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1. Splitting on Springer fibers

We have an equivalence of triangulated categoriesDb(Cohλ(D̃))→ Db(Modλ U).
Now we link them to the category of coherent sheaves on X.

We state the main theorem of this section. Recall Bλ,χ = B
(1)
χ ∩ T ∗λB(1) ⊆

T̃ ∗B(1) ×h∗(1) {λ}.

Theorem 1.1 ([BMR1]). For all integral λ ∈ h∗, the Azumaya algebra D̃ splits

on the formal neighborhood of Bλ,χ in T̃ ∗B(1) ×h∗(1) h.

As a consequence of Theorem 1.1, Morita theory gives equivalence of categories.

Theorem 1.2. We have equivalence of abelian categories

Coh
B

(1)
λ,χ

(T̃ ∗B ×h∗(1) h∗) ∼= Modχ,λ D̃ ;

Coh
B

(1)
λ,χ

(T ∗νB(1)) ∼= Modχ Dλ.

The rest of this section will be devoted to the proof of Theorem 1.1.

Proposition 1.3 ([BG] § 3). Let χ = 0, and ζ = (0,−ρ) ∈ g∗(1) ×h∗(1)//W h∗unr,

we have U−ρ0
∼= Endk(δ

ζ).

Corollary 1.4. Let µ(1) : T ∗−ρB
(1) ∼= T ∗B(1) → N (1) be the moment map, then

the natural map φ : µ(1)∗U−ρ → D−ρ is an isomorphism.
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2 G. ZHAO

Proof. The restriction of φ to the zero section B−ρ,0 ⊆ T ∗B(1) is an isomorphism,
since up to a faithfully flat base change, every fiber of this map is the isomorphism
U−ρ → E nd(δζ). Let K and C be respectively the kernel an cokernel of φ. Then C
restricted to B−ρ,0 is trivial, by the right exactness of restriction. Note that φ is
G-equivariant, hence so are C and K. Then by upper-semi-continuity, C is trivial,
since every G-equivariant neighborhood of B−ρ,0 is the entire T ∗B(1). Now we

have a short exact sequence 0 → K → µ(1)∗U−ρ → D−ρ → 0, with D−ρ locally
free, restriction of this sequence to B−ρ,0 is exact. �

Lemma 1.5. Let U −̂ρ be the completion of U at the Harish-Chandra central

character −ρ. It is an Azumaya algebra over g
∗(1)

N̂ (1)
, the formal neighborhood of

N (1) in g∗(1).

Proof. Note that U −̂ρ|N (1)
∼= U−ρ is a matrix algebra. Only need to show that

U −̂ρ is locally free, which in turn amounts to show it is flat.
There are two facts: g∗(1) is flat over h∗(1)/W ; and U(g) is flat over h∗(1)/W for

p large enough. Therefore, U 0̂ is flat over g
∗(1)

N̂ (1)
. So is U −̂ρ which is a translation

of U 0̂. �

Corollary 1.6. For any closed point χ ∈ N (1), U −̂ρ is an Azumaya algebra on

g
∗(1)
χ̂ , the formal neighborhood of χ in g∗(1). Moreover, it splits on g

∗(1)
χ̂ .

To summarize, D̃ splits on the formal neighborhood of B−ρ,χ in T̃ ∗B×h∗(1) h∗.
Now we look at the effect of twisting by a group character on twisted differential

operators. Let π : X̃ → X the the torus torsor. We look at (π∗DX̃ ⊗k kη)
H . This

sheaf clearly has an action by D̃X . But this sheaf can also be interpreted as the
isotypical component in π∗DX̃ transforms under H by the character η. On the

other hand, let τη be the translation automorphism on T̃ ∗X(1) ×h∗(1) h∗ shifting

the second factor by η. Then τ∗η D̃X also acts on (π∗DX̃ ⊗k kη)
H . One can check

this bimodule induces Morita equivalence between τ∗η D̃X and D̃X .

If D̃B splits on the formal neighborhood of B−ρ,χ, it also splits on the formal
neighborhood of Bλ,χ for integral η. This completes the proof of Theorem 1.1.

2. Affine braid group action

2.1. Review of affine braid group. For α a coroot and n ∈ Z, let the hyper-
planes Hα̌,n given by {λ ∈ Λ | 〈α̌, λ+ ρ〉 = np}. Open facets are called alcoves
and codimension one facets are called faces. There is a special alcove, called the
fundamental alcove, denoted by A0, i.e., the alcove containing (ε + 1)ρ for small
ε > 0. It consists of those weights λ such that 0 < 〈λ+ ρ, α̌〉 < p for all α ∈ Φ+.
The set of faces of A0 will be denoted by Iaff .

Let Waff := W n Q be the affine Weyl group. It acts naturally on Λ via the
dot-action as follows. Elements in W acts via the usual dot-action. Element ν
in the lattice acts by λ 7→ λ + pν. The group Waff is generated by reflections in
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affine hyperplanes Hα̌,n. The (Waff , •)-orbits in the set of faces are canonically
identified with Iaff , the faces in the closure of the fundamental alcove A0. The
(Coxeter) generators of the group Waff can be chosen to be the reflections in the
faces of the alcove A0.

For α ∈ Iaff , let sα ∈ Waff be the reflection. Associated to α a standard
generator s̃α ∈ Baff . Then we define a set theoretical lifting C : Waff → Baff ,
sending a minimal length decomposition w = sα1 · · · sαl(w)

to w̃ = s̃α1 · · · s̃αl(w)
.

Then Baff can be presented as follows. The generators are taken to be the image
of C, and relations are given by w̃u = w̃ũ when l(wu) = l(w) + l(u).

Similarly, the extended affine Weyl group W ′aff := WnΛ has the length function
extending that on Waff . We write W ′aff as Waff o StabW ′aff

(A0). Then the length

function on W ′aff is given by l(wω) = l(w) for ω ∈ StabW ′aff
(A0). The extended

affine Braid group B′aff can be presented in a fashion similar to the non-extended
one. The generators are w̃ for w ∈ W ′aff , and relations are given by w̃u = w̃ũ
when l(wu) = l(w) + l(u). As StabW ′aff

(A0) permutes Iaff , we have naturally

B′aff = Baff o StabW ′aff
(A0). A smaller set of generators of B′aff can be chosen to

be Iaff and StabW ′aff
(A0).

2.2. Review of intertwining functors. Note that Modλ U = Modµ U for any

λ and µ in the same W ′aff•-orbit. For any λ, µ ∈ Λ we define Iµλ : Db(Modλ U)→
Db(Modµ U) as the composition RΓD̃ ,µ ◦ (Oµ−λ ⊗OB

−) ◦L λ. In the case when

λ and µ are in the same W ′aff•-orbit and are both regular, this functor become an
auto-equivalence.

The main goal of this section is to explain how these functors fit together to an
affine braid group action. In characteristic zero, we have a braid group action on
Db(Modλ U) for regular λ. (See e.g., [B] and [T].) The action of generators are
built up using translation functors.

For λ, µ ∈ Λ, we define Tµλ : Modλ U → Modµ U sending M to [Vµ−λ ⊗M ]µ
here Vµ−λ is a finite dimensional representation with extremal weight µ− λ, and
[−]µ means taking the component supported on the point µ in h∗//W . As this
functor is exact, it has clear counterpart on the level of D-modules. On B we
take Vη as the vector bundle corresponding to the G-module Vη. We have

Tµλ (RΓD̃ ,λM) = [Vµ−λ⊗RΓD̃ ,λM ]µ = [RΓD̃(Vµ−λ⊗M)]µ ∼= RΓD̃ ,µ([Vµ−λ⊗M)]µ).

The bundle Vη has a filtration by line bundles, or better by Vη[ν] ⊗ Oν and the
smaller ν appears earlier in the filtration.

Proposition 2.1. (1) If µ is in the closure of the facet of λ (λ→ µ for short),
then Tµλ (RΓD̃ ,λM) ∼= RΓD̃ ,µ(Oµ−λ ⊗M).

(2) If µ is regular and λ lies in a codimension 1 wall H, and sH(µ) < µ, then
there is an exact triangle

RΓD̃ ,sHµ
(Oλ−µ ⊗M)→ Tµλ (RΓD̃ ,λM)→ RΓD̃ ,µ(Oµ−λ ⊗M)→ [1].
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To prove this Propositon, we only need to count the weights occur in (λ +
weights in Vµ−λ)∩Wµ. In case (1) there is only one which is µ. In case (2) there

are two of them µ and sHµ, and µ occurs later.

Proposition 2.2. If ν → µ → λ, then T νµ ◦ T
µ
λ
∼= T νλ and T λµ ◦ T

µ
ν
∼= T λν . In

particular, if µ→ ν → µ then T νµ
∼= Tµ−1

ν .

Proof. By adjointness, we only need to prove one of them.
On the D-module level, twisting by line bundles composes as they should. This

means T νµ ◦ T
µ
λRΓD̃ ,λ

∼= T νλRΓD̃ ,λ. Composing L , and using the commutative

diagram

Db(Cohλ D̃)

RΓD̃,λ

��

RΓ̃

''

Db(Modλ U)
L λ̂
oo

IndŨ
λ̂

Uλ̂��
Db(Modλ U) Db(Modλ Ũ)

ResŨ
λ̂

Uλ̂

oo

we have T νµ ◦ T
µ
λRes

Ũ λ̂

U λ̂
IndŨ

λ̂

U λ̂
∼= T νλRes

Ũ λ̂

U λ̂
IndŨ

λ̂

U λ̂
.

Then T νµ ◦ T
µ
λ sits in the left hand side as a direct summand and T νλ is a factor

of the right hand side. We get T νµ ◦ T
µ
λ → T νλ . Applying them to the generator of

the category Uλ to see that they are isomorphic as functors. �

Now we have the translation functors we can use them to build the reflection
functors and intertwining functors as in [B]. Assume ν lies in a codimension 1
wall of the facet of µ. Define

Rµ|ν := Tµν T
ν
µ : Modµ U → Modµ U.

Corollary 2.3. If µ is regular and ν, ν ′ lie in the same codimension 1 wall, then
Rµ|ν ∼= Rµ|ν′.

This means Rµ|ν depends only on the wall, not the character itself.
As Rµ|ν is self-adjoint, we have two adjunctions. We define

Θµ|ν := cone(id→ Rµ|ν) and Θ′µ|ν := cone(Rµ|ν → id).

Corollary 2.4. If µ is regular and ν, ν ′ lies in the same codimension 1 wall, then
Θµ|ν ∼= Θµ|ν′.

In the case when µ is regular, these two functors can be expressed as the
intertwining functors defined as follows.

Lemma 2.5. When µ is regular and ν lies in a codimension 1 wall H in the facet
of µ, and sHµ < µ, we have Θ′µ|ν

∼= I(sHµ)µ and Θµ|ν ∼= Iµ(sHµ).

Note that ModsHµ U = Modµ U .
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Proof. For any module M we take the Γ-acyclic resolution of LM . For acyclic
C, have have from Proposition 2.1 (1) that C ⊗ O(ν − µ) is acyclic. So is [C ⊗
O(µ− ν)⊗ Vµ−ν ]µ. Using Proposition 2.1 (2) we know

C ⊗ O(sHµ− µ)→ [C ⊗ O(µ− ν)⊗ Vµ−ν ]µ → C → [1],

hence applying Γ we are done. �

2.3. The affine braid group action on representation categories. Now we
describe how the functors Θ fit together to give an affine braid group action. As
noted above, for any regular µ, and an arbitrary ν lying in a face of the alcove
containing µ, the functor Θµ|ν depends only on the wall containing ν. For a
regular λ, the faces of the alcove containing λ are naturally labeled by Iaff .

For regular λ, the orbit W ′aff •λ is a free orbit. We define a right action of W ′aff
on this orbit by (u • λ)w = uw • λ for u and w ∈W ′aff .

For w ∈ W ′aff and µ ∈ W ′aff • λ, we say w increases µ if µs1 · · · si < µs1 · · · si+1

for all i, where w = s1 · · · sl(w)ω is a reduced decomposition with l(ω) = 0.

Lemma 2.6. Assume α ∈ Iaff and µ ∈W ′aff •λ is such that µsα > µ. Let µw = ν
then

Db(Cohµ D̃B)
Oν−µ⊗OB

−
// Db(Cohν D̃B)

Db(Modµ U)
Θµ|ν //

L µ̂

OO

Db(Modν U),

L ν̂

OO

where ν is in the face of the alcove containing µ labeled by α.

Theorem 2.7 ([BMR2]). Let λ ∈ Λ be regular. The assignment

α ∈ Iaff 7→ Θλ|ν =: Θα

for an arbitrary ν in the face of the alcove containing λ labeled by α ∈ Iaff , and

ω ∈ StabW ′aff
(A0) 7→ Tω•λλ =: Tω

defines a (weak) right action of B′aff on Db(Modλ U).

The proof is the same as in [T].

Proof of Theorem 2.7. For w ∈λ W ′aff , let w = ωsα1 · · · sαl(w)
be a decomposition

with l(ω) = 0 and αi ∈λ Iaff . We have

(O(λωα1 · · ·αl(w) − λ)⊗OB
−) ◦L

̂λωα1···αl(w) ∼= L λ̂TωΘα1 ◦ · · · ◦Θαl(w)
.

�
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Proposition 2.8. Assume w ∈ W ′aff , and µ ∈ W ′aff • λ is such that w increases
µ. Let µw = ν then

Db(Cohµ D̃B)
Oν−µ⊗OB

−
// Db(Cohν D̃B)

Db(Modµ U)
Θw̃ //

L µ̂

OO

Db(Modν U).

L ν̂

OO

2.4. Action on the level of D-modules. The followings are straightforward
consequences of the construction of the affine braid group action.

Corollary 2.9. Fix a regular λ ∈ Λ. For ν ∈ Λ+ ⊆ W ′aff , let µ = λ + pν. Then
we have

Db(Cohλ D̃B)
O(ν)⊗O

B(1)
−
// Db(Cohµ D̃)

Db(Modλ U)

L λ̂

OO

Θν // Db(Modµ U).

L µ̂

OO

Corollary 2.10. Fix a regular λ ∈ Λ. For ν ∈ Λ+ ⊆W ′aff , we have

Db(Coh
B

(1)
χ

g̃(1))
O(ν)⊗O

g̃(1)
−
//

γχ,λ

��

Db(Coh
B

(1)
χ

g̃(1))

γχ,λ

��
Db(Modλ U)

Θν // Db(Modλ U).

3. Translation functors on the level of coherent sheaves

As we need to consider the singular character λ, hence in order to do this we
need to consider a singular version of the localization theorem. This is essentially
the same as the regular case, except that Db(Modλ,χ U) is localized to twisted
D-modules on a partial flag variety.

Let P ⊆ G be a parabolic subgroup, with unipotent radical J and Levi P̄ =
P/J . Let P = G/P and P̃ = G/J which is a P̄ -torsor over P. Let T̃P be

(π∗TP̃)P̄ . The sheaf of enveloping algebras is D̃P . The total space of T̃ ∗P is

denoted by T̃ ∗P. Let g̃∗P be the subset of P × g∗ consisting of pairs (p, χ) with
p ∈ P and χ ∈ g∗ such that χ|nilp(p) = 0. It is endowed with two projections

pg : g̃∗P → g∗ and pp̄∗ : g̃∗P → p̄∗ =: Lie(P̄ )∗. The center of D̃P =: Z(D̃P) ∼=
O

g̃
∗(1)
P ×

p̄(1) p̄
.

Note that there is a natural map π̃Q
P : g̃∗ = g̃∗B → g̃∗P such that pr1 : g̃∗B → g∗

factors through π̃Q
P . As pr1 is a proper morphism, so are π̃Q

P and pg.
Let P = G/P be a partial flag variety. We say λ is P-regular if it has

singularity exactly P.
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Theorem 3.1 ([BMR2]). Under the assumption that λ is P-regular, we have an
equivalence of categories

RΓD̃B,λ : Db(Cohλ,χ D̃P)→ Db(Modλ,χ U).

Similarly we have the notion of generalized Springer fibers and D̃P splits on
their formal neighborhoods. We summarize the equivalences of categories as fol-
lows

Db CohZ(D̃P)×Z(U)(χ,Wλ)(Z(D̃P))
γM //

⊗Z(D̃P)M **

Db(Modλ,χ U)

Db(Cohλ,χ D̃P).

RΓD̃B,λ

66

We say an integral weight λ ∈ Λ is P-unramified for a parabolic subgroup P ,
if the map h∗/WP → h∗/W is unramified at WP • λ.

For two parabolic subgroups P ⊆ Q ⊆ G and π : P → Q. The natural map
π̃P

Q : g̃∗P → g̃∗Q is also a proper morphism.

Proposition 3.2. [BMR2] For P ⊆ Q ⊆ G be two parabolic subgroups, and µ,

ν ∈ Λ which are respectively P and Q-regular unramified, for any χ ∈ g∗(1) we
have

T νµ ◦ γP
χ,µ
∼= γQ

χ,ν ◦Rπ̃
P(1)
Q∗ and Tµν ◦ γQ

χ,ν
∼= γP

χ,µ ◦ Lπ̃
P(1)∗
Q

Proof. Again by ajointness, we only need to prove one.

T νµ [RΓ(MP
χ,µ ⊗OZ(D̃P)

F )]

∼= T νµ [RΓ(πB
P)∗(MP

χ,µ ⊗OZ(D̃P)
F )]

∼= RΓ[OB(ν − µ)⊗OB
(πB

P)∗(MP
χ,µ ⊗OZ(D̃P)

F )]

∼= RΓ[(πB
P)∗(OP(ν − µ)⊗OP

(MP
χ,µ ⊗OZ(D̃P)

F ))]

∼= RΓ[(πB
P)∗(MP

χ,ν ⊗OZ(D̃P)
F )]

∼= RΓ(MP
χ,ν ⊗OZ(D̃P)

F )

∼= RΓ[(π̃(1))∗(MQ
χ,ν)⊗OZ(D̃P)

F ]

∼= RΓ[MQ
χ,ν ⊗OZ(D̃Q)

π̃
(1)
∗ F ].

�

Let α be a positive root and P = Pα the maximal parabolic subgroup. Then
g̃∗P will be denoted by g̃∗α, and the map g̃∗ → g̃∗α is denoted by π̃α.

Corollary 3.3. Let µ ∈ Λ be regular and ν be α-regular. Then

Rµ|ν ◦ γB
χ,µ
∼= γB

χ,µ ◦ Lπ̃(1)∗
α ◦Rπ̃(1)

α∗ .
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Recall from [V] that sα : g∗reg → g∗reg. Let Γα ⊆ g̃∗ × g̃∗ be the closure of the
graph of sα and Oα ∈ Coh(g̃∗ × g̃∗) the structure sheaf of Γα.

Proposition 3.4. Let µ ∈ Λ be regular and ν be α-regular. Then

FM(Oα) ◦ γB
χ,µ
∼= γB

χ,µ ◦Θµ|ν .

In order to prove Proposition 3.4, we need a general lemma about Fourier-
Mukai transform. Let f : X → Y be a proper morphism with graph Γf ⊆ X × Y
and Γof ⊆ Y ×X.

X

δ=(id,f,id)
��

X × Y ×X

p12ww
p13

��

p23

''
X × Y X ×X Y ×X

Lemma 3.5 (Lemma 1.2.2 in [R]). Notations as above. We have

(1) Rf∗ ∼= FM(OΓf ) and Lf∗ ∼= FM(OΓof
);

(2) Rf∗ ◦ Lf∗ ∼= FM(OΓf ∗ OΓof
);

(3) the adjunction morphism Rf∗ ◦Lf∗ → id is induced by the Fourier-Mukai
of the following map

∆∗OX
∼= Rp13∗OδX → Rp13∗OΓf×X∩X×Γof

→ OΓof
∗ OΓf .

Proof of Proposition 3.4. Let π̃α : g̃∗ → g∗α. We have an isomorphism

p∗12OΓπ̃α ⊗
L p∗23OΓoπ̃α

∼= OΓf×X∩X×Γof
.

There is also an exact triangle

O∆ ↪→ Og̃∗×g̃∗α g̃
∗ � Og̃∗α .

These facts combines to yield Proposition 3.4. �
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