Quantization in char $p$.
Lecture 7 .

1) Hilbert schemes \& Procesi bundles.
1.1) Varieties. $g=g \zeta_{n}(\mathbb{C}) \supset \zeta \simeq \mathbb{C}^{n}$, Cartan (diag. matrices)
$W \curvearrowright \xi: V=5 \oplus 5^{*} \cap W$ symplectic
$\rightarrow Y:=V / W$, singular Poisson variety.
$T=\left(\mathbb{C}^{\times}\right)^{2} \curvearrowright V:\left(t_{1}, t_{2}\right) .(v, \alpha)=\left(t_{1}^{-1} v, t_{2}^{-1} \alpha\right)$ descends to $y$
Subtori $T_{h}=\left\{\left(t, t^{-1}\right) \mid t \in \mathbb{C}^{*}\right\}$ acts vie Hamiltonian action $T_{c}=\left\{(t, t) \mid t \in \mathbb{C}^{*}\right\}$ has contracting action on $V$ (\& on $Y$ ).
$Y$ has conical symplectic resolution $X=H_{1} l_{n}\left(\mathbb{C}^{2}\right)$, parametriting codim $n$ ideals in $\mathbb{C}[x, y]$

- Ts X from $T s \mathbb{C}[x, y]$
- Have natil map $\rho: X \rightarrow Y=\left(\mathbb{C}^{2}\right)^{n} / S_{n}$ (Hllbert-Chow): ideal $\mapsto$ support counted w. multiplicities
T-equiv't, projective, an isomorphism over the locus of $n$ pairwise distinct pts, so $\rho$ is birational.

Since $y$ is normal, $p^{*}: \mathbb{C}[y] \xrightarrow{\sim} \mathbb{C}[x]$.
1.2) Procesi bundle $H=\mathbb{C}[v] \# W(=\mathbb{C}[v] \otimes \mathbb{C} W)$ $-\operatorname{graded} \mathbb{C}[y]=\mathbb{C}[v]^{w}$ - algebra, actually ligreded $w$. $5^{*}$ in $\operatorname{deg}(1,0), 5$ in $\operatorname{deg}(0,1)$ and $W$ in $\operatorname{deg}(0,0)$.

Let $\mathcal{P}$ be a vector bundle on $X$ s.t. End $(\mathcal{P}) \sim H$, an 150 11
of $\mathbb{C}[y]$-algebras $\leadsto W \Omega P$ be vector bundle autom's.
Lemma: each fiber of $P$ is $\mathbb{C W}$ as a $W$-module.

Proof: enough to show $\exists x \in X / P_{x} \simeq \mathbb{C} \mathbb{C}$ bc $X$ is connected.

$$
V^{e}=\left\{v=\left(p_{1}, \ldots p_{n}\right) \in V=\left(\mathbb{C}^{2}\right)^{n} \mid p_{i} \neq p_{j} \Leftarrow i \neq j\right\}=\left\{v \in V \mid W_{v}=\{13\}\right.
$$

$\beta: X \rightarrow Y$ is an iso over $V \% W$
End $(\mathcal{P}) \xrightarrow{\sim} H$ specialize to $x \in V / W \leadsto m_{x} \in \mathbb{C}[V]^{\Gamma}$ is max. ideal

$$
\underset{\mathcal{P}_{x}^{2}}{\underset{\operatorname{End}}{2}\left(\mathcal{P}_{x}\right) \xrightarrow{\sim} H /\left(m_{x}\right)=} \underset{\mathbb{C}[v] /\left(m_{x}\right)}{\left[\mathbb{C}[v] /\left(m_{x}\right)\right] \# W .}
$$

$\mathbb{C}\left[\right.$ preimese of $x$ in $\left.V^{\circ}\right]$-irked. module of $|W|$ distinct pts $\quad d i m=|W|$, regular W-module

$$
\Rightarrow \mathcal{P}_{x} \simeq_{W} \mathbb{C} W
$$

Corollary: usud and sign invariants $\mathcal{P}^{s_{n}} \mathcal{P}^{\text {syn }}$ are line bundles.
Fact: $P_{1 c}(X) \simeq \mathbb{Z} \underset{U}{\mathbb{U}}$ w. $O(1)$ being ample.
$O(n) \longleftarrow n$

Detinition/Thm: A Procesi bundle on $X$ is the unique T-equivariant vector bundle $\mathcal{P} w$. Tequiv't $\mathbb{C}[y]$-alg. $150 \mathrm{~m} ' m \operatorname{End}(\mathcal{P}) \xrightarrow{\sim} H$ st.

21
(i) Ext ${ }^{i}(P, P)=\{0\} \quad \forall i>0$.
(ii) $P^{S_{n}} \xrightarrow{\sim} O_{x}$, Fequiv. $150 \mathrm{~m}^{\prime} \mathrm{m}$
(iii) $\rho^{\text {sg n }} \xrightarrow{\sim} \theta(1)$.

Constructions: Maiman, Betrukaunikor- Kaledin (va quantizations in char $p$ - to be explained later), Ginzburg
Uniqueness - I.L.

Rem: Can generalize this to $Y=V / \Gamma, \Gamma \subset S_{p}(v)$ is finite subgroup st. $Y$ admits a symplic vesalin \& $T_{c}$-equiv. bundles $P$ w. $\operatorname{En\alpha }(P)=H:=\mathbb{C}[V] \# \Gamma$ \& (i), (ii) ave classified by clits of Namixawa-Weyl gro of $Y\left(\mathbb{Z} / 2 \mathbb{Z}\right.$ for $\left.Y=\left(\zeta^{*} \oplus \zeta^{*}\right) / S_{h}\right)$.
1.3) Connection to Combinatorics.

Fact: $T_{h}$-fixed points in $X=H_{1 i b_{n}}\left(\mathbb{C}^{2}\right)$ are $T$-fixed $\stackrel{\sim}{\leftrightarrows}$ monomial ideals in $\mathbb{C}[x, y] \stackrel{\sim}{\sim}$ Young diagrams ( $\lambda$ Young diagram, fill it $w$. monomials: take the ideal = span of remaining
$\lambda \leadsto x_{\lambda} \in X^{\top} \rightarrow$ fiber $P_{\lambda}$ carnies a Traction \& commuting W-action, ie is bigraded $W$-module $(\simeq \mathbb{C} W)$
$\rightarrow$ symmetric polynomial w. coeffis in $\mathbb{Z}\left[q^{ \pm 1}, t^{ \pm 1}\right]$ (Frobenius chare)

Thu (Macdonald positivity; Hainan): This polynomial is the modified Macdonald polynomial $\widetilde{H}_{n}$.

Alternative proof was found by Betrucarnikov-Finkelberg (using quant'ns in char $p$ ). (ne advantage: generalizes to wreath -Macdonald polynomials (assoc. to $\left.S_{n} \times(\mathbb{Z} / \mathbb{Z})^{n}\right)$

Another application (of constrain vie quantins in char): $\alpha \geqslant 0$ Boixede Alvarez -I.L. $\quad H^{i}\left(P^{*} \otimes P \otimes O(\alpha)\right)=\{0\}$ for $i>0$
$\sim \Gamma\left(P^{*} \otimes P \otimes Q(\alpha)\right)=R \Gamma\left(P^{*} \otimes P \otimes Q(\alpha)\right)-H$-bimodule velate $\alpha$ to " $\nabla^{\alpha}$ "
2) Hamiltonian reduction.
2.1) Setting: $U:=\mathbb{C}^{n}, G=C L(u) \sim U, R:=E n \alpha(u) \oplus U \cap G$

$$
\xi \mapsto \xi_{R}: g \longrightarrow \operatorname{Vect}(R), \xi_{R}=([\xi, \cdot], \xi)
$$

$T^{*} R=R \oplus R^{*}=\left[E_{n \alpha}(u)^{*} \simeq E_{n} \alpha(U)\right.$ va $\operatorname{tr}$ - aim $]=E_{n} \alpha(u)^{\oplus 2} \oplus U \oplus U^{*}$
$\sigma$ $\left(A, B_{i}, i, j\right)$
$G$
Moment map $\mu: T^{*} R \rightarrow g^{*} \simeq \underset{t_{r}}{\simeq} g$

$$
\begin{aligned}
& \langle\mu(A, B, i, j), \xi\rangle=\left\langle\xi_{R}(A, i),(B, j)\right\rangle=\langle[\xi, A], B\rangle+\langle\xi i, j\rangle= \\
& =\operatorname{tr}(([A, B]+i j) \xi) \text { so } \mu(A, B, i, j)=[A, B]+i j \in \operatorname{En} \alpha(U)=g .
\end{aligned}
$$

2.2) $Y=V / W$ as Hamiltonian reduction

Tho (Gan-Ginzburg: "Almost commuting...")
$Y \xrightarrow{\sim} \mu^{-1}(0) / / G \quad$ (Poisson \& $T$-equiv't, Ts $R \oplus R^{*}$ similarly to before)
Sketch of proof:
Step 1: $G G$ proved: $\mu^{-1}(0)$ is the union of $n+1$ irreducible components of codim $=n^{2} \Rightarrow \mu^{-1}(0)$ is a complete intersection. Each component has a free Goorbit so $\mu$ is a submersion on this orbit. So $\mu^{-1}(0)$ is generically reduced, hence [it's complete intersection] reduced.
Hence $\mu^{-1}(0) / / S$ is reduced.

Step 2: produce $Y \rightarrow \mu^{-1}(0) \| G_{G}$ : Have $V \hookrightarrow \mu^{-1}(0)$ :

$$
\left(\left(x_{1}, \ldots x_{n}\right),\left(y_{1}, \ldots y_{n}\right)\right) \mapsto\left(\operatorname{diag}\left(x_{1}, \ldots x_{n}\right), \operatorname{diag}\left(y_{1}, \ldots y_{n}\right), 0,0\right) .
$$

images of $S_{n}$-conjugate pts ave conjugate via monomial matrices, hence lie in the same Tobit $\rightarrow$,


Step 3: 1 is a closed embedding. Result (of Weal) says that $\mathbb{C}[V]^{W}$ is generated by $\sum_{i=1}^{n} x_{i}^{k} y_{i}^{l}(k, l \geqslant 0)$. Consider

$$
F_{k, e} \in \mathbb{C}\left[\mu^{-1}(0)\right]^{G}, F_{k, C}(A, B, i, j)=\operatorname{tr}\left(A^{k} B^{C}\right) \Rightarrow c^{*} F_{k C}^{c}=\sum x_{i}^{k} y_{i}^{e}
$$

So $C^{*}$ is surjective.
Step 4: Since cis a closed embedding into a reduced scheme so
to prove it's $150 \Leftrightarrow$ it's surjective; pts of $\mu^{-1}(0) / / G \leadsto$ closed Goobbits in $\mu^{-1}(0)=\{(A, B, i, j) \mid,[A, B]+i j=0\}$


Fact: $\operatorname{rc}[A, B] \leq 1 \Rightarrow \exists$ basis where the operators $A, B$ ave upper triangular

Exeruse: Show that every closed Goubit in $\mu^{-1}(0)$ intersects the locus $\left\{\operatorname{dig}\left(x_{1}, \ldots x_{n}\right), \operatorname{diaj}\left(y_{1}, \ldots y_{n}\right), 0,0\right\}$
$\Rightarrow$ cis surjective.
2.3) $H_{1} l_{n}\left(\mathbb{C}^{2}\right)$ as GIT Hamiltonian reduction for $C \Omega \mu^{-1}(0)$ w.r.t. certain character.

Basics on GIT quotient: G reductive group/ $\mathbb{C}, G \cap Z$-affine variety (or finite type scheme), $\theta: C \rightarrow \mathbb{C}^{\times}$. $\rightarrow$ graded algebra $\bigoplus_{n \geqslant 0} \mathbb{C}[z]^{G, n \theta} \leftarrow$ semiinvariants.
$\rightarrow$ GIT quotient $Z \|^{\theta} G:=\operatorname{Prog}\left(\underset{n \geqslant 0}{\oplus} \mathbb{C}[z]^{\operatorname{Sin\theta }}\right)$
-glued from open affine charts of the following form:

$$
f \in \mathbb{C}[z]^{G, n \theta}, n>0 \leadsto Z_{f}:=\{z \in Z \mid f(z) \neq 0\} \cap G(c f f i n e) \leadsto Z_{f} \| / S=
$$

$=$ Spec $\mathbb{C}\left[z_{f}\right]^{G}$
$Z\left\|\|^{\theta} G\right.$ is glued from $\left.Z_{f}\right\| h\left(Z_{f} / / G \& Z_{f i l l} / I\right.$ ave glued along their common open subset $Z_{f f^{\prime}} / l G$ ).
$\mathcal{Z} \|{ }^{\theta} G$ parametrizes closed orbits in " $\theta$-semistable locus"

$$
\mathcal{Z}^{\theta-s s}=\left\{z \in Z \mid \exists n>0 \& f \in \mathbb{C}[z]^{\text {cine }} \text { s.t. } f(z) \neq 0\right\}
$$

Example: $Z=T^{*} R, \theta=\operatorname{det}^{-1}$
Classical invariant theron shows that $\mathbb{C}[z]^{G}$-algebra $\bigoplus_{n \geqslant 0} \mathbb{C}[z]^{G, n \theta}$ is generated by elements of the form

$$
\operatorname{det}\left(f_{1}(A, B)_{i}, f_{2}(A, B)_{i}, \ldots, f_{n}(A, B)_{i}\right), f_{1}, \ldots f_{n} \in \mathbb{C}\langle x, y\rangle
$$

$\left(T^{*} R\right)^{\theta-\text { ss }}=\left\{(A, B, i, j) \mid\right.$ one of Let's is nonzero $\Leftrightarrow U=\operatorname{Span}\left(f,(A, B)_{i, \ldots}\right.$

$$
\left.\left.f_{n}(A, B) i\right) \Leftrightarrow \mathbb{C}<A, B>i=U\right\}
$$

G-action on this locus is free. So $\mu^{-1}(0) \|^{\theta} G$ parameterize all orbits in $\mu^{-1 /(0)^{\theta-5 s}}$ \& is smooth \& symplectic.

Identification w. Hilbert scheme: $\left(\theta=\operatorname{det}^{-1}\right)$
Exerase: $(A, B, i, j) \in \mu^{-1}(0)^{\theta-s s} \Rightarrow j=0,[A, B]=0 \& \mathbb{C}[A, B] i=U$.
Identification $\mu_{(\nu)}^{\mu^{-1}(0)^{--5 s}} G \rightarrow H_{1} l_{n}\left(\mathbb{C}^{2}\right)$

$$
(A, B, i) \longmapsto\{f \in \mathbb{C}[x, y] \mid f(A, B)=0 \Leftrightarrow f(A, B) i=0\}
$$

Exercise: show this is a bijection of sets.
Rems: - Have commie diagram

where $\rho: \operatorname{Prog}\left(\underset{n \geqslant 0}{\oplus} \mathbb{C}[z]^{\Omega, n \theta}\right) \longrightarrow \operatorname{Spec} \mathbb{C}[z]^{n}$-natural projective morphism.

If $Z=\mu^{-1}(0)$, then $\rho$ is the Hilbert-Chow morphism $H_{1} \mathrm{l}_{n}\left(\mathbb{C}^{2}\right) \longrightarrow\left(\mathbb{C}^{2}\right)^{n} / S_{n}$

- Ample generator $O(1)$ on $X$ is the line bundle obtained from char'r Let ${ }^{-1}: G \rightarrow \mathbb{C}^{x}$ by equiv't descent for $\mu^{-1}(0)^{\theta-s s} \longrightarrow \mu^{-1}(0) \|^{\theta} G$.

