HW1, extra-credit problem. Let f_1, \ldots, f_k be a finite collection of G-invariant elements generating $\mathbb{C}[V][V]^G$. The common set of zeros of f_1, \ldots, f_k is $\{0\}$ if G the G-invariant elements separate the orbits. So the preimage of $0 \in \mathbb{C}^k$ under $V \rightarrow \mathbb{C}^k$ is 0. It follows that this morphism is finite. Therefore all fibers are finite. The morphism is also G-invariant.

It follows that all G-orbits are finite. But $G = GL(V)$, hence $G^0 = \{1\}$ and G is finite.