” connected component, then the component will be all of the
moduli space.

Theorem 3. Let X be a projective K3 or abelian surface. Suppose Y ⊂Mv be a connected
component parametrizing only stable sheaves. Then Mv = Y .

The idea of the proof of this theorem is as follows. Fix a point [F ] ∈ Y and suppose
that there is a point [G] ∈ Mv/Y . We can assume that there is a universal family E ∈

Coh(Y × X). Let p ∶ Y × X → Y and q ∶ Y × X → X be the projections. Since F and
G are numerically equal, the same is true for the relative Ext-sheaves Ext●p(q

∗F,E) and
Ext●p(q

∗G,E), by Grothendieck-Riemann-Roch. This will lead to a contradiction. For details
of the argument, see [KLS06].

This theorem has the following important consequence.

Theorem 4. Let v = mv0 and H be a v-general ample divisor. Then, Mv is a normal
irreducible variety of dimension 2 + ⟨v, v⟩.

Proof. By Proposition 4, Rss is normal, therefore Mv is normal.
If m = 1, Mv =Mv0 parametrizes stable sheave and hence Mv is smooth. Theorem 3 implies

that Mv is irreducible.
By induction, assume now m ≥ 2 and assertions have been proved for 1 ≤ m′ < m. For

every partition m =m′ +m′′, such that 1 ≤m′ ≤m′′, consider

φ(m′,m′′) ∶Mm′v0 ×Mm′′v0 → Mmv0 ,(4)

([E′], [E′′]) ↦ [E′ ⊕E′′],

and let Y (m′,m′′) ⊂ Mv denote its image. Then, Y (m′,m′′) are irreducible components
of strictly semistable locus of Mv. Since all Y (m′,m′′) are irreducible (by induction) and
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intersect in the points of the form [E⊕m
0 ], [E0] ∈ Mv0 , the strictly semistable locus is con-

nected. Since Mv is normal, connected components are irreducible. In particular, there is a
unique irreducible component that meets the strictly semistable locus. Theorem 3 excludes
the possibility of other components. Therefore, Mv is irreducible. �

5. Proof of the main theorem

We will first show that the moduli space is indeed singular, and the singular locus has
high comdimension.

Proposition 5. The singular locus Mv,sing of Mv is nonempty and equals to the locus of
strictly semistable sheaves. The irreducible components of Mv,sing correspond to integers m′,
1 ≤ m′ ≤ m/2, and have codimension 2m′(m −m′)⟨v0, v0⟩ − 2, respectively. In particular,
codimMv,sing ≥ 4.

Proof. Recall that the strictly semistable locus is the union of Y (m′,m′′), (4). Also notice
that

φ(m′,m′′) ∶Mm′v0 ×Mm′′v0 → Y (m′,m′′)

is finite and surjective. A simple dimension calculation shows that they have the desired
codimension.

Since Mv is smooth at stable points, it suffices to show that strictly semistable points are
singular. It is enough to show that Mv is singular at a generic

[E′ ⊕E′′] ∈ Y (m′,m′′),

where E′ and E′′ are stable. In this case, PAut(E) ≅ C∗, Ext2(E,E) ≅ C, and the Kuranishi
map is completely determine by an invariant f ∈ C[Ext1(E,E)]∧. Moreover, according to
properties of Kuranishi map,

ÔMv ,[E] ≅ (C[Ext1(E,E)]∧)C
∗

/(f).

The group C∗ acts on

Ext1(E,E) ≅ Ext1(E′,E′)⊕Ext1(E′,E′′)⊕Ext1(E′′,E′)⊕Ext1(E′′,E′′)

with weights 0, 1, −1, and 0. Then

Ext1(E,E) �C∗ = Ext1(E′,E′) ×C ×Ext1(E′′,E′′)

where C ⊂M(d,C) is the cone of matrices of rank ≤ 1 and d = ext1(E′,E′′) =m′m′′⟨v0, v0⟩ ≥ 2.
In particular, C is singular. The quotient of a singular local ring by a non-zero divisor cannot
become regular. Therefore, ÔMv ,[E] is singular. �

A more precise statement of the main theorem is as follows

Theorem 5. The moduli space Mv is a locally factorial symplectic variety of dimension
2 + ⟨v, v⟩. The singular locus is non-empty and has codimension ≥ 4. All singularities
are symplectic, but there is no open neighborhood of a singular point in Mv that admits
a projective symplectic resolution.
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Symplectic singularities are in the sense of Beauville [Bea00]. A normal variety V has
symplectic singularities if the nonsingular locus Vreg carries a closed symplectic 2-form whose
pull-back in any resolution Y → V extends to a holomorphic 2-form on Y . In particular, this
last condition is automatic if the singular locus Vsing has codimension ≥ 4, by Flenner [Fle88].

Proof. We have seen that Mv is locally factorial.
Mukai constructed a closed non-degenerate 2-form on M s

v . We also know that the singular
locus has codimension ≥ 4. Therefore, singularities are symplectic.

Let [E] ∈ Mv be a singular point and U ⊂ Mv a neighborhood of [E]. Suppose there is
a projective symplectic resolution σ ∶ U ′ → U . A result of Kaledin [Kal06] implies that σ is
semismall. Let E be the exceptional locus and d = dimE − dimUsing. Then dimUsing + 2d ≤
dimU ′. This, combined with codimUsing = 4, implies

codimE ≥ 2.

On the other hand, since OMv ,[E] is factorial, the exceptional locus has codimension 1 (see
[Deb01]), contradiction. �

References

[Bea00] A. Beauville, Symplectic singularities, Invent. Math. 139(3), 541–549, 2000.
[Bol16] B. Bolognese, Examples of hyperkähler manifolds as moduli spaces of sheaves on K3 surfaces,

preprint.
[Deb01] O. Debarre, Higher-dimensional algebraic geometry, Universitext, Springer-Verlag, New York,

xiv+233 pp., 2001.
[Dre91] J.-M. Drezet, Points non factoriels de variétés de modules de faisceaux semi-stables sur une surface

rationnelle, J. Reine. Angew.Math. 413, 99–126, 1991.
[Fle88] Extendability of differential forms on non-isolated singularities, Invent. Math. 94(2), 317–326, 1988.
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Table 1. Road map

A key estimate (Prop. 1)

↓ Prop. 2

S (étale slice) normal

↓ Prop. 4

Rss normal, loc. factorial

↓ Rss loc. factorial and Drezet’s result

Mv loc. factorial

↓

Mv = Rss�PGL normal

↓ Mv conn. (Thm. 3)

Mv irreducible

↓

Mv singular,

does not admit a symplectic resolution
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