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The goal of this note is to provide a crash-course on constructible and perverse sheaves.
These sheaves play a crucial role in the geometric representation theory and, in particular,
in the computation of characters of irreducible objects in interesting representation theoretic
categories. We will briefly sketch this application.

1. Sheaves

We consider “reasonable” (=Hausdorff, paracompact, locally compact, locally contractible,
etc.) spaces. In our applications we will be dealing with quasi-projective algebraic varieties
over C (with complex topology), those are reasonable. By K we denote a commutative Noe-
therian ring (a coefficient ring). In this section X, Y always denote reasonable topological
spaces and f : X → Y is a continouous map.
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1.1. Sheaves. We consider the category Sh(X,K) of sheaves of K-modules on X. This is
an abelian category. For example, when X is a point, we have Sh(X,K) = K-Mod.

Let us give some examples of sheaves.

Example 1.1. Let x ∈ X and M be a K-module. We have the sky-scrapper sheaf Mx

whose sections are given by

Mx(U) =

{
M, if x ∈ U,
{0}, else

.

Example 1.2. Let M be a K-module. Then we can consider the constant sheaf MX whose
sections on every connected open subset U are M and the restriction maps for the inclusion
of connected open subsets are the identity.

Example 1.3. More generally, we can consider locally constant sheaves a.k.a. local systems,
i.e., sheaves F such that each x ∈ X has an open neighborhood U such that F|U is constant.
If X is connected and reasonable, then for any x ∈ X, we have an equivalence between

• the full subcategory Loc(X,K) ⊂ Sh(X,K) of local systems
• and the category K(π1(X, x))-Mod

given by taking the monodromy representation at x.

Exercise 1.4. Prove that Loc(X) is closed under taking kernels and cokernels.

Let F ∈ Sh(X,K) and x ∈ X. We can take the stalk

Fx := lim−→
U3x
F(U).

This is a K-module. If X is connected and F is a local system, then the stalks at different
points are (non-canonically) identified.

1.2. Functor f ∗. We have the pull-back functor f ∗ : Sh(Y,K) → Sh(X,K) that sends
G ∈ Sh(Y,K) to f ∗G to the sheafification of the following presheaf

U 7→ lim−→
V⊃f(U)

G(V ),

here and below we write U for an open subset of X and V for an open subset of Y .

Example 1.5. f ∗KY = KX .

For y ∈ Y and the inclusion iy : {y} → Y we have i∗yG = Gy. Also note that, for two
continuous maps f and g, we have

(1.1) (fg)∗ = g∗f ∗.

Exercise 1.6. (f ∗F)y = Ff(y) and f ∗ is exact.

1.3. Functor ◦f∗. As usual, f ∗ has the right adjoint functor, the push-forward functor
◦f∗ : Sh(X,K)→ Sh(Y,K) (we reserve the notation f∗ for the corresponding derived functor
to be discussed below):

◦f∗F(V ) = F(f−1V ).

(1.1) implies

(1.2) ◦(fg)∗ = ◦f∗
◦g∗.

When Y is a point, ◦f∗ becomes the global section functor Γ given by Γ(F) = F(X).
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1.4. Functor ◦f!. We also have a different version of push-forward, the shriek push-forward
◦f!. While ◦f∗ is a relative version of Γ, the functor ◦f! is a relative version of the functor Γc
that takes global sections with compact support. More precisely, ◦f!F is defined by

◦f!F(V ) = {s ∈ F(f−1(V ))|f |supp(s) is proper}.
Here, as usual, supp(s) stands for the support of s, the set of all x ∈ X such that the image
of s in Fx is nonzero. We also can consider suppF = {x ∈ X|Fx 6= {0}}, it does not need
to be closed.

By definition, we have a natural inclusion ◦f!F ↪→ ◦f∗F . If f is proper, then this inclusion
is an isomorphism.

Exercise 1.7. Prove that ◦f! is left exact and that ◦(fg)! = ◦f!
◦g!.

Exercise 1.8. Suppose that h : X → Y is a locally closed inclusion. Then ◦h!F is the
sheafification of the presheaf given by

V 7→

{
F(V ), if V ∩X ⊂ X,

{0}, else
.

For the stalks, we have ( ◦h!F)y = Fy for y ∈ X and = 0 else (because of this, ◦h! is called
the extension by zero functor). In particular, ◦h! is exact in this case.

Exercise 1.9. Let U be an open subset of X and Z := X \ U . Let j : U ↪→ X, i : Z ↪→ X
be the inclusions. Then we have the following exact sequence in Sh(X,K):

0→ j!j
∗F → F → i∗i

∗F → 0.

1.5. Internal Hom. Let F1,F2 ∈ Sh(X,K). We can define HomX(F1,F2) ∈ Sh(X,K) via

Hom(F1,F2)(U) := HomSh(U,K)(F1|U ,F2|U).

In particular, Γ(Hom(F1,F2)) = HomSh(X,K)(F1,F2).

Exercise 1.10. We have Hom(KX ,F) = F and Hom(F ,Mx) = HomK(Fx,M)x (another
sky-scrapper sheaf at x).

We can also define the tensor product of two sheaves, F1 ⊗K F2.

1.6. Derived versions. Note that Sh(X,K) has enough injectives. We consider the full
derived category D(X,K) of the abelian category Sh(X,K) and its subcategories D+, D−, Db.
For F ∈ D(X,K), we write Hi(F) for the ith cohomology sheaf in Sh(X,K).

The functors introduced above all have derived functors as follows:
1) f ∗ is t-exact.
2) ◦f∗,

◦f! have the right derived functors denoted by f∗, f!. Note that f∗ : D+(X,K) →
D+(Y,K) is still right adjoint of f ∗.

3) Hom has right derived functor RHom.
We note that, for the derived functors, we still have

(1.3) f∗g∗ = (fg)∗, f!g! = (fg)!.

and we still have a functor morphism

(1.4) f! → f∗.

Now we provide some examples of (partial) computations of push-forwards.



4 PERVERSE SHEAVES

Example 1.11. Let L be a local system on X. Then

Hk(RΓ(L)) = Hk
sing(X,L),

Hk(RΓc(L)) = Hk
sing,c(X,L),

where the subscript “sing” stands for the singular (=usual) cohomology. So, roughly speak-
ing, f∗, f! should be thought as the relative versions of taking the cohomology and compactly
supported cohomology.

Example 1.12. Let j : X → Y be an open inclusion and consider L ∈ Loc(X,K). Let
us compute the cohomology of (j∗L)y ∈ D(K -Mod). First of all, for x ∈ X, we have
(j∗L)x = Lx and for y 6∈ X, we have (j∗L)y = {0}. Now let us take y ∈ X \X. It follows
from Example 1.11 combined with (1.3) that

Hk((j∗L)y) = lim−→
V 3y

Hk
sing(V ∩X,L).

Example 1.13. Let Y = C, X = C \ {0},K be a field, and L be a rank one local system on
X. Via the monodromy representation, it corresponds to a nonzero scalar α ∈ K ↔ Lα ∈
Loc(X,K), so that, in particular, L1 = KX . Then, for α 6= 0, we have j∗Lα = j!Lα. Further,
we have H0(j∗L1

0) = H1(j∗L1
0) = K and the other cohomology spaces vanish.

Now we discuss the proper base change. Consider a Cartesian diagram.

Y ′ Y

XX ′

? ?
-

-

f̃ f

g

g̃

Proposition 1.14. We have a natural isomorphism g∗f! ∼= f̃!g̃
∗ of functors D+(X,K) →

D+(Y ′,K).

Applying this to Y ′ = {y} we see that

(1.5) (f!F)y = RΓc(f
−1(y),F|f−1(y)).

Exercise 1.15. Find a counterexample to Proposition 1.14 when we use f∗ instead of f!.

1.7. Functor f !. Assume further that there is an integer n > 0 such that one of the following
(equivalent) conditions are satisfied:

(1) Hn+1
c (X,F) = 0 for all F ∈ Sh(X,K),

(2) every x ∈ X has an open neighborhood U such that Hn+1
c (U,K) = 0.

For example, this holds if X is locally a closed subspace of an n-dimensional manifold.

Proposition 1.16. Let X, Y satisfy the equivalent conditions (1),(2) above. Then the func-
tor f! : D+(X,K)→ D+(Y,K) has right adjoint, f ! : D+(Y,K)→ D+(X,K).

This is an existence result based on properties of D+(X,K), D+(Y,K) and f!. In some
cases, one can describe f ! more explicitly.

For example, let h : X → Y be a locally closed inclusion. As we have seen in Exercise 1.8,
h! is t-exact. It turns out that h! : Sh(X,K) → Sh(Y,K) has right adjoint, ◦h!, the functor
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of restriction with supports. It is the sheafification of the following presheaf
◦h!G(U) := lim−→

V |V ∩X=U

{s ∈ G(V )| supp s ⊂ U}.

Exercise 1.17. Check that, indeed, ◦h! is right adjoint of h!. Moreover, check that if h is
an open embedding, then ◦h! = h∗.

Of course, in this case h! is the derived functor of ◦h!.

2. Constructible sheaves

Now we change a setting and consider complex quasi-projective varieties equipped with
their complex topology. The maps we consider will be morphisms of varieties. So X, Y are
complex algebraic varieties and f is a morphism X → Y . For simplicity, we assume that K
has finite global dimension.

2.1. Pull-backs under smooth morphisms. Let f : X → Y be smooth. In this section
we will investigate the properties of the pull-back functors f ∗, f !.

First of all, we have the smooth base change. Consider a Cartesian diagram.

Y ′ Y

XX ′

? ?
-

-

f̃ f

g

g̃

Proposition 2.1. Suppose g is smooth (hence g̃ is smooth of dimension d). Then there is

a natural isomorphism g∗f∗
∼−→ f̃∗g̃∗ of functors Db(X,K)→ Db(Y ′,K).

Now let us discuss a connection between f ∗ and f !.

Proposition 2.2. Suppose f : X → Y is smooth of relative dimension d. Then we have an
isomorphism of functors f ! ∼= f ∗[2d].

Example 2.3. Let us see what happens when Y is a point (hence X is smooth), K is a
field, and we apply our isomorphism to K ∈ Sh(pt,K). Here the proposition claims that
f !K = KX [2d]. Let L be a finite rank local system on X. Then we have

HomD(X,K)(L, f !K) = HomD(K -Mod)(f!L,K) = RΓc(L)∗.

On the other hand, let L∨ denote the dual local system of L. We have

HomD(X,K)(L, f ∗K[2d]) = HomD(X,K)(L,KX [2d]) = RΓ(L∨[2d]).

So we get a natural isomorphism RΓc(L)∗ ∼= RΓ(L∨[2d]), equivalently,

Hj
c (X,L) = H2d−j(X,L∨)∗,∀j ∈ Z,

which is the statement of Poincare duality (for local systems). In other words, Proposition
2.2 is a relative and generalized version of the Poincare duality.

Remark 2.4. There is a way to make an isomorphism of Proposition 2.2 more canonical.
Note thatH2

c (C,K) ∼= K as a K-module. Define the Tate module K(1) := HomK(H2
c (C,K),K).

For a K-module M we set M(d) := M ⊗K K(d). Then one can strengthen Proposition 2.2
as follows: we have a canonical isomorphism

(2.1) f ! ∼= f ∗[2d](d).
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2.2. Stratifications. We will not be interested in all sheaves, we will only consider those
that are, in a sense, assembled from local systems. To define that class of sheaves we need
the notion of a stratification.

Definition 2.5. A partition X =
⊔k
i=0Xi is called a stratification if:

• Xi are smooth connected locally closed subvarieties,
• and, for each i, j = 1, . . . , k, we have Xi ∩Xj = Xi or ∅.

Example 2.6. X = Pn, k = n and Xi = {[x1 : . . . : xi−1 : 1 : 0 : . . . : 0]} ∼= Ai.

Example 2.7. Let H be a connected algebraic group acting on X with finitely many orbits.
Then we have the orbit stratification of X. We will mostly care about X = G/P , a partial
flag variety, and H = U , a maximal unipotent subgroup of a reductive group G. In this way
we get the parabolic Bruhat stratification, of which the previous example is a special case.

2.3. Constructible sheaves. Let S be a stratification of X. For a stratum Xi, let hi :
Xi ↪→ X denote the inclusion. We say that

• F ∈ Sh(X,K) is constructible w.r.t. S if h∗iF is a local system of finite type (=the
stalks are finitely generated over K).
• F ∈ Db(X,K) is called constructible w.r.t. S if Hi(F) is constructible w.r.t. S for

all i.
• F ∈ Db(X,K) is called constructible if it is constructible w.r.t. some stratification.

We use the notations ShS(X,K), Db
S(X,K), Db

c(X,K) for the corresponding categories. Note
that the former is an abelian category, while the latter two are triangulated ones.

Example 2.8. For the trivial stratification S given by X = X0 (here X is smooth and
connected), we have ShS(X,K) = Locft(X,K) (“ft” for “finite type”).

Example 2.9. Let S be the stratification of P1 from Example 2.6. Let us describe the
category ShS(X,C). The strata are simply connected, so all local systems there are trivial.
Pick F ∈ ShS(X,C). Set W0 := F[1:0],W1 := F[0:1]. To define a sheaf with these stalks,
we need to specify one restriction map: from a neighborhood U of zero to the punctual
neighborhood U×. This gives ϕ : W0 = Γ(U,F)→ Γ(U×,F) = W1. So we have constructed
an equivalence between ShS(X,C) and the category of finite dimensional representations of
the A2 quiver.

Exercise 2.10. What changes if we replace P1 with A1 = P1 \ {∞} and hence X1 with C×
in the previous example?

2.4. Preservation of constructibility. It turns out that the functors we consider restrict
to the constructible derived categories.

Theorem 2.11. The following are true:

(1) for F ∈ Db
c(X,K), we have f∗F , f!F ∈ Db

c(Y,K),
(2) for G ∈ Db

c(Y,K), we have f ∗G, f !G ∈ Db
c(X,K),

(3) for F1,F2 ∈ Db
c(X,K), we have RHom(F1,F2) ∈ Db

c(X,K).

Remark 2.12. A more interesting question is when the functors above preserve the con-
structibility with respect to given stratifications. We are going to consider this question
for the orbit stratifications, where the answer is “yes”. To start with, we need a different
category.
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Namely, for a topological group G acting on a topological space X it makes sense to
speak about G-equivariant sheaves – with the usual definition. Denote the corresponding
category by ShG(X,K). With some work, one can define the corresponding derived category
Db
G(X,K), which is not the same as the derived category of ShG(X,K)1.
The sheaf functors we have considered upgrade to the equivariant derived categories.
Now assume that G is a connected algebraic group acting on a quasi-projective variety

X with finitely many orbits. Let S denote the orbit stratification, Example 2.7. We have
the forgetful functor for : Db

G(X) → Db
S(X) that intertwines the push-forward and pull-

back functors. Using this functor one can get the affirmative answer to the question in the
beginning of this remark. In fact, when G is unipotent, for is an equivalence.

2.5. Dualizing sheaf and Verdier duality. Finally, let us discuss a contravariant duality
functor on Db

c(X,K). First, we need to define the dualizing sheaf.

Definition 2.13. The dualizing sheaf ωX ∈ Db
c(X,K) is a!XK, where aX : X → pt.

So HomDb(X,K)(F , ωX) = HomDb(K -Mod)(RΓc(F),K).

Example 2.14. Let X be smooth of dimension d. Then, by Proposition 2.2, ωX =
KX [2d](d).

Also note that f !ωY = ωX .

Definition 2.15. The Verdier duality functor is

D(•) := RHom(•, ωX) : Db
c(X,K)→ Db

c(X,K)opp.

If we want to indicate the underlying variety, we put it as a subscript, e.g., write DX .

Example 2.16. Let X be smooth and irreducible of dimension d and L be a finite type local
system on X whose stalks are projective K-modules. Then D(L) is naturally isomorphic to
L∨[2d](d).

The following theorem summarizes important properties of D.

Theorem 2.17. The following claims are true:

(1) D is an equivalence, moreover, D2 is naturally isomorphic to id.
(2) We have f! ◦ DX = DY ◦ f∗ and f∗ ◦ DX = DY ◦ f!.
(3) We have f ! ◦ DX = DY ◦ f ∗ and f ∗ ◦ DX = DY ◦ f !.
(4) We have RHom(F1,F2) = RHom(DF2,DF1).

3. Perverse sheaves

Here we maintain the basic assumptions of the previous section and assume, in addition,
that K is a field.

1That one shouldn’t take Db ShG(X,K) is clear already for a compact Lie group action on a point. Namely,
one wishes that the self-extensions of the constant sheaf in the equivariant derived category is the equivariant
cohomology of the point. Of course, there are no higher self-extensions in the category of finite dimensional
representations of a compact Lie group
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3.1. t-structures. A t-structure on a triangulated category is an additional structure that
allows to see an abelian subcategory (the heart) inside, in particular, recovering an abelian
category inside its derived category.

Namely, let T be a triangulated category and let T 60, T >0 be two full subcategories. For
n ∈ Z, we set T 6n = T 60[−n] and T >n = T >0[−n].

Definition 3.1. We say that the pair (T 60, T >0) is a t-structure if the following conditions
hold:

(i) T 6−1 ⊂ T 60 and T >−1 ⊃ T >0,
(ii) If A ∈ T 6−1 and B ∈ T >0, then Hom(A,B) = 0.

(iii) For any C ∈ T , there is a distinguished triangle A → C → B
+1−→ with A ∈ T 6−1

and B ∈ T >0.

We define the heart of the t-structure (T 60, T >0) as T ♥ := T 60 ∩ T >0.

Proposition 3.2. T ♥ is an abelian category.

Example 3.3. Let A be an abelian category, and T := Db(A). Then we set T 60 = {M ∈
T |H i(M) = 0,∀i > 0} and define T >0 in a similar way. This is, obviously, a t-structure
whose heart is identified with A.

Let us return to the general situation. The inclusion T 6i ↪→ T has a right adjoint functor,
to be denoted by τ6i. Dually, inclusion T >i ↪→ T has a left adjoint functor, to be denoted
by τ>i.

These are the so called truncation functors. For example, in condition (iii) above, we get
A = τ6−1(C), B = τ>0(C).

For C ∈ T , i ∈ Z, we set

H i(C) := τ>0τ60(C[i]) = τ60τ>0(C[i]) ∈ T ♥.
These are the cohomology functors for the t-structure. Of course, for the tautological t-
structure on Db(A) we recover the usual cohomology.

Exercise 3.4. If we have an exact triangle C1 → C2 → C3
+1−→ in T and C1, C3 ∈ T ♥, then

C2 ∈ T ♥. It follows that Ext1’s in T ♥ are the same as in T .

3.2. Perverse t-structure: motivation and definition. So we have the tautological
t-structure ( τDb

c(X,K)60, τDb
c(X,K)>0) (“τ” from “tautological”) on Db

c(X,K) with heart
Shc(X,K) but often we want to consider a different one. Here is one reason why the tau-
tological t-structure is not “the best”: it is not compatible with D in any reasonable sense.
Namely, if ι : Z ↪→ X is a closed inclusion of a smooth connected subvariety of and LZ is
a finite type local system on Z then, as we have seen, Example 2.16, D(LZ) ∼= L∨Z [2 dimZ].
We would like to have a t-structure compatible with D (meaning that D sends the 6 0-part
to > 0-part and vice versa).

For this we define a pair of full subcategories ( pDb
c(X,K)60, pDb

c(X,K)>0) (“p” from “per-
verse”) as follows:

pDb
c(X,K)60 := {F ∈ Db

c(X,K)| dim suppHi(F) 6 −i,∀i ∈ Z}
pDb

c(X,K)>0 := D( pDb
c(X,K)60) = {F ∈ Db

c(X,K)| dim suppHi(DF) 6 −i,∀i}.
(3.1)

Then we set

(3.2) Perv(X,K) := pDb
c(X,K)60 ∩ pDb

c(X,K)>0.
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The objects of Perv(X,K) are called perverse sheaves. Note that pDb
c(X,K)60 ⊂ τDb

c(X,K)60

Example 3.5. Let Z be as in the beginning of the section, then LZ [dimZ] ∈ Perv(X,K).

Example 3.6. Let X = C, U = C× and j : U → X be the open embedding. We claim that
j∗KU [1], j!KU [1] ∈ Perv(X,K). Note that

pDb
c(X,K)60 = {F ∈ τDb

c(X,K)}60| dim SuppH0(F) 6 0}.
So j!KX [1] ∈ pDb

c(Y,K)60 because the stalks of this sheaf are in the homological degree −1.
And recall, Example 1.13, that H0(j∗KU [1]) = C0, while there are no cohomology sheaves
in positive degrees. So j∗KU [1] ∈ pDb

c(X,K)60. But j∗KU [1], j!KU [1] are dual to each other,
hence both lie also in pDb

c(X,K)>0.

Remark 3.7. More generally, let j : U ↪→ X be an open embedding. The functor j! maps
pDb

c(U,K)60 to pDb
c(X,K)60 because it doesn’t introduce new nonzero stalks. Dually, j∗ maps

pDb
c(U,K)>0 to pDb

c(X,K)>0. However, in general, neither maps perverse sheaves to perverse
sheaves: look at U = C2 \ {0}, X = C2 and KU [2].

Exercise 3.8. If i : Z ↪→ X is a closed embedding, then i∗ is t-exact. If j : U ↪→ X is an
open embedding, then j∗(= j!) is t-exact.

Moreover, i∗ is a full embedding Perv(Z,K) ↪→ Perv(X,K).

Theorem 3.9. The pair ( pDb
c(X,K)60, pDb

c(X,K)>0) is a t-structure (to be called the per-
verse t-structure). Hence Perv(X,K) is an abelian category.

Again, we can work with a fixed stratification, S, and define PervS(X,K) := Perv(X,K)∩
Db
S(X,K), etc. Theorem 3.9 still holds assuming the stratification is “good”. For example,

the orbit stratifications, Example 2.7, are good.

3.3. Simple objects. The goal of this section is to classify the simple objects in the abelian
category Perv(X,K).

Example 3.10. If X is smooth and connected, and L is an irreducible local system on X,
then L[dimX] is a simple object of Perv(X,K). More generally, let Z be a smooth connected
closed subvariety in X and let i : Z ↪→ X denote the inclusion. Let L be an irreducible local
system on Z. Then i∗L[dimZ] is an irreducible object in Perv(X,K).

We now proceed to the general construction of simples based on the so called intermediate
extension functor.

Recall the functor morphism h! → h∗, (1.4). In Remark 3.7, we have seen that h! is left
t-exact (preserves 6 0 part), while h∗ is right t-exact. We get a morphism

(3.3) pH0(h!•)→ pH0(h∗•)
of functors Perv(Z,K)→ Perv(X,K) (where pH0 denotes the zeroth cohomology functor for
the perverse t-structure).

Definition 3.11. The intermediate extension functor h!∗ : Perv(Z,K)→ Perv(X,K) is the
image of (3.3).

Exercise 3.12. For F ∈ Perv(Z), the object h!∗(F) is the unique G ∈ Perv(X) such that

• Supp(G) ⊂ Z,
• G|Z ∼= F ,
• G has no subs and quotients supported on Z \ Z.
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Because of this result, h!∗ is sometimes called the minimal extension.

Definition 3.13. Let Z ⊂ X be a smooth, irreducible and locally closed subvariety, h :
Z ↪→ X be an inclusion, and L be a local system on Z. Define the intersection cohomology
sheaf IC(Z,L) as h!∗(L[dimZ]).

Remark 3.14. In fact, using Exercise 3.12 we can give a description of IC(Z,L) similar to
the definition of a perverse sheaf. Namely, IC(Z,L) is a unique perverse sheaf F supported
on Z whose restriction to Z is L[dimZ] that, in addition, satisfies

• dim suppHi(F) < −i,∀i > − dimZ, (this conditions turns out to be equivalent to
the claim that F has no quotients supported on Z \ Z)
• dim suppHi(DF) < −i, ∀i > dimZ (the same for subobjects).

Example 3.15. Let X = C, U = C× and j be the inclusion. Let us compute IC(U,L)
for rank one local systems on U . Recall that these local systems are classified by K× via
monodromy: a 7→ La. We have computed the stalks of j∗La in Example 1.13. For a 6= 1, we
have j∗La ∼= j!La hence IC(U,La) = j!La[1]. For a = 1, F := KX [1] satisfies the conditions
of Remark 3.14. So IC(U,L) = KX [1].

The following theorem is a consequence of Example 3.10 and Exercise 3.12.

Theorem 3.16. The following claims are true:

• if L is irreducible, then IC(Z,L) is simple in Perv(X,K),
• every simple in Perv(X,K) is isomorphic to IC(Z,L) for some Z,L,
• we have IC(Z1,L1) ∼= IC(Z2,L2) if and only if Z1 ∩ Z2 is open in both Z1, Z2 are
L1|Z1∩Z2

∼= L2|Z1∩Z2.

Exercise 3.17. We have D IC(Z,L) = IC(Z,L∨).
Remark 3.18. The sheaves IC(Z,L) were essentially introduced by Goresky and MacPher-
son who were looking for a generalization of the Poincare duality to singular varieties (and
more general singular spaces). Suppose Z = X. Recall that RΓc ◦ DX(•) = Dpt ◦ RΓ(•) =
RΓ(•)∗. So RΓc(IC(Z,L∨)) = RΓ(IC(Z,L))∗ – which is a version of the Poincare duality.

3.4. Properties of functors. Here we consider properties of pull-back and push-forward
functors under various assumptions on the morphism.

Lemma 3.19. Let f : X → Y be an affine morphism. Then f∗ is right t-exact (and f! is
left t-exact) for the perverse t-structures.

Combining this with Remark 3.7, we see that if f is an affine open embedding, then f∗, f!
are t-exact, we have seen a special case of this in Example 3.6.

Exercise 3.20. Let f : X → Y be a smooth morphism of relative dimension d. Then
f ∗[d] ∼= f ![−d](−d) is t-exact for the perverse t-structures.

Remark 3.21. Note that f ∗[d] IC(Z,L) = IC(f−1(Z), f ∗L). In particular, if f is a locally
trivial fibration with connected fibers, then f ∗[d] maps simples to simples.

Finally, we need to consider the special case of proper morphisms from smooth varieties.

Definition 3.22. Let f be a proper surjective morphism X → Y . We say that f is semis-
mall, if, for each d > 0, we have

dim{y ∈ Y | dim f−1(y) > d} 6 dimY − 2d.

If for all d > 0 we have < in the inequality above, we say that f is small.
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Lemma 3.23. Let X be smooth and connected and let f be a surjective proper morphism.
Assume f is semismall. Then for any L ∈ Locft(X,K), we have f∗L[dimX] ∈ Perv(Y,K).

3.5. Decomposition theorem. The Beilinson-Bernstein-Deligne decomposition theorem
is one of the most powerful tools to study the perverse sheaves. It comes with an additional
important restriction: the coefficient field K must have characteristic 0. This is a geometric
reason why the representation theory in characteristic p is harder than in characteristic 0.

Definition 3.24. By a semisimple complex in Db
c(X,K) we mean an object that is the direct

sum of simple perverse sheaves with (homological) shifts.

Theorem 3.25. Let X be a smooth connected variety and f : X → Y be a proper morphism.
Suppose that charK = 0. Then f∗KX is a semisimple complex in Db

c(Y,K).

Combining this with Lemma 3.23, we get the following corollary.

Corollary 3.26. Assume, in addition, that f is semismall. Then f∗KX [dimX] is a semisim-
ple perverse sheaf on Y .

Example 3.27. Let Y be the quadratic cone {(a, b, c)|ab = c2} (a.k.a. the nilpotent cone
for sl2) and K = C. Let X be the minimal resolution of singularities for Y . It is obtained
by blowing up the zero point, i.e., X = T ∗P1. The resolution morphism f : X → Y is
semismall: it is an isomorphism over Y × := Y \ {0}, while f−1(0) = P1. By equation
(1.5), for y 6= Y ×, we have (f∗CX [2])y = C[2], while (f∗CX [2])0 = C[2] ⊕ C[0]. We have
(f∗CX [2])|Y × = CY × [2]. It follows that IC(Y ×,CY ×) has to be a direct summand in f∗CX [2].
Let F denote a complimentary summand. By Remark 3.14,

dim suppH0(IC(Y ×,CY ×)) < 0⇒ H0(IC(Y ×,CY ×)) = 0.

So we must have IC(Y ×,CY ×)0 = C[2]. It follows that Fy = {0},F0 = C, i.e., F = C0. We
conclude that f∗CX [2] = IC(Y ×,CY ×)⊕ C0. In fact, IC(Y ×,CY ×) ∼= CY [2] despite the fact
that Y is not smooth.

Exercise 3.28. In the situation of Theorem 3.25, if f is, in addition, small, then f∗CX [dimX] =
CY [dimY ].

Remark 3.29. One can extend Theorem 3.25 (with the same conclusion) to an arbitrary
perverse sheaf instead of KX [dimX].

Remark 3.30. The decomposition theorem fails when charK > 0. The simplest example is
the situation of Example 3.27 in characteristic 2. More precisely, in that example we have

dim Hom(K0, f∗KX [2]) = dim Hom(f∗KX [2],K0) = 1

but the composed homomorphism

Hom(K0, f∗KX [2])⊗ Hom(f∗KX [2],K0)→ K
is given by the Euler class of P1 (in H2(P1,K)). This Euler class is equal to 2. So K0 is not
a direct summand in f∗KX .

4. The case of parabolic flag variety

4.1. Case of P1. Here we describe the category PervS(P1,C), where S is the standard
(Bruhat) stratification: X0 = {[1 : 0]}, X1 = A1. Our goal is to see that this category is
equivalent to the principal block for sl2.
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Since both strata are connected, we have two simple objects: L0 := C0, L1 := IC(X1,CX1
) =

CP1 [1].
Let j : X1 ↪→ P1 denote the open inclusion. As we have seen above, Exercise 3.6, the

objects ∇1 := j∗CX1
[1],∆1 := j!CX1

[1] are also perverse. We note that for F ∈ PervS(P1,C),
we have

HomDb
c(P1,C)(∆1,F [i]) = [j! = j∗] = HomDb

c(A1,C)(CX1
[1], j∗F [i]) = H i−1(A1,F|A1).

It follows that ∆1 is a projective cover of L1. Dually, ∇1 is the injective hull of L1.
Now note that, for F ′ ∈ Db

c(P1,C),

HomDb
c(P1,C)(F ′, L0) = H0(F ′x)∗.

Recall that H0(j∗C0) = H1(j∗C0) is one dimensional, while all the other homology groups
of the stalk at 0 vanish. It follows that

dim HomPerv(∇1, L0) = dim Ext1Perv(∇1, L0) = 1.

Let P0 denote the universal (in Perv(P1,C)) extension 0→ L0 → P0 → ∇1 → 0.

Exercise 4.1. We have dim Ext1Perv(L0, L1) = dim Ext1Perv(L1, L0) = 1 and hence non-split
exact sequences

0→ L1 → ∇1 → L0 → 0,

0→ L0 → ∆1 → L1 → 0.

Moreover, DP0
∼= P0.

The exact sequences of the previous exercise imply that

dim HomPerv(P0, L0) = 1,Ext1Perv(P0, L0) = HomPerv(P0, L1) = 0.

We claim that Ext1Perv(P0, L1) = 0, equivalently, Ext1Perv(L1, P0) = 0. We use the exact
sequence 0→ L0 → P0 → ∇0 → 0. The relevant terms are:

Hom(L1,∇1)→ Ext1(L1, L0)→ Ext1(L1, P0)→ Ext1(L1,∇1).

The first two spaces are both C and the homomorphism between them is an isomorphism
because ∇1 realizes a nontrivial extension between L0, L1. So the last homomorphism is
injective. The last space is zero and we are done.

Exercise 4.2. Show that PervS(P1) is equivalent to the principal block of the category O
for sl2.

4.2. General case. Now let G be a connected semisimple group over C and let P (= PJ)
be the parabolic subgroup of G corresponding to a subset J in the set of simple roots of G.
We will be using the notation from the Hecke algebra lecture.

Set K = C. Consider the Bruhat stratification S on X := G/P . Recall that the strata are
affine spaces labelled by W J , the set of shortest representatives of cosets in WJ \W . This is
done as follows: x 7→ Xx := Bx−1P/P . Let jx : Xx ↪→ G/P denote the inclusion. Note that
∆x := jx,!CXx

[dimXx] and ∇x := jx,∗CXx
[dimXx] are objects in PervS(X).

The following theorem follows from the work of Soergel.

Theorem 4.3. The category PervS(X) is equivalent to the principal block of the category O
for P , where ∆x ↔ ∆J(w0,Jx · (−2ρ)),∇x ↔ ∇J(w0,Jx · (−2ρ)).
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Let us now state a geometric incarnation of the parabolic Kazhdan-Lusztig theorem. Let
us write IC(x) for the IC sheaf IC(Xx,CXx

) and IC(x)y for the stalk of this sheaf at a point
of Xy (doesn’t matter which because the IC sheaf is constructible with respect to S). It
turns out that the dimensions of the cohomology of IC(x)y are precisely the coefficients of
the spherical parabolic Kazhdan-Lusztig polynomials. More precisely, we have the following.

Theorem 4.4. We have my,x =
∑
i∈Z

dimH−i(IC(x)y)v
i−dimXy .

Example 4.5. Consider x = w0,Jw0 so that Xx is the open stratum. Then IC(x) =
CG/P [dimG/P ] so the theorem says my,x = vdimG/P−dimXy . We have seen that this is the
case for X = G/B (Example 2.7 in the Hecke algebra lecture).

Exercise 4.6. Use Exercise 1.9 and Theorem 4.4 to prove that the coefficient of [∆y] in [Lx]
equals my,x(−1) (mind the homological shifts!).

Sketch of proof of Theorem 4.4 for P = B. Assume, for simplicity, that P = B. The proof
in the general case is analogous.

For F ∈ Db
S(X), define its “character” in H by

chF =
∑
y∈W

∑
i∈Z

dimH−i(Fy)vi−`(y)Hy.

Also set H ′x := ch IC(x). What we need to prove is that H ′x = Hx. For this, we use the
uniqueness part of Theorem in the Hecke algebra lecture. We need to show that

(1) H ′x ∈ Hx + v SpanZ[v](Hy),

(2) H ′x is self-dual.

Part (1) is a direct consequence of the inequalities in Remark 3.14.
Part (2) is more subtle and is based on the decomposition theorem. As usual, we use the

induction with respect to the Bruhat order and assume that (2) and also

(3) the stalks of IC(Xx′) have nonzero cohomology in the same parity, i.e., only in the
even degrees or only in the odd degrees

are known for all x′ ≺ x. Pick a simple reflection s such that `(xs) < `(x). Let Ps be the
corresponding minimal parabolic

To prove (3), consider the following variety

Xxs,s = BxsB ×B Ps/B
We have the following two morphisms

p : Xxs,s → Xxs, q : Xxs,s → Xx,

given by p([f1, f2]) = f1B, q([f1, f2]) = f1f2. The morphism p is a P1-bundle, while the
morphism q is projective. One can show that q is semismall. So we have a t-exact func-
tor ϕ := q∗p

∗[1] : PervS(Xxs) → PervS(X). By Remark 3.21, p∗[1] sends IC(xs) to
IC(p−1(Xxs),Cp−1(Xxs

). Then q∗ sends this sheaf to the direct sum of simple perverse sheaves,
thanks to the general form of the decomposition theorem. The sheaf IC(x) occur in this sum
with multiplicity 1, while the other summands are IC(y)’s with y ≺ x. One can show that
(3) for xs implies the analog of (3) for p∗q

∗[1](IC(xs)) hence for its direct summand IC(x).
To prove (2), pick a reduced decomposition x = s1 . . . sk, let x denote the word (s1, . . . , sk).

The variety Xx has a resolution of singularities, the Bott-Samelson variety Xx = Ps1 ×B
Ps2 . . .×BPsk/B. Apply the Decomposition theorem to CXx

and the resolution of singularities
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morphism ρ : Xx → Xx. The image ρ∗CXx
[`(x)] is the direct sum of shifted perverse sheaves

and is Verdier self-dual. Similarly to the previous paragraph, the character of ρ∗CXx
[`(x)] is

Cs1 . . . Csk , it is self-dual. Moreover, we have

ρ∗CXx
[`(x)] = IC(x)⊕

⊕
y≺x

IC(y)[?]⊕?.

The second summand is self-dual. Applying (2) for this summand, we see that its character
is self-dual. Hence the character of IC(x) is self-dual. �


