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In this talk we will construct, following the recent paper [BR] by Bezrukavnikov
and Riche, actions of certain groups on certain categories. Both the groups and
the categories are relevant in representation theory, but all currently known
constructions of the action are given by explicitly constructing action by gener-
ators and checking relations between them — this is what we will do. There are
conjectures giving more “direct” meanings of these actions in terms of mirror
symmetry, but these remain largely mysterious at present.

Definition 1. For a category C, write AutEquiv(C) for the category of “auto-
equivalences”, i.e. invertible functors, from C to itself. Write

Ob
(
AutEquiv(C)

)
for the set of autoequivalences considered up to automorphism (of functors).
This is a group.

Definition 2. An action of a group G on a category C is a map of groups
α : G→ AutEquiv(C). Note that this is a weak action.

The categories we will be dealing with will be triangulated, and the functors
between them will be triangulated functors. Associated to functor α(g) will be
an endomorphism of the Grothendieck group K0(C).

For each group action, we will study the span of its image H in End(K0C),
and on endomorphisms of smaller invariant subcategories. These images will be
important algebras in their own right, and the “canonical” representations as
endomorphisms of a Grothendieck group will be important in later talks.

Thus we will produce quadruples of the form “category C, group G, algebra
H, representations Ve” (classified by nilpotent orbits).

We will go through four “variations” of this construction, giving the talk
a flavor of the musical movement called “theme and variations”. The theme,
which is self-contained, will contain the essential construction that will later be
elaborated in the variations. In the first setting of the “theme” the group G
will be the braid group, the category — that of (derived) coherent sheaves on
Ñ , possibly with support conditions, and the algebra will be the group algebra
of the Weyl group, C[W ].
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1 Theme: A classical braid group action on coh(Ñ).

Fix a root system corresponding to a finite-dimensional Lie algebra g

Definition 3. The braid group Br of a root system is defined as π1(
(
h\hα

)
/W ),

where h is the Cartan Lie subalgebra, W is the Weyl group and hα are the root
hyperplanes corresponding to all roots.

We will be using several different presentations of the braid group. First,
we recall a presentation for the Weyl group W : Take for generators the wα
corresponding to simple reflections α, for α running over simple roots.

Lemma 4. The wα generate the Weyl group W . For g, h group elements, define
the word {g, h}m = ghghg . . . , where there are m letters (e.g. if m is odd, the
last letter is an a). For a pair of roots α, β, let m(α, β) be the denominator of

the angle ∠(α,β)
π . The following is a complete set of relations on the wα:

∀α, β : (1)

w2
α = 1 (2)

{wα, wβ}m(α,β) = {wβ , wα}m(α,β). (3)

Now we can get a presentation of the braid group, by just getting rid of one
of the relations.

Lemma 5. The braid group Br can be presented with generators wα, where α
runs over simple roots and

∀α, β : (4)

{Tα, Tβ}m(α,β) = {Tβ , Tα}m(α,β). (5)

Here the generators Tα correspond to a half-turn around one of the hyper-
planes in ȟ. Note that if α, β are orthogonal then m(α, β) = 2 and the relation
says Tα, Tβ commute. For type An the roots are indexed by 1, . . . , n and re-
lations are TiTj = TjTi for i 6= j ± 1 and TiTi+1Ti = Ti+1TiTi+1, the usual
relation for the ordinary braid group.

We see from the presentations that Br surjects onto W . This map comes
from the topological fact that π1(X/W ) maps to W for any free action of a group
W on a topological space X (this map is surjective so long as X is connected).

One more presentation of the Braid group will be relevant below, where
instead of taking genrerators corresponding to simple reflections we take gener-
ators corresponding to certain lifts of all elements of the Weyl group W . Recall
the notion of length of an element w ∈ W , equal to the length of the minimal
length of a presentation of w as a product of simple reflections.

Lemma 6. Let Tw be a set of generators indexed by w ∈ W . Then Br has a
presentation as follows.

Tw1Tw2 = Tw1w2 as long as l(w1) + l(w2) = l(w1w2). (6)
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To see this is equivalent to 5, write Tw as
∏
i

Tαi for α1α2 . . . a shortest

presentation of w as a product of simple reflections. Equivalence follows from
the fact that any shortest presentation for w can be obtained from any other by
using the braid relation (3) from Lemma 4.

1.1 Affine analogues

Though we won’t need it till the next section, it is appropriate here we make a
remark collecting analogues of the facts above for affine coxeter systems:

Proposition-Definition 7. 1. Let ∆ be a set of simple roots of a coxeter
system for an affine Dynkin diagram of the group ĝ (g classical). Then
wα, α ∈ ∆ with the relations from Lemma 4 span the Affine Weyl group.

2. The wα corresponding to the classical vertices of the Dynkin diagram span
a subgroup isomorphic to W and the affine Weyl group WAff of ĝ is iso-
morhpic to Λ nW where Λ is the weight system of the (classical) Weyl
group for g.

3. (A presentation of BrAff). The generators and relations in 5 above, applied
to the coxeter system for ĝ span the Affine Braid group, BrAff.

4. There is an alternative presentation for BrAff analogous to Lemma 6, with
generators Tw for w ∈ W ⊂ WAff and vλ for λ ∈ Λ ⊂ WAff, with the
following relations.

Tαvsα(λ)Tα = vλ, when (λ, α̌) = 1 (7)

Tαvλ = Tαvλ, when (λ, α̌) = 0 (8)

in addition to the old relation for Br

Tw1Tw2 = Tw1w2 , when l(w1) + l(w2) = l(w1w2) (9)

and the usualy multiplication relations for the lattice Λ ⊂ BrAff, namely

vλvλ′ = vλ+λ′ . (10)

This is written in the appendix of [BR].

1.2 Grothendieck groups

For C an abelian category, let K0(C), the K-group, or Grothendieck group of C
denote the quotient of the set {[A] | A ∈ Ob(C)} by the relation of “additivity”:
[A] + [C] = [B] for 0→ A→ B → C → 0 exact.

Remark 8. The superscript 0 comes from the fact that there are higher K
groups, and these can be useful for constructing long exact sequences. We will
not encounter them here.
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Similarly, for D a triangulated category, we define K0(D) the category gen-
erated by [A] modulo the relation [A] + [C] = [B] for A→ B → C → an exact
triangle.

We have the following simple lemma:

Lemma 9. K0(C) = K0(DbC).

When X is a variety, we can define two derived categories of coherent sheaves
on X, “bounded” in different ways. One is Db coh(X), the derived category
of the category of coherent sheaves on X. The other is Db bun(X), the full
subcategory of Db coh(X) spanned by locally free sheaves. Hence we define two
groups as follows.

Definition 10. K0(X) = K0(coh(X)) and
K0(X) = K0(bun(X)).

The subscript in K0 may seem strange, but comes from the analogy be-
tween the pair (K0(X),K0(X)) and the pair H∗(X), H∗(X) (see Proposition-
Definition 11). When X is smooth, we have

K0(X) ∼= K0(X)

since any coherent sheaf has a finite locally free resolution.

Proposition-Definition 11. 1. For f : X → Y a proper map, pushforward
f∗ : Db coh(X) → Db coh(Y ) induces by linearity a map f∗ : K0(X) →
K0(Y )

2. and for f : X → Y any map, f∗ : Db bun(Y ) → Db bun(X) induces a
map of rings f∗ : K0(X)→ K0(X).

3. The assignment [V ] · [W ] = [V ⊗W ] for V a locally free bundle defines (by
linearity) a ring structure · : K0(X) ⊗ K0(X) → K0(X) and an action
· : K0(X)⊗K0(X)→ K0(X).

In terms of this analogy, the identification K0(X) ∼= K0(X) for X smooth
corresponds to Poincaré duality.

For X an algebraic variety there is a map called the (topological) Chern
character, χ : K0(X) →

∏
iH

i(X) (valued in formal series in cohomology
groups). We define χ(V ) = χ(Vtop), where for V a locally free sheaf, Vtop is the
topological bundle on the topological space X corresponding to V .

Now we have Chern character maps, χ0 : K0(X) → H∗(X,Q) (“cohomo-
logical”), and χ0 : K0(X)→

∑
iH

BM
i (X,Q) (“homological”). The maps χ0, χ

0

satisfy the following properties:

1. χ0 : K0(X)→ H∗(X) is a map of rings

2. χ0 : K0(X)→ H∗(X) is a map of modules

3. χ0 commutes with pullbacks.
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4. the Grothendieck-Riemann-Roch theorem, a.k.a. “twisted” compatibility
with pushforward:

TdY · f∗χ0(F ) = f∗(TdX · χ0(F )).

For the last equation, the Todd class TdX = 1 +O(ci(TX)) of a smooth variety
X is defined to be a certain linear combination of the Chern classes of its tangent
bundle.

We will need a final fact: χ0 is compatible with the support filtration on K0,
where for an integer d we say that

∑
mi[Fi] ∈ τ≤dK0 whenever the sheaves Fi

have support of dimensions di ≤ d.
In this case, we have the following lemma.

Lemma 12. χ0 is compatible with the filtration τ≤d(H
∗(X)) :=

∑
i≤dH

i(X).
Further, the map gr(χ0) : gr(K0(X), τ≤∗) → H∗(X) commutes with pushfor-
wards.

Here the Todd class factor TdX can be ignored as it acts by 1 on H∗(X)
after taking associated gradeds.

1.3 Statements of results for classical braid groups.

We can now state the main result of the paper [BR] for the classical braid group:

Theorem 13. There is a natural action of the braid group Br on the category
Db coh(Ñ), taking the generators Tw to functors Γw (to be defined in the next
section).

Further, this action is in fibered over the nilpotent cone N in the following
sense. Namely, for any nilpotent e ∈ N, define Be ⊂ Ñ to be the Springer fiber
over e. Then the action by Br preserves the derived category Db cohBe(Ñ) of
coherent sheaves with cohomology supported on Be.

Finally, the action on the level of the Grothendieck group K0(Be) factors
through the projection Br→W .

In particular, we get an action of W on K0(Db cohBe(Ñ)) = K0(Be). We
have

K0(Be)⊗Q ∼= H∗(Be)

(this is in [CG]).
We can ask whether the Chern character χ0 : K0(Be) → HBM

∗ (Be) inter-
twines the action of W defined above with the action defined in [CG] that Yi
talked about in the last talk. It turns out that this is not the case1 However we
have the following.

Theorem 14. The Weyl group action is compatible with the support filtration
τ≤∗K0(Be), and on the level of associated gradeds grχ0 : grK0(Be)→ HBM

∗ (Be)
is compatible with the W action on HBM

∗ defined in the last lecture.

1In the talk on 9/16 I made the opposite claim. Thanks to Paul Seidel for catching the
mistake.
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1.4 Constructing the representation.

There is a standard way of constructing triangulated functors Db coh(X) →
Db coh(Y ): pick a coherent sheaf K ∈ coh(X × Y ), such that it has a finite
resolution by locally free sheaves.

Definition 15. Define the Fourier-Mukai transformation with Kernel K, de-
noted FM(K), to be the composition functor

FM : db coh(X)
π∗1- Db coh(X × Y )

⊗K- Db coh(X × Y )
R(π2)∗- coh(Y ),

with F 7→ (π2)∗(K ⊗ π∗1F ).

Remark 16. The “Fourier” in “Fourier-Mukai” comes from the following anal-
ogy: if we replaced “pushforward” by “integral” and the Kernel K by ex·y, we
would have the ordinary Fourier transform. Note that composition corresponds
to convolution, FM(K)◦FM(K ′) = FM(K ∗K ′), which, again in analogy with
integrals, corresponds to multiplication of matrices (with entries parametrized
by X × Y ).

Definition 17. 1. If ι : Z ⊂ X × Y is a closed subset, define FM(Z) =
FM(ι∗O(Z)).

2. If M is a sheaf over X, define FM(M) = ∆∗(M). Evidently,

FM(M) : N 7→M
L
⊗N

for M another sheaf.

Note that if Γ ⊂ X × Y is a graph of a map X → Y then FM(Γ) = f∗.
We define the functor Φw : Db coh(Ñ) → Db coh(Ñ) by Φw = FM(Λw0 ),

where Λw0 were the spaces defined in the previous talk (denoted Zw in [BR]).

Theorem 18 (Bezrukavnikov-Riche). 1. The Φw are invertible;

2. We have a canonical isomorphism of functors

Φw1Φw2
∼= Φw1w2 if l(w1) + l(w2) = l(w1w2).

The fact that l(w1)l(w2) = l(w1w2) is necessary can be seen by projecting
Ñ → B. Then the set-theoretic images of Λw0 are the Bruhat double coset Ow,
and on the level of sets, we have Ow1

∗Ow2
= Ow1w2

iff l(w1w2) = l(w1)+ l(w2).
The proof that this is sufficient is much more mysterious, and proceeds by
reduction to characteristic p.

1.5 Action on K0 and standard modules

Finally, recall from the previous talk that Λw0 ⊂ Ñ × Ñ for w ∈ W is the fiber
over 0 ∈ h× h of a space Λw ⊂ g̃× g̃ (where the map g̃→ h̃ is the Grothendieck
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simultaneous resolution). Now over the regular subset hreg×hreg ⊂ h×h (which
is dense), the preimage Λw|hreg × hreg is the graph of a natural action of w ∈W
on g̃hreg . In particular, on this open the functors Φreg

w := FM
(
Λw|hreg × hreg

)
satisfy Φw1

◦ Φw2
= Φw1w2

. Now K0 admits a specialization map like the one
Yi defined in the last talk on HBM

∗ , and so from the isomorphism of functors
Φreg
w1

Φreg
w2
∼= Φreg

w1w2
(or rather from equality of the maps they induce on K0) we

can deduce that K0(Φw1Φw2) = K0(Φw1w2) without any conditions on length,
and so the induced action of Br on K0(Ñ) factors through W .

An analogous argument can be used to show that the action on the category
of coherent sheaves with support restriction, K0(cohBe(Ñ), factors through W .
We have an identification

K0(Db cohBe(Ñ)) ∼= K0(Db cohBe),

as any module supported on Be has a filtration by finitely many pushforwards
of modules from Be. Hence W acts on K0Db coh(Be) = K0(Be). We define the
standard modules of W corresponding to Springer fibers Be to be the K0(Be)⊗Q
with W -action induced by the Φw.

2 Variations: Equivariant coherent sheaves: G-
equivariance

We’re done with our theme. Now on to variations. These will require a good
understanding of the category of equivariant modules over a scheme with a G
action for an algebraic group G.

Suppose R is a commutative ring with action by an algebraic group G (so
denoted to distinguish it from our original Lie group G). Let α(g) : R → R
(map of rings) be this map. Say M is a module over R.

Definition 19. A G-equivariant structure on M is a G-action on M such that

(gr)(gm) = g(rm) (11)

For an automorphism α(g) of R, the pushforward α(g)∗(M) twists the action
of R by M by α(g) : R → R. Formula (11) is equivalent to the g-action on M
defining a map M → ρ(g)∗(M). Now suppose X is a scheme with action by a
group G. We modify the above definition of an equivariant module as follows.

Definition 20. Given a scheme X with action α : G → Aut(X), an G-
equivariang sheaf over X is a coherent sheaf M together with a collection of
isomorphisms ρ(g) : M → α(g)∗M with the following compatibility condition:(

α(g1)∗[ρ(g2)]
)
ρ(g1) = ρ(g2g1) : M → α(g2g2)∗(M). (12)

It goes without saying that both the action α(g) on X and the mapping g 7→ ρ(g)
must be algebraic in g in the obvious sense.
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The category of G-equivariant sheaves as above is abelian and monoidal and
will be denoted cohG(X). When X is affine and M is a module, the above
simply encodes the associativity condition on the action ρ of G on M .

Remark 21.

In the following we will give several ways of constructing classes of equiv-
ariant sheaves, which we will use for our construction of new functors from
cohG(Ñ) to itself.

Definition 22. Suppose V is a representation of G. Consider the sheaf O(V ) =
OX ⊗ V . Then for any map f : X → X — in particular, for action maps
f = α(g−1)∗, we have canonically f∗O(V ) ∼= O(V ). Using this identification,
define the equivariance maps ρ(g) : O(V ) → O(V ) using the representation
action of g on V .

As a special case of this when G = C∗, the character sheaf O(χ) given by
the one-dimensional representation χ : C∗ → C.

Another case of interest for us is the character χλ : B → C∗ given by pulling
back to B a weight λ : T → C∗. Namely, note that G-equivariant line bundles
on G/B are in bijection with characters of B, where the bundle L is determined
by its coherence maps ρb : L[1] → L[1] over the point [1] ∈ G/B and b varies
over B (the centralizer of [1] ∈ G/B).

Write O(λ) for the bundle corresponding to λ : B → C∗. (This is a very
classical definition: for example for SL2/B ∼= P1, these are powers of the canon-
ical bunle, O(n).) Abusing notation, we also denote by O(λ) the bundle over Ñ
obtained by pulling back along the map Ñ → G/B.

Now we define functors Θλ : coh(Ñ) → coh(Ñ) to be twists by the line
bundles O(λ). These satisfy Θ(λ) ◦ Θ(λ′) = Θ(λλ′), and in particular the
functors Θ(λ) span a lattice isomorphic to the root lattice R.

Theorem 23 ([BR]). The assignment J(Tw) = Φw and J(Tvλ) = Θλ extends
to a reprsentation of the affine braid group J : BrAff → AutEquiv(coh(Ñ)).
Further,

1. this action respects the condition of being supported at a Springer fiber Be,
and

2. For any G ⊂ G × C, there are compatible representations JG : BrAff →
AutEquiv(cohG(Ñ)) for G any subgroup of G×C (we will be interested in
the subgroups G,C∗, G×C∗). Here recall that the Lie group G acts on Ñ
by conjugation and C∗ acts on Ñ by scaling, and these actions commute.

3. For any subgroup G ⊂ G× C∗ which stabilizes a nilpotent e ∈ N , there is
a canonical extension of J to JGe : BrAff → AutEquiv(cohBe(Ñ)).

The equivariant actions above follow from the fact that both J(Tw) =
FM(Λw0 ) and J(Tvλ) = FM(O(λ)) come from the Fourier-Mukai transforms
with sheaves that have a natural G-equivariant structure (O(λ) is equivariant
from the way we defined it, and Λw0 is a G× C∗-invariant subspace of Ñ × Ñ).
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Note that the braid group relations for the equivariant case do not imply them
for the non-equivariant one, or vice versa — hence they need to be checked for
each case separately.

Finally, we’ve already seen that the Φw preserve support conditions; the Θλ

do as well, since tensoring with a line bundle cannot increase support.
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