[67] On inductive construction of Procesi bundles, arXiv.
[66] Harish-Chandra bimodules over quantized symplectic singularities , arXiv.
[65] jt. w. Ivan Panin, Goldie ranks of primitive ideals and indexes of equivariant Azumaya algebras, arXiv.
[64] On modular categories O for quantized symplectic resolutions, arXiv.
[63] jt. w. Roman Bezrukavnikov, On dimension growth of modular irreducible representations of semisimple Lie algebras, arXiv, Lie groups, Geometry, and Representation theory, Progress in Mathematics, 326 (2018), 59-90.
[62] Derived equivalences for Symplectic reflection algebras, arXiv, accepted by IMRN.
[61] jt. w. Ben Elias, Modular representation theory in type A via Soergel bimodules, arXiv.
[60] jt. w. Seth Shelley-Abrahmson, On Refined Filtration By Supports for Rational Cherednik Categories O, arXiv, Selecta Math. 24 (2018), 1729-1804.
[59] Representation theory of quantized Gieseker varieties, I, arXiv. Lie groups, Geometry, and Representation theory, Progress in Mathematics, 326 (2018), 273-314.
[58] Deformations of symplectic singularities and Orbit method for semisimple Lie algebras, arXiv.
[57] Wall-crossing functors for quantized symplectic resolutions: perversity and partial Ringel dualities , arXiv, PAMQ, 13 (2017), n.2, 247-289.
[56] Rational Cherednik algebras and categorification. (review text). arXiv, Contemp. Math. 683, ``Categorification and Higher Representation theory'', A. Beliakova, A. Lauda, eds, 1-41.
[55] Supports of simple modules in cyclotomic Cherednik categories O (Preprint 2015). arXiv,
[54] Cacti and cells. arXiv. J. Eur. Math. Soc. 21 (2019), 1729-1750.
[53] Quantizations of regular functions on nilpotent orbits. arXiv. Bull. Inst. Math. Acad. Sin. 13 (2018), n.2, 199-225.
[52] On categories O for quantized symplectic resolutions. arXiv. Compos. Math. 153 (2017), N12, 2445-2481
[51] Bernstein inequality and holonomic modules (contains a joint appendix with Pavel Etingof), Preprint (2015).
arXiv. Adv. Math. 308 (2017), 941-963.
[50] Procesi bundles and Symplectic reflection algebras. (review text). arXiv
[49] Totally aspherical parameters for Cherednik algebras. Preprint (2014). arXiv
[48] Finite dimensional quotients of Hecke algebras. Algebra and Number theory, 9(2015), 493-502. arXiv
[47] Appendix to: Quantizations of conical symplectic resolutions II: category O and symplectic duality
by T. Braden, A. Licata, N. Proudfoot, B. Webster. arXiv
[46] Derived equivalences for Rational Cherednik algebras. Preprint (2014). arXiv,
Duke Math J. 166(2017), N1, 27-73.
[45] Etingof conjecture for quantized quiver varieties II: affine quivers. Preprint (2014). arXiv
[44] Abelian localization for cyclotomic Cherednik algebras. Int Math Res Notices (2015) vol. 2015, 8860-8873.
arXiv
[43] jt. w. Jon Brundan and Ben Webster. Graded tensor product categorifications and the super Kazhdan-Lusztig conjecture. arXiv, Int. Math. Res. Notices. (2017), vol. 2017 n. 20, 6329-6410.
[42] jt. w. Roman Bezrukavnikov. Etingof conjecture for quantized quiver varieties.
Preprint (2013). arXiv
[41] jt. w. Alexander Tsymbaliuk. Infinitesimal Cherednik algebras as W-algebras.
Transform. groups 19 (2014),
495-526. arXiv
[40] Proof of Varagnolo-Vasserot conjecture on cyclotomic categories O.
Selecta Math. 22(2016), 631-668.
arXiv
[39] jt. w. Pavel Etingof and Eugene Gorsky. Representations of Cherednik algebras with minimal
support and torus knots.
Adv. Math. 227 (2015), 124-180. arXiv
[38] On Procesi bundles.
Math. Ann. 359(2014), N3, 729-744. arXiv
[37] jt. w. Ben Webster. On uniqueness of tensor products of irreducible categorifications.
Selecta Math. 21(2015), N2, 345-377. arXiv
[36] Dimensions of irreducible modules over W-algebras and Goldie ranks.
Invent. Math. 200 (2015), N3, 849-923. arXiv
[35] Representations of general linear groups and categorical actions
of Kac-Moody algebras. (review text).
arXiv
[34] Highest weight sl_2-categorifications II: structure theory. Trans. Amer. Math. Soc. 367 (2015) 8383-8419
arXiv
[33] jt. w. Victor Ostrik. Classification of finite dimensional irreducible modules
over W-algebras. Compos. Math. 150(2014), N6, 1024-1076.
arXiv
[32] Highest weight sl_2-categorifications I: crystals. Math. Z. 274(2013), 1231-1247.
arXiv
[31] jt. w. Iain Gordon, On category O for cyclotomic rational
Cherednik algebras. J. Eur. Math. Soc. 16 (2014), 1017-1079.
arXiv
[30] Primitive ideals in W-algebras of type A. J. Algebra, 359 (2012), 80-88.
arXiv
[29] On isomorphisms of certain functors for Cherednik algebras. Repres. Theory 17 (2013),
247-262. arXiv
[28] Isomorphisms of quantizations via quantization of resolutions. Adv. Math. 231(2012), 1216-1270.
arXiv
[27] Quantizations of nilpotent orbits vs 1-dimensional representations of W-algebras.
Preprint (2010). arXiv
[26] Finite W-algebras. Proceedings of the International Congress of Mathematicians
Hyderabad, India, 2010, p. 1281-1307. arXiv (review text)
[25] Completions of symplectic reflection algebras. Selecta Math., 18(2012), N1, 179-251.
arXiv
[24] An appendix to: P. Etingof, T. Schedler, Poisson traces and D-modules on Poisson varieties,
GAFA 20(2010), 958-987.
arXiv
[23] Parabolic induction and 1-dimensional representations for W-algebras.
Adv. Math. 226(2011), 6, 4841-4883.
arXiv
[22] Uniqueness properties for spherical varieties.
arXiv. (review text).
[21] Quantized Hamiltonian actions of reductive groups and their applications.
In "Fundamental mathematics in the work of young scientists". Moscow, MCCME, 2009, p.64-80.
(review text).
[20] On the structure of the category O
for W-algebras. Seminaires et Congres 25(2010), 351-368.
arXiv
[19] Finite dimensional representations of
W-algebras. Duke Math J. 159(2011), n.1, 99-143.
arXiv
[18] Computation of weight lattices of
G-varieties. J. Math Sci 161(2009), N1, 70-96.
arXiv
[17] Lifting central invariants for quantized
Hamiltonian actions. Moscow Math J. 9(2009), 359-369.
arXiv
[16] Quantized symplectic actions and
W-algebras. J. Amer. Math. Soc. 23(2010), 35-59.
arXiv
[15] Classification of multiplicity free
Hamiltonian actions of complex tori on Stein manifolds. J. Sympl. Geom 7(2009), N3, 295-310.
arXiv
[14] Demazure embeddings are smooth.
Int. Math. Res. Not, 14(2009), 2588-2596.
arXiv
[13] Uniqueness property for spherical homogeneous
spaces. Duke Math J., 147(2009), n.2, 315-343.
arXiv
[12] On fibers of algebraic invariant moment maps.
Transformation Groups, 14(2009), 887-930.
arXiv
[11] Combinatorial invariants of algebraic
Hamiltonian actions. Moscow Math. J. 8(2008), 493-519.
arXiv
[10] Proof of the Knop conjecture. Ann. Inst. Fourier, 59(2009), n.3,
1105-1134. arXiv
[9] Computation of Weyl groups of G-varieties.
Representation Theory (electronic) 14(2010), 9-69.
arXiv
[8] Embeddings of homogeneous spaces into
irreducible modules. J. Algebra 322 (2009), 2621-2630.
arXiv
[7] Computation of the Cartan spaces of affine
homogeneous spaces. Mat. Sbornik, 198(2007), 83-108 (in Russian).
English translation in: Sbornik Math. 198(2007), no 10, 31-56.
arXiv
[6] The Kempf-Ness theorem and Invariant theory.
Preprint (2006), arXiv.
[5] Algebraic Hamiltonian actions, Math. Z. 263(2009), 685-723.
arXiv.
[4] On complex weakly commutative homogeneous
spaces. Trudy Mosc. Mat. Ob-va, 67(2006), 228-255 (in Russian).
English translation in: Trans. Moscow Math. Soc. (2006), 199-223.
[3] Symplectic slices for reductive groups. Mat.
Sbornik 197(2006), N2, p. 75-86 (in Russian).
English translation
in: Sbornik Math. 197(2006), N2, 213-224.
[2] On invariants of a set of elements of a
semisimple Lie algebra. J. Lie Theory, 20(2010), 17-30.
arXiv
[1] Coisotropic representations of reductive
groups. Trudy Mosc. Mat. Ob-va, 66(2005), p. 157-181 (in Russian).
English translation in: Trans. Moscow Math. Soc. (2005), 143-168.