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1. Definitions and examples

We consider affine (a.k.a. linear) algebraic groups over an algebraically closed
field F. Our main examples are the classical groups GLn, PGLn, SLn, Sp2n, SOn,
the additive and multiplicative groups of F denoted by Ga,Gm, as well as the
groups Un, Bn of all uni-triangular and all upper-triangular matrices in GLn.

Definition 1.1. An algebraic group is called unipotent if it acts by unipotent
operators in any rational representation.

For example, Un (or any its algebraic subgroup) is unipotent. More generally
any extension of several copies of Ga is unipotent.

Lemma 1.2. Let G be an algebraic group. Then G contains a unique maximal
normal unipotent subgroup called the unipotent radical of G and denoted by Ru(G).

Definition 1.3. An algebraic group G is called reductive if Ru(G) = {1}.
1
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Remark 1.4. In characteristic 0, this is equivalent to the condition that any ra-
tional representation of G is completely reducible. This is not the case in positive
characteristic.

The basic examples of reductive groups are tori (=groups isomorphic to Gr
m

for some r > 1), GLn, SLn, SOn, Sp2n, their products.
A connected reductive group is called semisimple if its center is finite. For a

general connected reductive group G, the derived subgroup (G,G) is semisimple,
and G = (G,G)Z(G)◦, where Z(G)◦ is the connected component of 1 in the
center Z(G).

2. Borel subgroups, maximal tori, Weyl group

Let G be an algebraic group.

2.1. Borel subgroups.

Definition 2.1. A subgroup B ⊂ G is called a Borel subgroup if it is maximal
(w.r.t. inclusion) of all connected solvable subgroups of G.

Example 2.2. The subgroup Bn ⊂ GLn is Borel.

Theorem 2.3. The following claims hold:
(1) All Borel subgroups of G are conjugate to each other.
(2) If B ⊂ G is a Borel subgroup, then G/B is a projective variety.

2.2. Maximal tori and Weyl group. By a maximal torus in G we mean a
subgroup of G that is a torus and is maximal among tori in G (w.r.t. inclusion).
For example, the subgroup of all diagonal matrices in GLn is a maximal torus.

Theorem 2.4. All maximal tori are conjugate.

From now and until the end of the section on algebraic groups we assume that
G is a connected reductive group. Let T ⊂ G be a maximal torus.

Definition 2.5. The Weyl group W = W (G) is, by definition, NG(T )/T , where
NG(T ) ⊂ G is the normalizer of T .

Note that since all maximal tori are conjugate, W is (non-canonically) inde-
pendent of the choice of T .

3. Root systems and root data

We are going to define root systems and related objects for connected reductive
groups. In characteristic 0 this is usually first done on the level of Lie algebras.
But we also want to work in positive characteristic so cannot really rely on Lie
algebras. It turns out that the story can be retold entirely on the level of groups
and holds in all characteristics.
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3.1. Root subgroups and root system.

Definition 3.1. Let G be a connected reductive group, T its maximal torus. A
subgroup U ′ ⊂ G is called a root subgroup (w.r.t. T ) if

• U ′ ∼= Ga,
• There is α in the character lattice X(T ) (called a root) such that tut−1 =
α(t)u for all t ∈ T, u ∈ U ′ (here in the r.h.s. we view u as an element of
Ga so that the r.h.s. makes sense).

Example 3.2. Consider G = GLn. Let Uij = {E + tEij|t ∈ F}, where we write
E for the identity matrix and Eij for the matrix unit in position (i, j). Then
Uij is a root subgroup and the corresponding root α is εi − εj, where εk maps
diag(t1, . . . , tn) ∈ T to tk ∈ Gm.

Familiar results from the Lie algebra setting in characteristic 0 still hold.

Theorem 3.3. The following claims are true.
(1) A root α ∈ ∆ determines a root subgroup uniquely, let us write Uα for this

subgroup1.
(2) Uα and U−α generate a subgroup of G isomorphic to SL2 or PGL2.
(3) The set ∆ of all roots is a reduced root system, independent of F, ∆∨ is a

dual root system.
(4) W = NG(T )/T is the Weyl group of ∆.
(5) Pick a system of positive roots ∆+ ⊂ ∆ and order it in some way. The

image of the product map∏
α∈∆+

Uα → G, (uα)α∈∆+ 7→
∏

uα,

is a unipotent subgroup, say U of G, normalized by T . The subgroup TnU
is Borel. This gives a bijection between Borel subgroups containing T and
systems of positive roots.

3.2. Root data and classification of connected reductive groups. Our
goal now is to explain the classification of connected reductive algebraic groups
over F. Somewhat surprisingly, this classification is independent of F. To state
this result we need to introduce the notion of a root datum.

Definition 3.4. A (reduced) root datum RD is a quadruple (Λ,Λ∨,∆,∆∨), where
• Λ,Λ∨ are mutually dual lattices,
• ∆ ⊂ Λ,∆∨ ⊂ Λ∨ are dual reduced root systems.

Example 3.5. Let G be a connected reductive group and T ⊂ G be a maximal
torus. Then (X(T ),X(T )∗,∆,∆∨) is a root datum, where ∆,∆∨ were defined in
the previous section.

1This is an analog of the fact that root spaces in the Lie algebra are 1-dimensional
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Definition 3.6. Let RD1 = (Λ1,Λ
∨
1 ,∆1,∆

∨
1 ),RD2 = (Λ2,Λ

∨
2 ,∆2,∆

∨
2 ) be two root

data. By a homomorphism RD1 → RD2 we mean a lattice homomorphism ϕ :
Λ2 → Λ1 (yes, in the opposite direction) such that ϕ : ∆2

∼−→ ∆1 and ϕ∗(ϕ(α)∨) =
α∨ for all α ∈ ∆2.

Example 3.7. Note that, for every homomorphism ϕ : G1 → G2, the image of
a maximal torus T1 ⊂ G1 is contained in a maximal torus T2 ⊂ G2 and hence
we have the pullback map X(T2)→ X(T1). If this map gives a root datum homo-
morphism, we say that ϕ is a central isogeny. Central isogenies include quotients
by central subgroups (such as SLn � PGLn) or inclusions like (G,G) ↪→ G.
We note however that the kernels of central isogenies may be nonreduced group
subschemes, this is the case, for example, for SLp � PGLp in characteristic p.

Theorem 3.8. The following claims hold:
(1) Isomorphism classes of reductive algebraic groups are in bijection with

isomorphism classes of root data via the construction of Example 3.5.
(2) Let RD1,RD2 be two root data and G1, G2 be the corresponding connected

reductive groups. Then any homomorphism RD1 → RD2 gives rise to a
homomorphism G1 → G2 and vice versa.

Let us mention certain special classes of root data.

Example 3.9. Suppose that Λ∨ = Z∆∨ (so that Λ is the weight lattice of the
corresponding root system). The corresponding root datum and algebric groups
are called simply connected (because this is literally so over C). Examples of
simply connected groups include SLn or Sp2n. If RD = (Λ′,Λ′∨,∆,∆∨) is another
root datum, then we have a unique homomorphism ((Z∆∨)∗,Z∆∨,∆,∆∨)→ RD.

Example 3.10. Dually, suppose that Λ = Z∆ (so that Λ∨ is the coweight lattice).
The corresponding root datum is called adjoint (or “of adjoint type”). It has a uni-
versal property dual to that of a simply connected root datum. The corresponding
group is also called adjoint. Examples include SO2n+1 and PGLn.

Remark 3.11. We note that if (Λ,Λ∨,∆,∆∨) is a root datum, then so is
(Λ∨,Λ,∆∨,∆) – the dual root datum. If G corresponds to (Λ,Λ∨,∆,∆∨), then
the group corresponding to (Λ∨,Λ,∆∨,∆) is called the Langlands dual of G and
is denoted by G∨. Landglands dual pairs include (Sp2n, SO2n+1), (SLn, PGLn),
(GLn, GLn). Note that Langlands dual groups have the same Weyl groups.

Remark 3.12. Note that by (2) of Theorem 3.8 every automorphism of a root
datum corresponds to an automorphism of the corresponding group G. In par-
ticular, the multiplication by −1 in Λ is an automorphism of a root datum. The
corresponding automorphism of G is called the Cartan involution, we denote it
by τ . By definition, it restricts to t 7→ t−1 on T and maps every Borel containing
T to its opposite. For example, for G = GLn, we get τ(A) = (AT )−1.
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4. Flag variety and Bruhat decomposition

We fix a Borel subgroup B ⊂ G and consider the flag variety B := G/B. This
is a smooth projective variety of dimension |∆+|. It can be identified with the
variety of Borel subgroups of G via the map gB 7→ gBg−1.

Example 4.1. In the case G = GLn we get the variety Fl of full flags in Fn.

For each w ∈ W , fix a lift ẇ ∈ NG(T ). Consider the locally closed subvariety
BwB := BẇB ⊂ G. Note that BwB = UwB, where we write U for Ru(B). Set
Xw := BwB/B ⊂ B.

Proposition 4.2. (Bruhat decomposition) The following claims hold:
(1) G =

⊔
w∈W BwB, hence B =

⊔
w∈W Xw.

(2) Xw is a single U-orbit, it is an affine space of dimension `(w).

4.1. Bruhat order.

Definition 4.3. Define the Bruhat order on W by w′ � w if Xw′ ⊂ Xw.

Proposition 4.4. The order � can be described combinatorially in one of the
following ways:

(1) this is a transitive closure of the relation w′ ← w, where we write w′ ← w
if `(w) > `(w′) and w = sαw

′ for some α ∈ ∆.
(2) w′ � w if and only if there is a reduced expression w = s1s2 . . . sk in

the product of simple reflections and a sequence i1 < i2 < . . . < ip with w′ =
si1si2 . . . sip.

Example 4.5. For W = S3, the Bruhat order is the order on the vertices of the
following graph:
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5. Parabolic versions

As before, below G is a connected reductive group.

5.1. Parabolic and Levi subgroups.

Definition 5.1. A subgroup P ⊂ G is called parabolic if G/P is projective.

Example 5.2. For G = GLn, the parabolic subgroups are precisely the stabilizers
of partial flags.
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The following proposition gives some properties of parabolic subgroups.

Proposition 5.3. The following claims hold:
(1) A subgroup is parabolic if and only if it contains a Borel subgroup.
(2) Every parabolic subgroup is connected.
(3) Every parabolic (in particular, Borel) subgroup coincides with its normal-

izer in G.

Let us discuss a related notion: that of a Levi subgroup.

Definition 5.4. By a Levi subgroup of G we mean a centralizer of a subtorus.

Note that such a subgroup necessarily contains a maximal torus.

Example 5.5. For G = GLn, the Levi subgroups are precisely the stabilizers of
ordered direct sum decompositions Fn = V1 ⊕ . . .⊕ Vk.

Proposition 5.6. The following claims hold:
(1) Every Levi subgroup is connected and reductive.
(2) For every Levi subgroup L, there is a parabolic subgroup P such that P =

LnRu(P ).
(3) Conversely, any parabolic subgroup P decomposes as P = L n Ru(P ),

where L is a Levi.

Let us now describe standard parabolic and Levi subgroups of G. Let I denote
the set of simple roots. Pick J ⊂ I and letWJ ⊂ W be the subgroup generated by
sα, α ∈ J (such subgroups are called parabolic). Let LJ be the subgroup generated
by T as well as Uα, U−α, α ∈ J . This is a Levi subgroup, it is the centralizer of the
connected component of ∩α∈J kerα. Next, PJ := LJB is a parabolic subgroup.
These Levi and parabolic subgroups are called standard.

Proposition 5.7. Every parabolic subgroup P ⊂ G is conjugate to PJ for a
unique J ⊂ I.

5.2. Partial flag varieties. Fix J ⊂ I and consider a parabolic subgroup P =
PJ . The variety G/P is smooth and projective, it will be called partial flag variety
of G.

Proposition 5.8 (Bruhat decomposition of G/P ). We have G/P =⊔
w∈W/WJ

X[w], where X[w] is UẇP ⊂ G/P . The varieties X[w] are affine spaces
of dimensions `(u), where u is the shortest element in the coset .

Example 5.9. Let G = GLn and P be the stabilizer of a line in Fn. Then we
have G/P = Pn−1. The Bruhat decomposition in this case is the well-known
decomposition of Pn−1 into affine cells. And for grassmannians, we recover the
classical Schubert decomposition.
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So we can also talk about the parabolic Bruhat order on W/WJ , denote it by
�J .

Proposition 5.10. w′WJ �J wWJ if and only if u′ � u, where u′ ∈ w′WJ , u ∈
uWJ are the shortest representatives.

6. Rational representations in characteristic 0

6.1. Classification. Now let charF = 0 so that every rational representation of
every reductive group is completely reducible. Let us recall the classification of
irreducibles. Fix T ⊂ B ⊂ G. For V ∈ Rep(G) we have the weight decomposition
V =

⊕
χ∈X(T ) Vχ, if Vχ 6= {0}, we say that χ is a weight of T . Note that X(T )

comes with a partial order: χ1 6 χ2 if χ2 − χ1 is a sum of positive roots. Note
that for a highest (=maximal w.r.t. this order) weight λ of V , the group B acts
on Vχ via (the pullback of) χ. Let us write Λ for X(T ) and Λ+ for the submonoid
of dominant weights i.e. Λ+ = {λ ∈ Λ | 〈λ, α∨i 〉 > 0 ∀αi ∈ I}.

Theorem 6.1. The irreducible rational representations of G are classified by Λ+

via taking the highest weight.

6.2. Borel-Weil theorem. For λ ∈ Λ we denote by O(λ) the homogeneous
vector bundle on G/B with fiber Fw0λ. For example, for G = SL2 and λ = n ∈ Z,
O(λ) is the usual line bundle O(n).

Theorem 6.2. For λ ∈ Λ+, we have L(λ) ' H0(B,O(λ)). Furthermore, O(λ)
has no higher cohomology.

6.3. Weyl character formula. Define the character chV :=
∑

χ∈Λ dim(Vχ)eχ,
where eχ is a formal symbol. Since, for each w ∈ W , we have ẇVχ = Vw(χ), the
character is W -invariant.

Theorem 6.3. For λ ∈ Λ+ we have

(6.4) chL(λ) =

∑
w∈W (−1)l(w)ew(λ+ρ)∑
w∈W (−1)l(w)ew(ρ)

.

This theorem has several proofs. In fact, one can use localization in equivariant
K-theory to prove that the Euler characteristic of O(λ) (viewed as a representation
of T ) is given by (6.4). Then one deduces Theorem 6.3 from Theorem 6.2.


