HIGHEST WEIGHT CATEGORIES

IVAN LOSEV

Let \mathbb{F} be a field, Λ be a finite poset and \mathcal{C} be an \mathbb{F} -linear artitian category with simple objects parameterized by Λ . By a highest weight category structure on \mathcal{C} with respect to Λ we mean a collection of *standard* objects $\Delta(\lambda)$ in \mathcal{C} , one for each $\lambda \in \Lambda$ such that

- Hom $(\Delta(\lambda), \Delta(\mu)) \neq 0 \Rightarrow \lambda \leq \mu$.
- $\operatorname{End}(\Delta(\lambda)) = \mathbb{F}$ for any λ .
- C has enough projectives. The indecomposable projectives are parameterized by $\Lambda, \lambda \mapsto P(\lambda)$, where $P(\lambda)$ is the projective cover of $L(\lambda)$. The object $P(\lambda)$ surjects onto $\Delta(\lambda)$ and the kernel admits a filtration whose quotients are of the form $\Delta(\mu)$ with $\mu > \lambda$.

We write \mathcal{C}^{Δ} for the full subcategory of all standardly filtered objects in \mathcal{C} , i.e., all objects that admit a filtration with standard quotients.

0.1. Simple constituents of standards. Let $L(\lambda)$ denote the simple corresponding to $\lambda \in \Lambda$. Show that if $L(\lambda)$ occurs in $\Delta(\mu)$, then $\lambda \leq \mu$. Moreover, show that the multiplicity of $L(\lambda)$ in $\Delta(\lambda)$ is 1, and $\Delta(\lambda) \rightarrow L(\lambda)$.

0.2. Ext's between standards. Show that if $\operatorname{Ext}^{i}(\Delta(\lambda), \Delta(\mu)) \neq 0$ for some i > 0, then $\lambda < \mu$.

0.3. Subcategories. Let $\Lambda' \subset \Lambda$ be an ideal in the sense that if $\lambda \in \Lambda'$ and $\mu \leq \lambda$, then $\mu \in \Lambda'$. Consider the Serre subcategory $\mathcal{C}' \subset \mathcal{C}$ spanned by the simples $L(\lambda)$ with $\lambda \in \Lambda'$.

- (1) Show that \mathcal{C}' is a highest weight category with standard objects $\Delta(\lambda), \lambda \in \Lambda'$.
- (2) Show that the left adjoint functor ι' to the embedding $\mathcal{C}' \hookrightarrow \mathcal{C}$ is exact on \mathcal{C}^{Δ} .
- (3) Deduce that there is a projective resolution P^{\bullet} in \mathcal{C} of $M \in \mathcal{C}^{\prime \Delta}$ such that $\iota^{!}(P^{\bullet})$ is a projective resolution of M in \mathcal{C}^{\prime} (in fact, this is true for any projective resolution).

0.4. Quotients. Now let $\mathcal{C}'' := \mathcal{C}/\mathcal{C}'$ and π be the quotient functor $\mathcal{C} \twoheadrightarrow \mathcal{C}''$. Let $\pi^!$ denote its left adjoint functor.

- (1) Show that \mathcal{C}'' is a highest weight category with standard objects $\pi(\Delta(\lambda))$.
- (2) Moreover, show that the natural morphism $\pi^!(\pi(M)) \to M$ is an isomorphism provided M admits a filtration whose quotients are $\Delta(\mu)$ with $\mu \notin \Lambda'$.
- (3) Deduce that $\pi^!$ gives rise to an equivalence between \mathcal{C}''^{Δ} and a full subcategory in \mathcal{C}^{Δ} consisting of all objects whose filtration quotients are $\Delta(\mu)$ with $\mu \notin \Lambda'$.

0.5. Characterization of projectives. Show that a standardly filtered object $P \in \mathcal{C}$ is projective if and only if $\operatorname{Ext}^{1}(P, \Delta(\lambda)) = 0$ for all $\lambda \in \Lambda$.

0.6. Axiomatic characterization of standards. Show that the objects $\Delta(\lambda)$ are uniquely recovered from the poset structure on Λ as follows. Pick $\lambda \in \Lambda$. Let $\Lambda_{\leq \lambda} = \{\mu \in \Lambda | \mu \leq \lambda\}$. Consider the Serre subcategory $\mathcal{C}_{\leq \lambda}$ spanned by the simples $L(\mu)$ with $\mu \in \Lambda_{\leq \lambda}$. Then $\Delta(\lambda)$ is the projective cover of $L(\lambda)$ in $\mathcal{C}_{\leq \lambda}$.

IVAN LOSEV

0.7. Costandard objects. Let $\nabla(\lambda)$ stand for the injective hull of $L(\lambda)$ in $\mathcal{C}_{\leq\lambda}$. This is a so called *costandard object*. Show that dim Hom $(\Delta(\lambda), \nabla(\mu)) = \delta_{\lambda,\mu}$, while $\operatorname{Ext}^i(\Delta(\lambda), \nabla(\mu)) = 0$ for i > 0.

0.8. Highest weight structure on C^{opp} . Prove that the collection of costandard objects $\nabla(\lambda)$ makes the opposite category C^{opp} into a highest weight category with respect to the poset Λ .

0.9. Characterization of (co)standardly filtered objects. Prove the object $M \in \mathcal{C}$ is Δ -filtered if and only if $\operatorname{Ext}^{i}(M, \nabla(\lambda)) = 0$ for all $\lambda \in \Lambda$, i > 0, if and only if $\operatorname{Ext}^{1}(M, \nabla(\lambda)) = 0$ for all $\lambda \in \Lambda$. Deduce the kernel of an epimorphism of standardly filtered objects is standardly filtered. State and prove the dual statements.

0.10. **BGG reciprocity.** Show that the multiplicity of $\Delta(\lambda)$ in $P(\mu)$ coincides with the multiplicity of $L(\mu)$ in $\nabla(\lambda)$.

0.11. Tilting objects. An object in C is called *tilting* if it is both standardly and costandardly filtered.

- (1) For $\lambda \in \Lambda$ consider an object $T(\lambda)$ constructed as follows. Order linearly elements of $\{\mu \in \Lambda | \mu \leq \lambda\}$ refining the original poset structure, say $\lambda = \lambda_1 > \lambda_2 > \dots > \lambda_k$. Construct the object $T^i(\lambda), i = 1, \dots, k$ inductively as follows. Set $T^1(\lambda) = \Delta(\lambda)$. Further, if $T^{i-1}(\lambda)$ is already defined let $T^i(\lambda)$ be the extension of $\operatorname{Ext}^1(\Delta(\lambda_i), T^{i-1}(\lambda)) \otimes \Delta(\lambda_i)$ by $T^{i-1}(\lambda)$ corresponding to the unit endomorphism of $\operatorname{Ext}^1(\Delta(\lambda_i), T^{i-1}(\lambda))$. Show that $T(\lambda) := T^k(\lambda)$ is an indecomposable tilting.
- (2) Prove that any other tilting in \mathcal{C} is isomorphic to the direct sum of the objects $T(\lambda)$.

0.12. **Ringel duality.** Set $T := \bigoplus_{\lambda \in \Lambda} T(\lambda)$. Let \mathcal{C}^{\vee} be the category of finitely generated End(T)-modules. Show that this category is highest weight with respect to the opposite poset Λ^{opp} with standard objects $\operatorname{Hom}(\Delta(\lambda), T)$. Show that $(\mathcal{C}^{\vee})^{\Delta} \cong (\mathcal{C}^{\Delta})^{opp}$ and that, under this identification, the projective objects in \mathcal{C} correspond to tilting objects in \mathcal{C}^{\vee} , while tilting objects in \mathcal{C} correspond to projective objects in \mathcal{C}^{\vee} . Finally, identify $(\mathcal{C}^{\vee})^{\vee}$ with \mathcal{C}^{opp} .

1. Bonus!

1.1. Quasi-hereditary algebras. The goal of this problem is to characterize algebras whose categories of modules are highest weight. Still, \mathbb{F} is a field, Λ is a finite poset. Recall that by a *coideal* in Λ we mean a subset of $\Lambda' \subset \Lambda$ such that $\lambda' \in \Lambda', \lambda \ge \Lambda'$ implies $\lambda \in \Lambda'$.

Let A be a finite dimensional \mathbb{F} -algebra. A structure of a *(split) quasi-hereditary algebra* on A is a collection of ideals $I(\Lambda')$ indexed by coideals $\Lambda' \subset \Lambda$ and satisfying the following conditions:

- If $\Lambda' \subset \Lambda''$, then $I(\Lambda') \subset I(\Lambda'')$.
- We have $I(\Lambda) = A, I(\emptyset) = \{0\}.$
- Suppose $\Lambda' \subset \Lambda''$, and $\Lambda'' \setminus \Lambda'$ consists of one element. Then $I(\Lambda'') = I(\Lambda') + I(\Lambda'')^2$, $I(\Lambda'')/I(\Lambda')$ is a projective $A/I(\Lambda')$ -module whose endomorphism algebra is a matrix algebra over \mathbb{F} .

Obviously, the last bullet is the most important condition.

Prove that giving A a quasi-hereditary algebra structure is the same as giving A-mod a structure of a highest weight category.

1.2. Alternative characterization of a highest weight category. Let \mathcal{C} be the category of modules over a finite dimensional \mathbb{F} -algebra, and let Λ be a finite poset identified with the set of simples in \mathcal{C} . So we can consider the Serre subcategory $\mathcal{C}_{\leq \lambda} \subset \mathcal{C}$. Inside we can consider the projective cover $\Delta(\lambda)$ and the injective hull $\nabla(\lambda)$ of the simple $L(\lambda)$ labelled by λ .

a) Prove that \mathcal{C} is a highest weight category (with poset Λ and standard objects $\Delta(\lambda)$) if and only if dim $\operatorname{Ext}^{i}_{\mathcal{C}}(\Delta(\lambda), \nabla(\mu)) = \delta_{i0}\delta_{\lambda\mu}$.

b) Suppose that the equivalent conditions of a) hold. Show that the natural functor $D^b(\mathcal{C}_{\leq\lambda}) \hookrightarrow D^b(\mathcal{C})$ is full (i.e., it does not matter whether we take Ext's of objects of $\mathcal{C}_{\leq\lambda}$ in $\mathcal{C}_{\leq\lambda}$ or in \mathcal{C}).