Quantizations in char p. Lecture 8. Topic: quantizations of symmetric powers & Hilbert schemes Goal: construct a filtered Frobenius constant quantization of Hillon (IF2), F=F, char F=p770 N. global sections D(Y) Later we'll use this to construct Process bundle via splitting bundle construction

1) Quantizations of symmetric powers. Setting: b= C, W= S, D, V= 50 K*~, Y= V/S, $\mathcal{U} = \mathcal{C}^{n} \mathcal{O} \quad \mathcal{G} = \mathcal{G} \mathcal{L}(\mathcal{U}) \sim \mathcal{G} \cap \mathcal{R}^{:} = \mathcal{E} n \mathcal{L}(\mathcal{U}) \oplus \mathcal{U} \sim$ $T^*R = End(u)^{\oplus 2} \oplus U \oplus U^*$ $M: T^* R \rightarrow \sigma^* \simeq End(u): P(A, B, i, j) = [A, B] + ij$ Have seen: V -> pr'(0), (x, Xn, y, yn) H (dieg (x,..., x,), diag (y,..., y,), 0,0) $\sim V/S_{n} \xrightarrow{\sim} p^{-1}(o)//G.$

Goal: construct filtered guartins of C[Y] = C[V] Sn · Easy: D(b)." · Hamiltonian reduction: ZEC- $D(R)///_{G} = (D(R)/D(R) \{\xi_{P} - \lambda tr(\xi)\})^{G}$ is a fift quantin of C[14-1(0)] b/c 14 sends a basis of of to a veg. sequence in $\mathbb{C}[T^*R] \iff \mu^{-1}(o)$ is a complete intersection in $T^*R \implies$ $gr \ \mathcal{D}(\mathcal{E})/\mathcal{D}(\mathcal{E})\{f_{\mathcal{E}}-\lambda tr(f_{\mathcal{F}})\} \xrightarrow{\sim} \mathbb{C}[\mu^{-1}(0)]$

1.1) Main result Thm: D(R)// G ~ D(b)," iso of filt quantin of C(V)." Sketch of proof: In Lec 1, we've seen D(g)// G ~ D(b)." i) Construction of homomorphism: $D(R)//G \cap C[R]^G = [C^* = center of G acts by 0 on of & scaling on U] = C[o_3]^G = C[5]^W \cap D(5)^W$ Observe that have alg homom's $\mathbb{C}[o_{j}]^{G} \rightarrow \mathbb{D}(R) / G \&$ $\mathbb{C}[b_{j}]^{W} \rightarrow \mathbb{D}(b_{j})^{W}$. Via any of these $\mathbb{C}[o_{j}]^{G} = \mathbb{C}[b_{j}]^{W}$ acts on it itself by multiplications. Invariant orthog. form on of $\neg \Delta_g \in S(\sigma_g)^G \longrightarrow \mathcal{D}(\mathcal{R})///G$ $- \cdot - \cdot - \cdot - \cdot - \neg \Delta_g \in S(\mathcal{K})^W \longrightarrow \mathcal{D}(\mathcal{K})^W$ $S^{-'}\Delta_g \circ S$ acts on $\mathbb{C}[\sigma_g]^G = \widetilde{\mathbb{C}}[\mathcal{K}]^W$ as Δ_g , S_{is} Vandermonde. Claim: the actions of D(R) 116 & D(G) " on Cloy] = C(Z) W by the same operators after conjugating the latter by S. Exercise: Show that C[5]^W & Sy generate C[V] ^{Sn} as a Poisson algebra (hint: use Weyl's thm on generators of the letter) Consequence: gr D(R)///₆ G, gr $D(K)^{W} \xrightarrow{\sim} \mathbb{C}[V]^{S_n}$ as graded Bisson algebras. Exercise $\Rightarrow \mathbb{C}[K]^{W}$ Δ_{g} generate $\mathbb{C}[V]^{S_n}$ & $\mathbb{C}[\sigma_{g}]^{G}$, $\Delta_{\sigma_{g}}$ generate $D(R)///_{6}G$.

Exercise: D(b) Sn A C[b] Is faithful ~ D(R)/11, G -> D(G) Sn (6/c algebras act by the same operators).

ii) Need to show $\mathcal{D}(\mathcal{R})/// \mathcal{G} \longrightarrow \mathcal{D}(\mathcal{G})^{W}$ is a filtered algebra isomorphism. One can check that this preserves filtration & on gris, it's pullback homomim C[1-1(0)] ~~ C[V] Sn The latter is an isomorphism, so $D(R)III_{G} \xrightarrow{\sim} D(K)^{W}$ \square

1.2) Remarks: 1*) One can ask to generalize the theorem to arbitrary ?: D(R)11/2 G ~ et e, spherical rational Cherednik algebra.

2) Have char p>70 version of Thm: F=F, char F=p770 ~ (I) D(R_F)/// G_F is quant'n of F[V]^{Sn} $(\underline{\pi}) \mathcal{D}(\underline{\mathcal{R}}_{\mathbf{F}}) / \!\!/ \mathcal{G}_{\mathbf{F}} \xrightarrow{\sim} \mathcal{D}(\underline{\mathcal{S}}_{\mathbf{F}})^{\underline{\mathcal{S}}_{\mathbf{h}}}$ Check: reduction from char 0: $(III) \quad [F[\mu^{-\prime}G)] \stackrel{\zeta_F}{\longrightarrow} \quad F[V]^{S_n}$

· C~ Q: possible 6/c everything is defined over Q, so analogs of (I) ~ (<u>M</u>) hold.

· Q ~ finite localization of 7: possible 6/c all algebras in question are finitely generated: S=& finite locin of R.

(I) becomes $\mathcal{D}(\mathcal{R}_{\varsigma})/// \mathcal{G}_{\varsigma} \xrightarrow{\sim} \mathcal{D}(\mathcal{G}_{\varsigma})^{*}$

·S~F, Fis an S-algebre so can F.S. IF[v]^{Sn} ~ FØ, S[V]^{Sn} D(G,)^{Sn} ~ FØ, D(G,)^{Sn} JF[14-1(0)] GF ← JF @ S[14-1(0)] GS invariants mod p reductions mod p of invariants It's an isomorphism: F[V]^{Sn} ~ FØS S[V]^{Sn} ~ FØS S[N⁻¹/0]]^{GS} ~ F[M-1/0)]^{GF} VIE > MIF(0) ~ F[M-1(0)] CF - F[V] Sn, every closed (-orbit in M'(o) intersects the image of V, exercise, the latter homomim is injective. But all our homomorphisms are bigreded The bigraded comp's are finite dimensional so the existence of a pair of monomorphisms implies both of them are isomims. This establishes (III) (over IF) Exercise: prove (I) & (II) (note $gr\left[D(R_{F})/D(R_{F})\{F_{E}S\}\right] \rightarrow [F[\mu^{-1}(0)])$

2) Quantizations of Hilbert schemes. 2.1) Preliminaries X = 11-10)/10G, 0=det-1 4-"(0) 0-55= { (A, B, i, 0) | [A, B]=0, C[A, B]i = U 3 - principal G-bundle over X $(hor p >> 0 story: M_F^{-1}(0)^{\theta-ss} = \{(A, B, i, 0) | [A, B] = 0, F[A, B] = U_F \}$ D: same argument as in Lec 7. C: easy part of Hilbert-Mumford criterion. MF⁻¹(0)^{θ-ss} → X_F, a principal GF-bundle.

Weill define a quantization of XF by quantum Hamiltonian reduction. Recall commut. diagram from Lec 5:

2.2) Construction of reduction: View $D(R_{\rm F})$ as a sheaf on $T^*R^{(1)} \sim D(R_{\rm F})^{\theta-ss}$: restrin of $\mathcal{D}(\mathcal{R}_{F})$ to $\mathcal{T}^{*}\mathcal{R}^{(n)\theta-ss} \rightarrow \mathcal{D}(\mathcal{R}_{F})|_{(\mathcal{M}^{(n)})^{-1}(0)}^{\theta-ss} - coherent sheef$ of algebras on $(\mu^{(n)})^{-1}(0)^{\theta-ss}$ $G_{\mathcal{F}} \mathcal{D}(\mathcal{P}_{\mathcal{F}})|_{(\mathcal{I}^{(n)})^{-1}(\mathcal{O})} \mathcal{B}^{-ss}$ consider $G_i := \operatorname{Ker} \left[G_F \longrightarrow G_F^{(1)} \right] - finite group scheme w single pt.$ G1 Q D(Rg) ((M(1))-1(0) 0-55 by O-linear automorphisms.

 $\mathcal{O} \longrightarrow \mathcal{D}(\mathcal{R}_{\mathbf{F}})|_{(\mu^{(1)})^{-1}(0)} \otimes \mathcal{O}^{-ss} \text{ is quantum comment map for } \mathcal{G}_{,-action} \xrightarrow{} \text{ coherent sheef of } \mathcal{O}_{(\mu^{(1)})^{-1}(0)} \otimes \mathcal{O}^{-ss} \text{ -algebras}$

 $\left(\mathcal{D}(\mathcal{R}_{\mathcal{I}}) \Big|_{(\mathcal{I}^{(n)})^{-1}(0)} \theta^{-ss} \right) \left\| \int_{\mathcal{O}} \mathcal{G}_{\mathcal{I}} = \left(\mathcal{D}(\mathcal{R})^{\theta^{-ss}} \Big/ \mathcal{D}(\mathcal{R})^{\theta^{-ss}} \Big/ \mathcal{G}_{\mathcal{I}} \right)^{\mathcal{G}_{\mathcal{I}}},$

 $G_{\mathbb{F}}^{(1)}$ equivariant; $(\mathcal{M}^{(1)})^{-1}(0)^{\theta-ss} \longrightarrow \chi_{\mathbb{F}}^{(1)}$, principal $G_{\mathbb{F}}^{(1)}$ -bundle

By definition, D(R) G is the CF-equiv. descent of

 $(D(R)^{\theta-ss}/D(R)^{\theta-ss})^{\frac{1}{s}}$, sheet of $O_{X^{(n)}}$ -algebras. 2.3) Frobenius constant quantiention: Chaim: D(R)^{0-ss}// G is a filtered Frobenius constant quantization of Xm. Proof: Need to show: (i) D(R)^{0-ss}/// G is a filtered quantization (ii) or $D(\mathcal{R}) \xrightarrow{\theta \text{-ss}} G \longrightarrow \mathcal{O}_{\chi_{\overline{\mu}}}$ intertwines embeddings from $\mathcal{O}_{\chi_{\overline{\mu}}}$ Notation: $\hat{\mathcal{R}}_{l}$ - completed Rees constrin $\hat{\mathcal{R}}_{l}$ $(\mathcal{D}(\mathcal{R})^{\text{o-ss}}/\!\!/_{0}\mathcal{L}) \longrightarrow [\hat{\mathcal{R}}_{l}\mathcal{D}(\mathcal{R})]^{\text{o-ss}}/\!\!/_{0}\mathcal{L}$ want to check: formal quantization of XE Recall (bonus to Lec 1) if U is an affine symplic variety w. Hamiltonian Gastion s.t. M'(0) is a princ. G-bundle over M-10//G & Sty is a formal quantin of IF[4], w. Hamilt. Graction, then Styllo G is a formal quantin of FLN-1(0)]?

Exercise: Deduce (i) from this reminder. · Deduce (ii) from (1).

2.4) Identification of globel sections. Propin: Have a filtered algebra isomorphism $\mathcal{D}(\mathcal{G}_{\mathcal{F}})^{S_{h}} = \mathcal{D}(\mathcal{R}_{\mathcal{F}})///\mathcal{G}_{\mathcal{F}} \xrightarrow{\sim} \Gamma(\mathcal{D}(\mathcal{R}_{\mathcal{F}})^{\theta-ss}///\mathcal{G})$

Proof: Step 1: construct a homomorphism of filtered algebras. D(RF)^{O-s's}/1/ GF obtained from gluing the algebras D(R_F)/4 11 GF, where U is a GF-stable open affine subvariety in (T*R(1)) -ss Notice that Hamiltonian reduction is functorial: $\mathcal{D}(\mathcal{R}_{F}) \longrightarrow \mathcal{D}(\mathcal{R}_{F})|_{\mathcal{U}}$ (restriction), \mathcal{G}_{F} -equivariant & intertwines quantum comment maps ~ $\mathcal{D}(R_{\mathbb{F}})//\mathcal{G} \longrightarrow \mathcal{D}(R_{\mathbb{F}})//\mathcal{H}_{\mathbb{F}}$ $\rightarrow \mathcal{D}(\mathcal{R}_{\mathcal{F}})/\!\!/_{\!\!\mathcal{G}} \ \xrightarrow{} \ \int (\mathcal{D}(\mathcal{R}_{\mathcal{F}})^{\theta-ss}/\!\!/_{\!\!\mathcal{G}} \ \mathcal{G}_{\mathcal{F}}), \ of \ filt. \ algebras.$ Step 2: Show that it's an isomorphism Similarly, have a graded algebra homomim F[14=10]] GF - F[14=10)// GF], It's ρ^* where $\rho: M_F^{-1}(o)//G_F \longrightarrow M_F^{-1}(o)//G_F$. In our case ρ is an isomorphism. Compatibility: have commutative diagram $gr D(R_{F}) / \int_{G} G_{F} \xrightarrow{gr \psi} gr \Gamma(D(R_{F})^{\theta-ss} / \int_{G} G_{F})$ JF[y] IF IX7 쿠 grψ is an isomorphism 🔿 Ψis isomorphism П