CATEGORICAL AFFINE BRAID GROUP ACTION ON SPRINGER RESOLUTIONS

NOTES BY GUFANG ZHAO

Contents

1.	Splitting on Springer fibers	=
2.	Affine braid group action	4
3.	Translation functors on the level of coherent sheaves	(
References		8

1. Splitting on Springer fibers

We have an equivalence of triangulated categories $D^b(\operatorname{Coh}_{\lambda}(\tilde{\mathscr{D}})) \to D^b(\operatorname{Mod}_{\lambda} U)$. Now we link them to the category of coherent sheaves on X.

We state the main theorem of this section. Recall $\mathscr{B}_{\lambda,\chi} = \mathscr{B}_{\chi}^{(1)} \cap T_{\lambda}^* \mathscr{B}^{(1)} \subseteq \tilde{T}^* \mathscr{B}^{(1)} \times_{\mathfrak{h}^{*}(1)} \{\lambda\}.$

Theorem 1.1 ([BMR1]). For all integral $\lambda \in \mathfrak{h}^*$, the Azumaya algebra $\tilde{\mathcal{D}}$ splits on the formal neighborhood of $\mathscr{B}_{\lambda,\chi}$ in $\tilde{T}^*\mathscr{B}^{(1)} \times_{\mathfrak{h}^{*(1)}} \mathfrak{h}$.

As a consequence of Theorem 1.1, Morita theory gives equivalence of categories.

Theorem 1.2. We have equivalence of abelian categories

$$\mathrm{Coh}_{\mathscr{B}_{\lambda,\chi}^{(1)}}\big(\tilde{T}^*\mathscr{B}\times_{\mathfrak{h}^{*(1)}}\mathfrak{h}^*\big)\cong\mathrm{Mod}_{\chi,\lambda}\,\tilde{\mathscr{D}};$$

$$\operatorname{Coh}_{\mathscr{B}_{\lambda,\chi}^{(1)}}(T_{\nu}^{*}\mathscr{B}^{(1)}) \cong \operatorname{Mod}_{\chi} \mathscr{D}^{\lambda}.$$

The rest of this section will be devoted to the proof of Theorem 1.1.

Proposition 1.3 ([BG] § 3). Let $\chi = 0$, and $\zeta = (0, -\rho) \in \mathfrak{g}^{*(1)} \times_{\mathfrak{h}^{*(1)}/\!/W} \mathfrak{h}_{unr}^*$, we have $U_0^{-\rho} \cong \operatorname{End}_k(\delta^{\zeta})$.

Corollary 1.4. Let $\mu^{(1)}: T^*_{-\rho} \mathscr{B}^{(1)} \cong T^* \mathscr{B}^{(1)} \to \mathcal{N}^{(1)}$ be the moment map, then the natural map $\phi: \mu^{(1)*} U^{-\rho} \to \mathscr{D}^{-\rho}$ is an isomorphism.

 $Date \colon \text{November 5, 2013.}$

Proof. The restriction of ϕ to the zero section $\mathscr{B}_{-\rho,0} \subseteq T^*\mathscr{B}^{(1)}$ is an isomorphism, since up to a faithfully flat base change, every fiber of this map is the isomorphism $U^{-\rho} \to \mathscr{E}\operatorname{nd}(\delta^{\zeta})$. Let \mathcal{K} and \mathcal{C} be respectively the kernel an cokernel of ϕ . Then \mathcal{C} restricted to $\mathscr{B}_{-\rho,0}$ is trivial, by the right exactness of restriction. Note that ϕ is G-equivariant, hence so are \mathcal{C} and \mathcal{K} . Then by upper-semi-continuity, \mathcal{C} is trivial, since every G-equivariant neighborhood of $\mathscr{B}_{-\rho,0}$ is the entire $T^*\mathscr{B}^{(1)}$. Now we have a short exact sequence $0 \to \mathcal{K} \to \mu^{(1)*}U^{-\rho} \to \mathscr{D}^{-\rho} \to 0$, with $\mathscr{D}^{-\rho}$ locally free, restriction of this sequence to $\mathscr{B}_{-\rho,0}$ is exact.

Lemma 1.5. Let $U^{\widehat{-\rho}}$ be the completion of U at the Harish-Chandra central character $-\rho$. It is an Azumaya algebra over $\mathfrak{g}_{\widehat{\mathcal{N}^{(1)}}}^{*(1)}$, the formal neighborhood of $\mathcal{N}^{(1)}$ in $\mathfrak{g}^{*(1)}$.

Proof. Note that $U^{\widehat{-\rho}}|_{\mathcal{N}^{(1)}} \cong U^{-\rho}$ is a matrix algebra. Only need to show that $U^{\widehat{-\rho}}$ is locally free, which in turn amounts to show it is flat.

There are two facts: $\mathfrak{g}^{*(1)}$ is flat over $\mathfrak{h}^{*(1)}/W$; and $U(\mathfrak{g})$ is flat over $\mathfrak{h}^{*(1)}/W$ for p large enough. Therefore, $U^{\widehat{0}}$ is flat over $\mathfrak{g}_{\widehat{\mathcal{N}^{(1)}}}^{*(1)}$. So is $U^{\widehat{-\rho}}$ which is a translation of $U^{\widehat{0}}$.

Corollary 1.6. For any closed point $\chi \in \mathcal{N}^{(1)}$, $U^{-\rho}$ is an Azumaya algebra on $\mathfrak{g}_{\hat{\chi}}^{*(1)}$, the formal neighborhood of χ in $\mathfrak{g}^{*(1)}$. Moreover, it splits on $\mathfrak{g}_{\hat{\chi}}^{*(1)}$.

To summarize, $\tilde{\mathcal{D}}$ splits on the formal neighborhood of $\mathcal{B}_{-\rho,\chi}$ in $\tilde{T}^*\mathcal{B}\times_{\mathfrak{h}^{*(1)}}\mathfrak{h}^*$. Now we look at the effect of twisting by a group character on twisted differential operators. Let $\pi:\tilde{X}\to X$ the the torus torsor. We look at $(\pi_*\mathcal{D}_{\tilde{X}}\otimes_k k_\eta)^H$. This sheaf clearly has an action by $\tilde{\mathcal{D}}_X$. But this sheaf can also be interpreted as the isotypical component in $\pi_*\mathcal{D}_{\tilde{X}}$ transforms under H by the character η . On the other hand, let τ_η be the translation automorphism on $\tilde{T}^*X^{(1)}\times_{\mathfrak{h}^{*(1)}}\mathfrak{h}^*$ shifting the second factor by η . Then $\tau_\eta^*\tilde{\mathcal{D}}_X$ also acts on $(\pi_*\mathcal{D}_{\tilde{X}}\otimes_k k_\eta)^H$. One can check this bimodule induces Morita equivalence between $\tau_\eta^*\tilde{\mathcal{D}}_X$ and $\tilde{\mathcal{D}}_X$.

If $\tilde{\mathcal{D}}_{\mathscr{B}}$ splits on the formal neighborhood of $\mathscr{B}_{-\rho,\chi}$, it also splits on the formal neighborhood of $\mathscr{B}_{\lambda,\chi}$ for integral η . This completes the proof of Theorem 1.1.

2. Affine braid group action

2.1. Review of affine braid group. For α a coroot and $n \in \mathbb{Z}$, let the hyperplanes $H_{\check{\alpha},n}$ given by $\{\lambda \in \Lambda \mid \langle \check{\alpha}, \lambda + \rho \rangle = np\}$. Open facets are called alcoves and codimension one facets are called faces. There is a special alcove, called the fundamental alcove, denoted by A_0 , i.e., the alcove containing $(\epsilon + 1)\rho$ for small $\epsilon > 0$. It consists of those weights λ such that $0 < \langle \lambda + \rho, \check{\alpha} \rangle < p$ for all $\alpha \in \Phi^+$. The set of faces of A_0 will be denoted by I_{aff} .

Let $W_{\rm aff} := W \ltimes Q$ be the affine Weyl group. It acts naturally on Λ via the dot-action as follows. Elements in W acts via the usual dot-action. Element ν in the lattice acts by $\lambda \mapsto \lambda + p\nu$. The group $W_{\rm aff}$ is generated by reflections in

affine hyperplanes $H_{\check{\alpha},n}$. The $(W_{\text{aff}}, \bullet)$ -orbits in the set of faces are canonically identified with I_{aff} , the faces in the closure of the fundamental alcove A_0 . The (Coxeter) generators of the group W_{aff} can be chosen to be the reflections in the faces of the alcove A_0 .

For $\alpha \in I_{\text{aff}}$, let $s_{\alpha} \in W_{\text{aff}}$ be the reflection. Associated to α a standard generator $\widetilde{s_{\alpha}} \in B_{\text{aff}}$. Then we define a set theoretical lifting $C:W_{\text{aff}} \to B_{\text{aff}}$, sending a minimal length decomposition $w = s_{\alpha_1} \cdots s_{\alpha_{l(w)}}$ to $\widetilde{w} = \widetilde{s_{\alpha_1}} \cdots \widetilde{s_{\alpha_{l(w)}}}$. Then B_{aff} can be presented as follows. The generators are taken to be the image of C, and relations are given by $\widetilde{wu} = \widetilde{wu}$ when l(wu) = l(w) + l(u).

Similarly, the extended affine Weyl group $W'_{\text{aff}} := W \ltimes \Lambda$ has the length function extending that on W_{aff} . We write W'_{aff} as $W_{\text{aff}} \rtimes \operatorname{Stab}_{W'_{\text{aff}}}(A_0)$. Then the length function on W'_{aff} is given by $l(w\omega) = l(w)$ for $\omega \in \operatorname{Stab}_{W'_{\text{aff}}}(A_0)$. The extended affine Braid group B'_{aff} can be presented in a fashion similar to the non-extended one. The generators are \tilde{w} for $w \in W'_{\text{aff}}$, and relations are given by $\widetilde{wu} = \tilde{w}\tilde{u}$ when l(wu) = l(w) + l(u). As $\operatorname{Stab}_{W'_{\text{aff}}}(A_0)$ permutes I_{aff} , we have naturally $B'_{\text{aff}} = B_{\text{aff}} \rtimes \operatorname{Stab}_{W'_{\text{aff}}}(A_0)$. A smaller set of generators of B'_{aff} can be chosen to be I_{aff} and $\operatorname{Stab}_{W'_{\text{aff}}}(A_0)$.

2.2. Review of intertwining functors. Note that $\operatorname{Mod}_{\lambda} U = \operatorname{Mod}_{\mu} U$ for any λ and μ in the same $W'_{\operatorname{aff}} \bullet$ -orbit. For any λ , $\mu \in \Lambda$ we define $I_{\mu\lambda} : D^b(\operatorname{Mod}_{\lambda} U) \to D^b(\operatorname{Mod}_{\mu} U)$ as the composition $R\Gamma_{\tilde{\mathcal{D}},\mu} \circ (\mathscr{O}_{\mu-\lambda} \otimes_{\mathscr{O}_{\mathscr{B}}} -) \circ \mathscr{L}^{\lambda}$. In the case when λ and μ are in the same $W'_{\operatorname{aff}} \bullet$ -orbit and are both regular, this functor become an auto-equivalence.

The main goal of this section is to explain how these functors fit together to an affine braid group action. In characteristic zero, we have a braid group action on $D^b(\operatorname{Mod}_{\lambda} U)$ for regular λ . (See e.g., [B] and [T].) The action of generators are built up using translation functors.

For λ , $\mu \in \Lambda$, we define $T^{\mu}_{\lambda} : \operatorname{Mod}_{\lambda} U \to \operatorname{Mod}_{\mu} U$ sending M to $[V_{\mu-\lambda} \otimes M]_{\mu}$ here $V_{\mu-\lambda}$ is a finite dimensional representation with extremal weight $\mu - \lambda$, and $[-]_{\mu}$ means taking the component supported on the point μ in $\mathfrak{h}^*//W$. As this functor is exact, it has clear counterpart on the level of D-modules. On \mathscr{B} we take \mathscr{V}_{η} as the vector bundle corresponding to the G-module V_{η} . We have

$$T^{\mu}_{\lambda}(R\Gamma_{\tilde{\mathscr{D}},\lambda}M) = [V_{\mu-\lambda} \otimes R\Gamma_{\tilde{\mathscr{D}},\lambda}M]_{\mu} = [R\Gamma_{\tilde{\mathscr{D}}}(V_{\mu-\lambda} \otimes M)]_{\mu} \cong R\Gamma_{\tilde{\mathscr{D}},\mu}([V_{\mu-\lambda} \otimes M)]_{\mu}).$$

The bundle \mathcal{V}_{η} has a filtration by line bundles, or better by $V_{\eta}[\nu] \otimes \mathcal{O}_{\nu}$ and the smaller ν appears earlier in the filtration.

- **Proposition 2.1.** (1) If μ is in the closure of the facet of λ ($\lambda \to \mu$ for short), then $T^{\mu}_{\lambda}(R\Gamma_{\tilde{\mathscr{D}},\lambda}M) \cong R\Gamma_{\tilde{\mathscr{D}},\mu}(\mathscr{O}_{\mu-\lambda}\otimes M)$.
 - (2) If μ is regular and λ lies in a codimension 1 wall H, and $s_H(\mu) < \mu$, then there is an exact triangle

$$R\Gamma_{\tilde{\mathscr{D}},s_{H}\mu}(\mathscr{O}_{\lambda-\mu}\otimes M)\to T^{\mu}_{\lambda}(R\Gamma_{\tilde{\mathscr{D}},\lambda}M)\to R\Gamma_{\tilde{\mathscr{D}},\mu}(\mathscr{O}_{\mu-\lambda}\otimes M)\to [1].$$

To prove this Proposition, we only need to count the weights occur in $(\lambda +$ weights in $V_{\mu-\lambda}$ $\cap W\mu$. In case (1) there is only one which is μ . In case (2) there are two of them μ and $s_H\mu$, and μ occurs later.

Proposition 2.2. If $\nu \to \mu \to \lambda$, then $T^{\nu}_{\mu} \circ T^{\mu}_{\lambda} \cong T^{\nu}_{\lambda}$ and $T^{\lambda}_{\mu} \circ T^{\mu}_{\nu} \cong T^{\lambda}_{\nu}$. In particular, if $\mu \to \nu \to \mu$ then $T^{\nu}_{\mu} \cong T^{\mu-1}_{\nu}$.

Proof. By adjointness, we only need to prove one of them.

On the D-module level, twisting by line bundles composes as they should. This means $T^{\nu}_{\mu} \circ T^{\mu}_{\lambda} R\Gamma_{\tilde{\mathcal{D}},\lambda} \cong T^{\nu}_{\lambda} R\Gamma_{\tilde{\mathcal{D}},\lambda}$. Composing \mathcal{L} , and using the commutative

$$D^{b}(\operatorname{Coh}_{\lambda} \tilde{\mathcal{D}}) \overset{\mathscr{L}^{\hat{\lambda}}}{\longleftarrow} D^{b}(\operatorname{Mod}_{\lambda} U)$$

$$R\Gamma_{\tilde{\mathcal{D}}, \lambda} \downarrow \qquad \qquad \downarrow \operatorname{Ind}_{U^{\hat{\lambda}}}^{\tilde{U}^{\hat{\lambda}}}$$

$$D^{b}(\operatorname{Mod}_{\lambda} U) \underset{Res_{U^{\hat{\lambda}}}}{\longleftarrow} D^{b}(\operatorname{Mod}_{\lambda} \tilde{U})$$

we have $T^{\nu}_{\mu} \circ T^{\mu}_{\lambda} Res^{\tilde{U}^{\hat{\lambda}}}_{U^{\hat{\lambda}}} Ind^{\tilde{U}^{\hat{\lambda}}}_{U^{\hat{\lambda}}} \cong T^{\nu}_{\lambda} Res^{\tilde{U}^{\hat{\lambda}}}_{U^{\hat{\lambda}}} Ind^{\tilde{U}^{\hat{\lambda}}}_{U^{\hat{\lambda}}}.$ Then $T^{\nu}_{\mu} \circ T^{\mu}_{\lambda}$ sits in the left hand side as a direct summand and T^{ν}_{λ} is a factor of the right hand side. We get $T^{\nu}_{\mu} \circ T^{\mu}_{\lambda} \to T^{\nu}_{\lambda}$. Applying them to the generator of the category U^{λ} to see that they are isomorphic as functors.

Now we have the translation functors we can use them to build the reflection functors and intertwining functors as in [B]. Assume ν lies in a codimension 1 wall of the facet of μ . Define

$$R_{\mu|\nu} := T^{\mu}_{\nu} T^{\nu}_{\mu} : \operatorname{Mod}_{\mu} U \to \operatorname{Mod}_{\mu} U.$$

Corollary 2.3. If μ is regular and ν , ν' lie in the same codimension 1 wall, then $R_{\mu|\nu} \cong R_{\mu|\nu'}$.

This means $R_{\mu|\nu}$ depends only on the wall, not the character itself. As $R_{\mu|\nu}$ is self-adjoint, we have two adjunctions. We define

$$\Theta_{\mu|\nu} := cone(\mathrm{id} \to R_{\mu|\nu}) \text{ and } \Theta'_{\mu|\nu} := cone(R_{\mu|\nu} \to \mathrm{id}).$$

Corollary 2.4. If μ is regular and ν , ν' lies in the same codimension 1 wall, then $\Theta_{\mu|\nu} \cong \Theta_{\mu|\nu'}$.

In the case when μ is regular, these two functors can be expressed as the intertwining functors defined as follows.

Lemma 2.5. When μ is regular and ν lies in a codimension 1 wall H in the facet of μ , and $s_H \mu < \mu$, we have $\Theta'_{\mu|\nu} \cong I_{(s_H \mu)\mu}$ and $\Theta_{\mu|\nu} \cong I_{\mu(s_H \mu)}$.

Note that $\operatorname{Mod}_{s_H\mu} U = \operatorname{Mod}_{\mu} U$.

Proof. For any module M we take the Γ -acyclic resolution of $\mathscr{L}M$. For acyclic C, have have from Proposition 2.1 (1) that $C \otimes \mathscr{O}(\nu - \mu)$ is acyclic. So is $[C \otimes \mathscr{O}(\mu - \nu) \otimes V_{\mu - \nu}]_{\mu}$. Using Proposition 2.1 (2) we know

$$C \otimes \mathscr{O}(s_H \mu - \mu) \to [C \otimes \mathscr{O}(\mu - \nu) \otimes V_{\mu - \nu}]_{\mu} \to C \to [1],$$

hence applying Γ we are done.

2.3. The affine braid group action on representation categories. Now we describe how the functors Θ fit together to give an affine braid group action. As noted above, for any regular μ , and an arbitrary ν lying in a face of the alcove containing μ , the functor $\Theta_{\mu|\nu}$ depends only on the wall containing ν . For a regular λ , the faces of the alcove containing λ are naturally labeled by I_{aff} .

For regular λ , the orbit $W'_{\text{aff}} \bullet \lambda$ is a free orbit. We define a right action of W'_{aff} on this orbit by $(u \bullet \lambda)w = uw \bullet \lambda$ for u and $w \in W'_{\text{aff}}$.

For $w \in W'_{\text{aff}}$ and $\mu \in W'_{\text{aff}} \bullet \lambda$, we say w increases μ if $\mu s_1 \cdots s_i < \mu s_1 \cdots s_{i+1}$ for all i, where $w = s_1 \cdots s_{l(w)} \omega$ is a reduced decomposition with $l(\omega) = 0$.

Lemma 2.6. Assume $\alpha \in I_{\text{aff}}$ and $\mu \in W'_{\text{aff}} \bullet \lambda$ is such that $\mu s_{\alpha} > \mu$. Let $\mu w = \nu$ then

where ν is in the face of the alcove containing μ labeled by α .

Theorem 2.7 ([BMR2]). Let $\lambda \in \Lambda$ be regular. The assignment

$$\alpha \in I_{\text{aff}} \mapsto \Theta_{\lambda \mid \nu} =: \Theta_{\alpha}$$

for an arbitrary ν in the face of the alcove containing λ labeled by $\alpha \in I_{aff}$, and

$$\omega \in \operatorname{Stab}_{W'_{\operatorname{aff}}}(A_0) \mapsto T_{\lambda}^{\omega \bullet \lambda} =: T^{\omega}$$

defines a (weak) right action of B'_{aff} on $D^b(\text{Mod}_{\lambda} U)$.

The proof is the same as in [T].

Proof of Theorem 2.7. For $w \in {}^{\lambda}W'_{\text{aff}}$, let $w = \omega s_{\alpha_1} \cdots s_{\alpha_{l(w)}}$ be a decomposition with $l(\omega) = 0$ and $\alpha_i \in {}^{\lambda}I_{\text{aff}}$. We have

$$(\mathscr{O}(\lambda \omega \alpha_1 \cdots \alpha_{l(w)} - \lambda) \otimes_{\mathscr{O}_{\mathscr{B}}} -) \circ \mathscr{L}^{\lambda \omega \widehat{\alpha_1 \cdots \alpha_{l(w)}}} \cong \mathscr{L}^{\widehat{\lambda}} T_{\omega} \Theta_{\alpha_1} \circ \cdots \circ \Theta_{\alpha_{l(w)}}.$$

Proposition 2.8. Assume $w \in W'_{\text{aff}}$, and $\mu \in W'_{\text{aff}} \bullet \lambda$ is such that w increases μ . Let $\mu w = \nu$ then

$$D^{b}(\operatorname{Coh}_{\mu} \widetilde{\mathscr{D}}_{\mathscr{B}}^{\mathscr{O}_{\nu-\mu}\otimes\mathscr{O}_{\mathscr{B}}} \overline{D}^{b}(\operatorname{Coh}_{\nu} \widetilde{\mathscr{D}}_{\mathscr{B}})$$

$$\mathscr{L}^{\widehat{\mu}} \qquad \qquad \mathscr{L}^{\widehat{\nu}} \qquad \qquad \mathscr{L}^{\widehat{\nu}} \qquad \qquad D^{b}(\operatorname{Mod}_{\mu} U) \xrightarrow{\Theta_{\widetilde{w}}} D^{b}(\operatorname{Mod}_{\nu} U).$$

2.4. **Action on the level of** *D***-modules.** The followings are straightforward consequences of the construction of the affine braid group action.

Corollary 2.9. Fix a regular $\lambda \in \Lambda$. For $\nu \in \Lambda^+ \subseteq W'_{\text{aff}}$, let $\mu = \lambda + p\nu$. Then we have

$$D^{b}(\operatorname{Coh}_{\lambda} \widetilde{\mathcal{D}}_{\mathscr{B}}) \xrightarrow{\Theta_{\mathscr{B}^{(1)}}} D^{b}(\operatorname{Coh}_{\mu} \widetilde{\mathscr{D}})$$

$$\mathscr{L}^{\widehat{\lambda}} \downarrow \qquad \qquad \mathscr{L}^{\widehat{\mu}} \downarrow$$

$$D^{b}(\operatorname{Mod}_{\lambda} U) \xrightarrow{\Theta_{\nu}} D^{b}(\operatorname{Mod}_{\mu} U)$$

Corollary 2.10. Fix a regular $\lambda \in \Lambda$. For $\nu \in \Lambda^+ \subseteq W'_{\text{aff}}$, we have

$$D^{b}(\operatorname{Coh}_{\mathscr{B}_{\chi}^{(1)}} \tilde{\mathfrak{g}}^{(1)}) \xrightarrow{\Theta_{\tilde{\mathfrak{g}}^{(1)}}} D^{b}(\operatorname{Coh}_{\mathscr{B}_{\chi}^{(1)}} \tilde{\mathfrak{g}}^{(1)})$$

$$\downarrow^{\gamma_{\chi,\lambda}} \qquad \qquad \downarrow^{\gamma_{\chi,\lambda}}$$

$$D^{b}(\operatorname{Mod}_{\lambda} U) \xrightarrow{\Theta_{\nu}} D^{b}(\operatorname{Mod}_{\lambda} U).$$

3. Translation functors on the level of coherent sheaves

As we need to consider the singular character λ , hence in order to do this we need to consider a singular version of the localization theorem. This is essentially the same as the regular case, except that $D^b(\operatorname{Mod}_{\lambda,\chi} U)$ is localized to twisted D-modules on a partial flag variety.

Let $P \subseteq G$ be a parabolic subgroup, with unipotent radical J and Levi $\bar{P} = P/J$. Let $\mathscr{P} = G/P$ and $\tilde{\mathscr{P}} = G/J$ which is a \bar{P} -torsor over \mathscr{P} . Let $\tilde{\mathscr{T}}_{\mathscr{P}}$ be $(\pi_* \mathscr{T}_{\tilde{\mathscr{P}}})^{\bar{P}}$. The sheaf of enveloping algebras is $\tilde{\mathscr{D}}_{\mathscr{P}}$. The total space of $\tilde{\mathscr{T}}_{\mathscr{P}}^*$ is denoted by $\tilde{T}^*\mathscr{P}$. Let $\tilde{\mathfrak{g}}_{\mathscr{P}}^*$ be the subset of $\mathscr{P} \times \mathfrak{g}^*$ consisting of pairs (\mathfrak{p}, χ) with $\mathfrak{p} \in \mathscr{P}$ and $\chi \in \mathfrak{g}^*$ such that $\chi|_{\mathrm{nilp}(\mathfrak{p})} = 0$. It is endowed with two projections $p_{\mathfrak{g}} : \tilde{\mathfrak{g}}_{\mathscr{P}}^* \to \mathfrak{g}^*$ and $p_{\bar{\mathfrak{p}}^*} : \tilde{\mathfrak{g}}_{\mathscr{P}}^* \to \bar{\mathfrak{p}}^* =: \mathrm{Lie}(\bar{P})^*$. The center of $\tilde{\mathscr{D}}_{\mathscr{P}} =: \mathfrak{Z}(\tilde{\mathscr{D}}_{\mathscr{P}}) \cong \mathscr{O}_{\tilde{\mathfrak{g}}_{\mathscr{P}}^{*(1)} \times_{\bar{\mathfrak{p}}^{(1)}} \bar{\mathfrak{p}}}$.

Note that there is a natural map $\tilde{\pi}_{\mathscr{D}}^{\mathscr{Q}}: \tilde{\mathfrak{g}}^* = \tilde{\mathfrak{g}}_{\mathscr{B}}^* \to \tilde{\mathfrak{g}}_{\mathscr{D}}^*$ such that $\operatorname{pr}_1: \tilde{\mathfrak{g}}_{\mathscr{B}}^* \to \mathfrak{g}^*$ factors through $\tilde{\pi}_{\mathscr{D}}^{\mathscr{Q}}$. As pr_1 is a proper morphism, so are $\tilde{\pi}_{\mathscr{D}}^{\mathscr{Q}}$ and $p_{\mathfrak{g}}$.

Let $\mathscr{P} = G/P$ be a partial flag variety. We say λ is \mathscr{P} -regular if it has singularity exactly \mathscr{P} .

Theorem 3.1 ([BMR2]). Under the assumption that λ is \mathscr{P} -regular, we have an equivalence of categories

$$R\Gamma_{\tilde{\mathscr{D}}_{\mathscr{B}},\lambda}: D^b(\operatorname{Coh}_{\lambda,\chi}\tilde{\mathscr{D}}_{\mathscr{P}}) \to D^b(\operatorname{Mod}_{\lambda,\chi}U).$$

Similarly we have the notion of generalized Springer fibers and $\tilde{\mathcal{D}}_{\mathscr{P}}$ splits on their formal neighborhoods. We summarize the equivalences of categories as follows

$$D^{b}\operatorname{Coh}_{\mathfrak{Z}(\tilde{\mathscr{D}}_{\mathscr{P}})\times \mathfrak{Z}(U)}(\chi,W\lambda)}(\mathfrak{Z}(\tilde{\mathscr{D}}_{\mathscr{P}})) \xrightarrow{\gamma_{M}} D^{b}(\operatorname{Mod}_{\lambda,\chi}U)$$

$$R\Gamma_{\tilde{\mathscr{D}}_{\mathscr{D}},\lambda}$$

$$D^{b}(\operatorname{Coh}_{\lambda,\chi}\tilde{\mathscr{D}}_{\mathscr{P}}).$$

We say an integral weight $\lambda \in \Lambda$ is \mathscr{P} -unramified for a parabolic subgroup P, if the map $\mathfrak{h}^*/W_P \to \mathfrak{h}^*/W$ is unramified at $W_P \bullet \lambda$.

For two parabolic subgroups $P \subseteq Q \subseteq G$ and $\pi : \mathscr{P} \to \mathscr{Q}$. The natural map $\tilde{\pi}_{\mathscr{Q}}^{\mathscr{P}} : \tilde{\mathfrak{g}}_{\mathscr{P}}^* \to \tilde{\mathfrak{g}}_{\mathscr{Q}}^*$ is also a proper morphism.

Proposition 3.2. [BMR2] For $P \subseteq Q \subseteq G$ be two parabolic subgroups, and μ , $\nu \in \Lambda$ which are respectively \mathscr{P} and \mathscr{Q} -regular unramified, for any $\chi \in \mathfrak{g}^{*(1)}$ we have

$$T_{\mu}^{\nu}\circ\gamma_{\chi,\mu}^{\mathscr{P}}\cong\gamma_{\chi,\nu}^{\mathscr{Q}}\circ R\tilde{\pi}_{\mathscr{Q}*}^{\mathscr{P}(1)}\ \ and\ T_{\nu}^{\mu}\circ\gamma_{\chi,\nu}^{\mathscr{Q}}\cong\gamma_{\chi,\mu}^{\mathscr{P}}\circ L\tilde{\pi}_{\mathscr{Q}}^{\mathscr{P}(1)*}$$

Proof. Again by ajointness, we only need to prove one.

$$T^{\nu}_{\mu}[R\Gamma(M^{\mathscr{P}}_{\chi,\mu}\otimes_{\mathscr{O}_{Z(\tilde{\mathscr{D}}_{\mathscr{P}})}}\mathscr{F})]$$

$$\cong T^{\nu}_{\mu}[R\Gamma(\pi^{\mathscr{B}}_{\mathscr{P}})^{*}(M^{\mathscr{P}}_{\chi,\mu}\otimes_{\mathscr{O}_{Z(\tilde{\mathscr{D}}_{\mathscr{P}})}}\mathscr{F})]$$

$$\cong R\Gamma[\mathscr{O}_{\mathscr{B}}(\nu-\mu)\otimes_{\mathscr{O}_{\mathscr{B}}}(\pi^{\mathscr{B}}_{\mathscr{P}})^{*}(M^{\mathscr{P}}_{\chi,\mu}\otimes_{\mathscr{O}_{Z(\tilde{\mathscr{D}}_{\mathscr{P}})}}\mathscr{F})]$$

$$\cong R\Gamma[(\pi^{\mathscr{B}}_{\mathscr{P}})^{*}(\mathscr{O}_{\mathscr{P}}(\nu-\mu)\otimes_{\mathscr{O}_{\mathscr{P}}}(M^{\mathscr{P}}_{\chi,\mu}\otimes_{\mathscr{O}_{Z(\tilde{\mathscr{D}}_{\mathscr{P}})}}\mathscr{F}))]$$

$$\cong R\Gamma[(\pi^{\mathscr{B}}_{\mathscr{P}})^{*}(M^{\mathscr{P}}_{\chi,\nu}\otimes_{\mathscr{O}_{Z(\tilde{\mathscr{D}}_{\mathscr{P}})}}\mathscr{F})]$$

$$\cong R\Gamma(M^{\mathscr{P}}_{\chi,\nu}\otimes_{\mathscr{O}_{Z(\tilde{\mathscr{D}}_{\mathscr{P}})}}\mathscr{F})$$

$$\cong R\Gamma[(\tilde{\pi}^{(1)})^{*}(M^{\mathscr{Q}}_{\chi,\nu})\otimes_{\mathscr{O}_{Z(\tilde{\mathscr{D}}_{\mathscr{P}})}}\mathscr{F}]$$

$$\cong R\Gamma[M^{\mathscr{Q}}_{\chi,\nu}\otimes_{\mathscr{O}_{Z(\tilde{\mathscr{D}}_{\mathscr{P}})}}\tilde{\pi}^{(1)}_{*}\mathscr{F}].$$

Let α be a positive root and $\mathscr{P} = \mathscr{P}_{\alpha}$ the maximal parabolic subgroup. Then $\tilde{\mathfrak{g}}_{\mathscr{P}}^*$ will be denoted by $\tilde{\mathfrak{g}}_{\alpha}^*$, and the map $\tilde{\mathfrak{g}}^* \to \tilde{\mathfrak{g}}_{\alpha}^*$ is denoted by $\tilde{\pi}_{\alpha}$.

Corollary 3.3. Let $\mu \in \Lambda$ be regular and ν be α -regular. Then

$$R_{\mu|\nu} \circ \gamma_{\chi,\mu}^{\mathscr{B}} \cong \gamma_{\chi,\mu}^{\mathscr{B}} \circ L\tilde{\pi}_{\alpha}^{(1)*} \circ R\tilde{\pi}_{\alpha*}^{(1)}.$$

Recall from [V] that $s_{\alpha}: \mathfrak{g}_{reg}^* \to \mathfrak{g}_{reg}^*$. Let $\Gamma_{\alpha} \subseteq \tilde{\mathfrak{g}}^* \times \tilde{\mathfrak{g}}^*$ be the closure of the graph of s_{α} and $\mathscr{O}_{\alpha} \in \operatorname{Coh}(\tilde{\mathfrak{g}}^* \times \tilde{\mathfrak{g}}^*)$ the structure sheaf of Γ_{α} .

Proposition 3.4. Let $\mu \in \Lambda$ be regular and ν be α -regular. Then

$$FM(\mathscr{O}_{\alpha}) \circ \gamma_{\chi,\mu}^{\mathscr{B}} \cong \gamma_{\chi,\mu}^{\mathscr{B}} \circ \Theta_{\mu|\nu}.$$

In order to prove Proposition 3.4, we need a general lemma about Fourier-Mukai transform. Let $f: X \to Y$ be a proper morphism with graph $\Gamma_f \subseteq X \times Y$ and $\Gamma_f^o \subseteq Y \times X$.

Lemma 3.5 (Lemma 1.2.2 in [R]). Notations as above. We have

- (1) $Rf_* \cong FM(\mathscr{O}_{\Gamma_f})$ and $Lf^* \cong FM(\mathscr{O}_{\Gamma_f^o})$;
- (2) $Rf_* \circ Lf^* \cong FM(\mathscr{O}_{\Gamma_f} * \mathscr{O}_{\Gamma_f^o});$
- (3) the adjunction morphism $Rf_* \circ Lf^* \to id$ is induced by the Fourier-Mukai of the following map

$$\Delta_* \mathscr{O}_X \cong Rp_{13*} \mathscr{O}_{\delta X} \to Rp_{13*} \mathscr{O}_{\Gamma_f \times X \cap X \times \Gamma_f^o} \to \mathscr{O}_{\Gamma_f^o} * \mathscr{O}_{\Gamma_f}.$$

Proof of Proposition 3.4. Let $\tilde{\pi}_{\alpha}: \tilde{\mathfrak{g}}^* \to \mathfrak{g}_{\alpha}^*$. We have an isomorphism

$$p_{12}^* \mathscr{O}_{\Gamma_{\tilde{\pi}_{\alpha}}} \otimes^L p_{23}^* \mathscr{O}_{\Gamma_{\tilde{\pi}_{\alpha}}^o} \cong \mathscr{O}_{\Gamma_f \times X \cap X \times \Gamma_f^o}.$$

There is also an exact triangle

$$\mathscr{O}_{\Delta} \hookrightarrow \mathscr{O}_{\tilde{\mathfrak{g}}^* \times_{\tilde{\mathfrak{g}}_{\alpha}^*} \tilde{\mathfrak{g}}^*} \twoheadrightarrow \mathscr{O}_{\tilde{\mathfrak{g}}_{\alpha}^*}.$$

These facts combines to yield Proposition 3.4.

References

- [B] R. Bezrukavnikov, Representation categories and canonical bases. course in M.I.T., in progress. 2.2, 2.2
- [BG] K. Brown and I. Gordon, The ramification of centers: Lie algebras in positive characteristic and quantized enveloping algebras, Math. Z. 238 (2001), no. 4, 733-779. MR1872572 1.3
- [BMR1] R. Bezrukavnikov, I. Mirković, and D. Rumynin, Localization of modules for a semisimple Lie algebra in prime characteristic, 1.1
- [BMR2] R. Bezrukavnikov, I. Mirković, and D. Rumynin, Singular localization and intertwining functors for reductive lie algebras in prime characteristic. Nagoya J. Math. **184** (2006), 1-55. MR2285230 2.7, 3.1, 3.2
- [BR] R. Bezrukavnikov and S. Riche, Affine braid group actions on derived categories of Springer resolutions. Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), no. 4, 535C599 (2013). MR3059241
- [R] S. Riche, Geometric braid group action on derived categories of coherent sheaves. With a joint appendix with Roman Bezrukavnikov. Represent. Theory 12 (2008), 131C169. MR2390670
 3.5

- [T] K. Tolmachov, Braid group actions on categories of g-modules. This seminar. 2.2, 2.3
- [V] M. Vaintrob, Braid group action on coherent sheaves on the Springer resolution. This seminar. 3

Department of Mathematics, Northeastern University, Boston, MA 02115, USA $E\text{-}mail\ address:}$ zhao.g@husky.neu.edu