
RATIONAL REPRESENTATIONS IN POSITIVE CHARACTERISTIC

In this note we discuss several basic results about the rational representations of algebraic
groups in characteristic p.
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Throughout this note, p is a prime number, F is an algebraically closed field of charac-
teristic p, G is a connected reductive algebraic group over F. For example, we can take
G = GLn(F), SLn(F), SOn(F), Sp2n(F). By GC we denote the corresponding group over C.
We write g for the Lie algebra of G (still over F).

We consider the category Rep(G) of finite dimensional rational (=algebraic) representa-
tions of G. It sits inside the category Rep∞(G) of all rational representations (i.e., represen-
tations which are unions of their finite dimensional rational subrepresentations).

We write Λ for the weight lattice of G (=the character lattice of T ) and Λ+ for the
submonoid of dominant weights in Λ. As usual, T ⊂ B stand for a maximal torus and a
Borel subgroup of G and W denotes the Weyl group. We write U := Ru(B) for the unipotent
radical of B and U− for the opposite maximal unipotent subgroup.

We write α1, . . . , αr for the simple roots of G. Furthermore, let α0 denote the negative
root such that α∨0 is minimal. So α0, . . . , αr are the simple affine roots. We write w0 for the
longest element of W .
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1. Families of rational representations

The goal of this section is to produce three families of objects in Rep(G) indexed by Λ+,
the dual Weyl modules, the Weyl modules and the simple modules.

1.1. Weights. It turns out that for the tori the representation theory over F is not different
from that over C.

Lemma 1.1. Every object of Rep(T ) is completely reducible, and the irreducibles are pre-
cisely the characters.

So, for every V ∈ Rep(G), we have the weight decomposition V =
⊕

χ∈Λ Vχ, where

Vχ := {v ∈ V |t.v = χ(t)v,∀t ∈ T}.
Note that since W = NG(T )/T , the spaces Vχ and Vwχ are isomorphic for all χ ∈ Λ, w ∈ W .

1.2. Induction. To classify the irreducibles in Rep(G) we will need the induction functors.
Let H be an algebraic subgroup of an algebraic group G (not necessarily reductive) and

M ∈ Rep(H) (more generally, we can consider M ∈ Rep∞(H)). Then we can define the
induced representation IndGH(M) as Γ(G/H,G×H M), where G×H M is the homogeneous
bundle on G/H with fiber U , in other words, G ×H M = (G ×M)/H. Then we have the
Frobenius reciprocity:

(1.1) HomH(V, U) = HomG(V, IndGH(U)),∀V ∈ Rep(G), U ∈ Rep(H).

In particular, we see that F[G] = IndG1 F is an injective generator in Rep∞(G).
Of course, IndGH(M) is infinite dimensional, in general. It is finite dimensional, provided

dimM <∞ and G/H is projective, equivalently, H is a parabolic subgroup. In what follows,
we will mostly consider the situation when H = B.

1.3. (Dual) Weyl modules. For λ ∈ Λ+ by λ∗ we denote the dual highest weight, i.e.,
λ∗ = −w0(λ).

Definition 1.2. The dual Weyl module M(λ) is IndGB(F−λ∗).

Example 1.3. Let G = SL2(F). Then G/B = P1,Λ+ = Z>0 and G ×B F−n = O(n) (here
we write F−n for the 1-dimensional space equipped with a T = F×-action via t 7→ t−n). So
M(n) = Γ(P1,O(n)) = F[x, y]n, the space of homogeneous degree n polynomials with its
natural representation of SL2(F).

So

(1.2) HomG(V,M(λ)) = HomB(V,F−λ∗).

Definition 1.4. The Weyl module W (λ) is M(λ∗)∗.

So

(1.3) HomG(W (λ), V ) = HomB(Fλ, V )(= {v ∈ V U , tv = λ(t)v,∀t ∈ T}).
Note that (1.3) is completely analogous to the universal property of Verma modules (and
1.2 is analogous to the defining property of dual Verma modules).

One can show that M(µ)U is one-dimensional and the T -weight is µ (using the Bruhat
decomposition). Hence

(1.4) dim HomG(W (λ),M(µ)) = δλ,µ.
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Exercise 1.5. Deduce that dimW (λ)λ = dimM(λ)λ = 1.

Remark 1.6. We have MC(λ) = WC(λ) = LC(λ). Over F, even M(λ) ∼= W (λ) may fail. For
example, consider the case of G = SL2(F) and λ = p. Here M(λ) = F[x, y]p is not simple:
it has a two-dimensional submodule, namely, L(p) := SpanF(xp, yp). On the other hand,
HomG(F[x, y]p, L(p)) = 0 (an exercise). Since HomG(W (p), L(p)) = HomG(L(p),F[x, y]p)

∗ 6=
{0}, we arrive at W (p) 6∼= F[x, y]p.

1.4. Classification of simples. We have the following result.

Theorem 1.7. For each λ ∈ Λ+, there is a unique simple representation L(λ) ∈ Rep(G)
with highest weight λ. Moreover, L(λ) is a unique irreducible subrepresentation of M(λ) and
a unique irreducible quotient of W (λ).

Exercise 1.8. Prove this theorem using the W -invariance of the set of weights and formulas
(1.2),(1.3) and (1.4).

2. Steinberg tensor product theorem

The irreducible representations of G have a certain inductive structure arising from the
Frobenius epimorphism. This structure is described by the Steinberg tensor product theorem.

2.1. Frobenius epimorphism. For an F-scheme X we can define its Frobenius twist X(1),
the same Z-scheme as X but with F-multiplication twisted by Fr−1. This gives rise to the
Frobenius morphism FrX : X → X(1) whose pullback is given by f 7→ fp. For example,
(A1)(1) is naturally isomorphic to A1 (the same is true for any scheme defined over Fp) and,
under this identification, FrA1(z) = zp.

For an algebraic group H, the variety H(1) is again an algebraic group and the morphism
FrH is a group homomorphism.

Example 2.1. Let G = GLn(F). Then G(1) = GLn(F) and FrG((gij)) = (gpij). More

generally, any connected reductive group G is defined over Fp hence G(1) ∼= G (the same
holds for Borels, parabolics, etc.). The morphism FrG is restricted from GLn(F).

The morphism FrH is dominant and hence is a group epimorphism. In particular, if L(1)

is a simple representation of G(1), then Fr∗G(L(1)) is a simple representation of G. Because of
the natural identification G ∼= G(1), we can view Fr∗G as an endofunctor of Rep(G).

Example 2.2. For the representation L = SpanF(x, y) of SL2(F), we get Fr∗ L = SpanF(xp, yp).

Exercise 2.3. If L(1) has highest weight λ, then Fr∗G(L(1)) has highest weight pλ. Shortly,
Fr∗G(L(λ)) = L(pλ).

Remark 2.4. We have a functor Rep(G) → g -mod given by differentiation. But this
functor no longer distinguishes representations: for any M , it sends Fr∗G(M) to a trivial
representation of g.

2.2. The case of SL2. Before stating the Steinberg theorem in general, let us consider the
case of SL2.

Lemma 2.5. Let i = 0, . . . , p−1 and M be an irreducible G-module. Then the G-representation
L(i)⊗ Fr∗G(M) is irreducible.
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Proof. Note that the irreducible representations L(0), . . . , L(p − 1) are also irreducible as
g-modules. So every irreducible g-submodule of L(i) ⊗ Fr∗G(M) takes the form L(i) ⊗M0

for some M0 ⊂ Fr∗G(M). If L(i) ⊗M0 is a G-submodule, then M0 ⊂ Fr∗G(M)(= M) is a
G(1)-submodule. �

An corollary of this lemma and Theorem 1.7 is the following statement.

Corollary 2.6. For i = 0, 1, . . . , p− 1, j ∈ Z>0 we have L(i+ pj) ∼= L(i)⊗ Fr∗G(L(j)).

Proof. The right hand side is irreducible by Lemma 2.5 and has highest weight pj + i. The
isomorphism follows from Theorem 1.7. �

Applying this corollary while we can, we get the Steinberg tensor product theorem for
SL2. Let λ ∈ Λ+ = Z>0 and consider the p-adic expansion λ = λ0 + pλ1 + . . .+ pmλm (with
λ0, . . . , λm ∈ {0, . . . , p− 1}).

Corollary 2.7. We have

L(λ) = L(λ0)⊗ Fr∗G L(λ1)⊗ (Fr∗G)2L(λ2)⊗ . . .⊗ (Fr∗G)mL(λm).

This result allows to compute the dimension and the character of L(λ).

2.3. Theorem in general. Assume, to simplify the statements, that G is semisimple and
simply connected. This is a reasonable restriction: any connected reductive G1 admits a
surjective central isogeny with finite kernel from T × G′, where T := Z(G)◦ and G′ is
semisimple and simply connected.

Set

Λ+
1 := {λ ∈ Λ+|〈λ, α∨i 〉 < p,∀i = 1, . . . , r}.

The elements of Λ+
1 are called the p-restricted weights.

Then, every λ ∈ Λ+ can be uniquely written as

(2.1) λ =
m∑
i=0

piλi, λ0, . . . , λm ∈ Λ+
1 .

Theorem 2.8. We have L(λ) = L(λ0)⊗ Fr∗G L(λ1)⊗ . . .⊗ (Fr∗G)mL(λm).

This theorem will be proved later.

Remark 2.9. Unlike in the case of SL2, the character of L(λ0) is not always the same
as in characteristic 0. For example, consider p = 3, G = SL3, λ = 3π1, where π1 is the
fundamental weight. Similarly to the SL2-case, M(λ) = F[x1, x2, x3]3, the dimension is 10.
It has a sub, it is Span(x3

1, x
3
2, x

3
3) and has dimension 3. The quotient is seven dimensional,

has highest weight π1 + π2 ∈ Λ+
1 (the highest weight vector is x2

1x2). The dimension of the
irreducible representation with this highest weight in characteristic 0 is 8, it is the adjoint
representation.

2.4. Frobenius kernels. LetH be a connected algebraic group. Set theoretically, the kernel
of FrH : H � H(1) is {1} but scheme theoretically it has length pdimH . This normal group
subscheme is denoted by H1 and is called the 1st Frobenius kernel (one can also consider
higher Frobenius kernels Hr of the epimorphisms FrrH : H � H(r)).

The algebra

F[H1] = F[H]/(Fr∗H(f)|f ∈ F[H(1)], f(1H) = 0)
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is a finite dimensional Hopf algebra – as a Hopf quotient of the Hopf algebra F[H] – so it
makes sense to define the representations of H1 as F[H1]-comodules, equivalently, as modules
over the dual Hopf algebra D(H1) := F[H1]∗, a.k.a. the distribuition algebra.

Example 2.10. Consider the additive group H = Ga. Then F[H] = F[x],F[H1] = F[x]/(xp).
The coproduct ∆ on F[H] is given by the general formula ∆(f)(z1, z2) := f(z1, z2) (the
equality of functions on H ×H), equivalently, on the generator x, ∆(x) = x⊗ 1 + 1⊗ x. So
the coproduct on F[H1] is also given by ∆(x) = x ⊗ 1 + 1 ⊗ x ∈ F[H1] ⊗ F[H1]. This Hopf
algebra is self-dual.

Exercise 2.11. Now let H = Gm. Then F[H1] = F[x]/(xp−1) and the coproduct is given by
∆(x) = x⊗ x. Let h : F[H1]→ F be the function defined by h(xi) = i for i = 0, . . . , p− 1 so
that h ∈ D(H1). Then D(H1) = F[h]/(hp−h) and the coproduct given by h 7→ h⊗1+1⊗h.

Remark 2.12. In both cases, D(H1) turns out to be a Hopf quotient of U(h). This is also
the case in general. First of all, there is a natural homomorphism U(h)→ D(H1) that sends
a ∈ Uh to the functional F[H1] → F sending f to (a.f)(1). Next, the Lie algebra h of H
comes with an additional structure, the restricted pth power map x 7→ x[p] : h(1) → h that
remembers the structure of an algebraic group on H. For example, for G = GLn(F), the
element x[p] is the pth power of the matrix x. For general H, we can embed H ↪→ GLn(F)
and then, for x ∈ h(1), the element x[p] is still the pth power of the matrix x. One can
show that x 7→ xp − x[p] : h(1) → U(h) is a linear map with central image. The ideal
generated by these elements is a Hopf ideal and we can consider the quotient Hopf algebra
U0(h) = U(h)/(xp−x[p]). One can then show that the homomorphism U(h)→ D(H1) factors

through U0(h)
∼−→ D(H1). This equality describes a connection between the representations

of H and h in positive characteristic: passing from representations of G to representations
of g amounts to restricting to a normal subgroup (scheme).

Now let us describe the structure of G1. Note that the multiplication map defines an open
inclusion of schemes (as the open Bruhat cell)

U− × T × U ↪→ G

This gives rise to an isomorphism of schemes (not of group schemes)

(2.2) U−1 × T1 × U1
∼−→ G1.

Similarly, if Uα denotes the root subgroup corresponding to α, then∏
α>0

Uα,1
∼−→ U1,

∏
α<0

Uα,1
∼−→ U−1 .

2.5. Representation theory of G1. The representation of T1 are completely reducible and
the irreducibles are parameterized by Λ/pΛ. We can still consider the coinduced module

(2.3) M1(λ) := IndG1
B1

F−λ∗

and

(2.4) W1(λ) := M1(λ∗)∗.

Note that thanks to (2.2), we have dimM1(λ) = dimW1(λ) = pdimU .
Similarly to Theorem 1.7, we get the following result.
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Proposition 2.13. For each λ ∈ Λ/pΛ, there is a unique simple representation L1(λ) ∈
Rep(G1) that is a unique irreducible subrepresentation of M1(λ) and a unique irreducible
quotient of W1(λ).

Remark 2.14. W1(λ) and M1(λ) are baby Verma and dual Verma modules for U0(g). The
analogy with the (dual) Vermas suggest to consider the case of λ = (p − 1)ρ (the most
singular block). In the case of U(gC), we have ∆(−ρ) = ∇(−ρ) = L(−ρ). And in our
situation, we have M1((p − 1)ρ) = W1((p − 1)ρ) = L1((p − 1)ρ). This is the so called
Steinberg representation of G1. We note that (p− 1)ρ is a maximal p-restricted weight.

Remark 2.15. Results of this section generalize to the higher Frobenius kernels. In partic-
ular, for λ ∈ Λ/prΛ, we have modules Mr(λ),Wr(λ) and the simples are now classified by
Λ/prΛ. We also have the irreducible Steinberg representation Lr((p

r−1)λ) = Mr((p
r−1)λ).

2.6. Sketch of proof of Theorem 2.8. We now proceed to proving the Steinberg tensor
product theorem. We need to prove the following statement. Then we can proceed as in the
case of SL2.

Proposition 2.16. Let λ ∈ Λ+
1 . Then the restriction of L(λ) to G1 is isomorphic to L1(λ).

Sketch of proof. The proof is in two steps.
Step 1. First, we prove that L1(λ) lifts to a representation of G, the lift is automatically

irreducible. The group G acts on G1 by conjugations and hence permutes the (isomorphism
classes of) irreducibles for G1. Since G is connected, it fixes each irreducible. Hence L1(λ)
becomes a projective representation of G. But since G is simply connected, L(λ) must be a
genuine representation.

Step 2. We need to verify that the highest weight λ′ of the resulting irreducible G-
representation is λ. Restricting L(λ′) back to G1 we see that, λ′ − λ ∈ pΛ. So we only
need to show that λ′ ∈ Λ+

1 . Assume the contrary, then we can find a simple root α with
〈λ′, α∨〉 > p. Let us take the highest vector v of L(λ′). The submodule D(U−1 )v = U(g)v
coincides with L(λ′) so must have nonzero weight space of weight sαλ

′ = λ′− 〈λ, α∨〉α. The
whole situation is Λ-graded and hence this weight space must be already in D(U−α,1)v. By
Example 2.10, the weights in that space are λ′ − iα for i = 0, . . . , p− 1, while 〈λ′, α∨〉 > p.
This contradiction finishes the proof. �

3. Kempf’s vanishing

A natural question is to compute the characters of M(λ),W (λ). Here’s the result that we
already know for SL2.

Theorem 3.1. Let G be a connected reductive group. Then the characters of M(λ),W (λ)
are the same as in characteristic 0, i.e. are given by the Weyl character formula.

The proof can be easily reduced to the case when G is semisimple and simply connected.

3.1. Kempf’s theorem. Here is how Theorem 3.1 is proved. It is enough to handle the
case of M(λ) = H0(G/B,O(λ)). Second, as in characteristic zero, the Euler characteristic
χ(G/B,O(λ)) is given by the Weyl character formula. So to prove Theorem 3.1 we need to
have the following theorem due to Kempf (also something we already know for SL2).

Theorem 3.2. For λ ∈ Λ+, we have H i(G/B,O(λ)) = 0 for all i > 0.
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We note that since Rep∞(B) has enough injectives, we can define the derived induction
functor R IndGB : D+(Rep∞(B))→ D+(Rep∞(G)). It is not hard to show that it restricts to
Db(Rep(B))→ Db(Rep(G)). Observe that

(3.1) R IndGB(M) = RΓ(G/B,G×B M),∀M ∈ Rep(B).

The main ingredient in the proof is the following result.

Proposition 3.3. Let r > 1. Then, for M ∈ Rep(B), we have the following functorial
isomorphism:

(3.2) R IndGB
(
F−(pr−1)ρ ⊗ (Fr∗B)rM

) ∼= L((pr − 1)ρ)⊗ (Fr∗GR)rR IndGB(M).

Proof. We use the transitivity of induction for the intermediate subgroup (scheme) H = GrB
and also a basic fact that for a group inclusion H1 ⊂ H2, we have

(3.3) IndH2
H1

(M2 ⊗M1) = M2 ⊗ IndH2
H1

(M1),∀M1 ∈ Rep(H1),M2 ∈ Rep(H2).

An analog of (2.2) for general r yields H/B = U−r . This is an affine group scheme, so
R IndHB = IndHB . Therefore

(3.4) R IndGB = R IndGH ◦ IndHB .

Apply this equality with the module F−(pr−1)ρ⊗(Fr∗B)rM ∈ Rep(B). Note that, since GrCH,

for N ∈ Rep(B), the Gr-action on IndGr
Br

(N) naturally lifts to H and the resulting H-module

is naturally identified with IndHB (N). Also Br acts trivially on (Fr∗B)rM . So (Fr∗B)rM can
be viewed as an H-module with trivial Gr-action. Hence

IndHB
(
F−(pr−1)ρ ⊗ (Fr∗B)rM

)
= IndHB

(
F−(pr−1)ρ

)
⊗ (Fr∗B)rM = L((pr − 1)ρ)⊗ (Fr∗B)rM.

And the following equality finishes the proof:

R IndGH(L((pr − 1)ρ)⊗ (Fr∗B)rM) = L((pr − 1)ρ)⊗R IndG
(r)

B(r)(M) =

L((pr − 1)ρ)⊗ (Fr∗G)rR IndGB(M).

�

Sketch of proof of Theorem 3.2. Note that O(λ) is ample for λ ∈ Λ+ and apply Proposition
3.3 to M = F−λ∗ . The left hand side has no higher cohomology as long as r is large enough
so neither does the right hand side. It follows that R IndGB(M) has no higher cohomology,
and we are done. �

Exercise 3.4. Show that if 〈λ, α∨〉 = −1 for some simple root α, then R IndGB(F−λ) = 0.
Hint: use the transitivity of induction for the minimal parabolic Pα associated with α.

In particular, we see that R IndGB(F−λ) has no higher cohomology as long as 〈λ+ ρ, α∨i 〉 >
0,∀i = 1, . . . , r.

3.2. Ext vanishing and highest weight structure. Recall (1.4). It turns out that the
higher Ext’s vanish.

Proposition 3.5. We have ExtiG(W (λ),M(µ)) = 0 for all i > 0, λ, µ ∈ Λ+.

Sketch of proof. Note that •∗ is a contravariant self-equivalence of Rep(G). It follows that
Exti(W (λ),M(µ)) = Exti(W (µ∗),M(λ∗)). Therefore in the proof it is enough to assume
that λ 6> µ. Since M(µ) = R IndGB F−µ we see that

ExtiG(W (λ),M(µ)) = ExtiB(W (λ),F−µ∗).
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All T -weights in W (λ) are > −λ∗. On the other hand, all T -weights in F[B], an injective
hull in Rep∞(B), are nonpositive linear combinations of positive roots. So all weights in an
injective resolution are 6 −µ∗ with µ∗ only in degree 0. It follows that ExtiB(W (λ),F−µ∗) = 0
for i > 0. �

A consequence of Proposition 3.5 is that Rep(G) is kind of a highest weight category (it
is not a highest weight category in the literal sense, since it has infinitely many simples).
Namely, fix µ ∈ Λ+ and consider the full subcategory Rep6µ(G) ⊂ Rep(G) consisting of all
V with all weights 6 µ.

Exercise 3.6. Rep6µ(G) is a highest weight category with simples L(λ), standards W (λ)
and costandards M(λ) for λ 6 µ (and the standard order).

4. Linkage principle

Our question for this section: which simples occur with nonzero multiplicity in M(λ)
(equivalently, W (λ) – these objects have the same characters hence the same K0-classes)?
Let us recall how the answer to a similar question looks like for the category O. Namely, we
have the Bruhat order � on Λ: µ � λ if there is a sequence λ0 = λ, λ1, . . . , λk = µ such that
λi+1 < λi (in the usual order) and λi+1 = sβi · λi for some (not necessarily simple) root βi.
Then [∇(λ) : L(µ)] 6= 0⇒ µ � λ.

It turns out that the answer for Rep(G) looks similar: but we need to consider the affine
Weyl group instead of a finite one.

4.1. Main result. Consider the (dual) affine Weyl group W a := W n Λr, where we write
Λr for the root lattice, and its p-rescaled dot-action on Λ given as follows:

w ·p λ is as before , tν ·p λ = λ+ pµ, w ∈ W, ν ∈ Λr.

Note that this action still has fundamental alcove, it is given by

A+ := 〈λ ∈ Λ|〈λ+ ρ, α∨i 〉 > 0,∀i = 1, . . . , r, 〈λ+ ρ, α∨0 〉 > −p}.

We define the linkage order ↑ on Λ as follows: λ ↑ µ if there are λ0 = µ, λ1, . . . , λk = λ ∈ Λ
and (not necessarily simple) affine reflections s0, . . . , sk−1 such that λi = si−1 ·p λi−1 and
λi 6 λi−1 for all i = 1, . . . , k. Note that λ ↑ µ implies λ 6 µ and µ ∈ W a ·p λ (but not vice
versa).

Exercise 4.1. We have the following:

• ↑ induces an order on the set of alcoves and A+ is the minimal alcove inside Λ+ − ρ.
• If λ ∈ Λ and α is a positive root, then λ− pα ↑ λ.
• For ν ∈ Λ we have λ ↑ µ⇔ (λ+ pν) ↑ (µ+ pν).
• If 〈λ+ ρ, α∨i 〉 > 0 for all i = 1, . . . , r, then w · λ ↑ λ for all w ∈ W .

Theorem 4.2. If the multiplicity [M(µ) : L(λ)] of L(λ) in M(µ) is nonzero, then λ ↑ µ.

Note that, by weight considerations, we already know that [M(µ) : L(λ)] 6= 0 ⇒ λ 6 µ
and [M(µ) : L(µ)] = 1. We are not going to prove Theorem 4.2.
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4.2. Block decomposition.

Corollary 4.3. If Ext1(L(λ), L(µ)) 6= 0, then µ ∈ W a ·p λ.

Proof. Let 0 → L(µ) → V → L(λ) → 0 be a nonsplit exact sequence. We need to con-
sider two cases: λ < µ and λ 66 µ. If λ < µ, then HomG(L(µ),M(λ)) = 0, hence

F = HomG(L(λ),M(λ))
∼−→ HomG(V,M(λ)). Since the exact sequence doesn’t split, we

see that a nonzero homomorphism V →M(λ) must be injective. Now apply Theorem 4.2.

Now consider the case λ 66 µ. In this case, V U
λ

∼−→ L(λ)Uλ = F so we have a nonzero
homomorphism W (λ)→ V . Similarly to the previous paragraph, we see that

W (λ)� V ⇒ [W (λ) : L(µ)] 6= 0⇒ µ ∈ W a ·p λ.
�

Exercise 4.4. Show that Ext1
G(L(λ), L(λ)) = 0 for all λ ∈ Λ.

In fact, there is an alternative proof of the corollary under some restrictions on p that we
would like to sketch as it doesn’t use Theorem 4.2.

Sketch of alternative proof. Every M ∈ Rep(G) is also a U(g)-module. The center U(g)G is
identified with S(h)W for the dot action of W on h (this holds in any characteristic). And
the invariants still separate orbits. It follows that if µ 6∈ W a ·p λ, then there is an element
z ∈ U(g)G that acts on L(λ), L(µ) by different scalars. So if Ext1(L(λ), L(µ)) 6= 0, then λ, µ
lie in the same orbit of the extended affine Weyl group, W nΛ. Also λ− µ ∈ Λr. So as long
p does not divide |Λ/Λr|, the corollary follows. �

Now pick ζ ∈ A+ and let Repζ(G) be the Serre span of L(λ) (equivalently, M(λ) or W (λ))
with λ ∈ W a ·p ζ. Corollary 4.3, we have the direct sum decomposition

(4.1) Rep(G) =
⊕
ζ∈A+

Repζ(G).

In particular, we have the principal block Rep0(G). We would like to point out, how-
ever, that we do not claim that the categories Repκ(G) are indecomposable. In particular,
Rep−ρ(G) is decomposable (it is actually equivalent to the entire category Rep(G)).

Remark 4.5. In fact, if λ ∈ W a ·p ζ, then Ri IndGB(F−λ) ∈ Repζ(G). To see this one
either generalizes Theorem 4.2 to the higher cohomology or (for p > h := 1 − 〈ρ, α∨0 〉 – the
Coxeter number) runs an argument similar to the alternative proof (using sheaves of twisted
differential operators and their connections to Harish-Chandra central reductions of U(g)).

Let us describe the possible highest weights in each Repκ(G). Let us start with the case
when ζ is regular, meaning that it lies in the interior of A+ (such ζ exists if and only if
p > h). Then, for u ∈ W a, the inclusion u ·p ζ ∈ Λ+ is equivalent to u being shortest in Wu.

If ζ is singular (=not regular), the stabilizer StabWa(ζ) is a finite parabolic subgroup in
W a. The inclusion u ·p ζ ∈ Λ+ is equivalent to u being shortest in Wu and the stabilizer of
Wu in StabWa(ζ) is trivial. In this case we can uniquely choose u so that it is still shortest
in Wu but longest in u StabWa(ζ).

Example 4.6. Let us consider the case of SL2. Here A+ = {n ∈ Z| − 1 6 n 6 p − 1}.
We have two singular values: −1 and p− 1. For ζ = −1 our set of u consists of Λ+

r ⊂ W a.
Equivalently, these are the elements whose reduced expression starts with s0 and ends with
s1. For ζ = p− 1 we need all u that start and end with s0.
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5. Translation and reflection functors

Translation and reflection functors are powerful tools to study the BGG category O.
Thanks to (4.1), we have complete analogs of these functors for Rep(G).

5.1. Translation functors. Let prζ be the projection Rep(G)� Repζ(G).

Definition 5.1. Let ζ, η ∈ A+. Let ν be the dominant weight in W (η − ζ). Define the
translation functor Tζ→η : Repζ(G)→ Repη(G) by

Tζ→η(V ) = prη(L(ν)⊗ V ).

Let us list some properties of the translation functors.
1) Tζ→η is biadjoint to Tη→ζ and is exact. This is proved in the same as for the category
O.

2) Let τ be the Cartan involution of G. For V ∈ Rep(G), set V ∨ = τV ∗, where the
right superscript means the twist by τ . For this twisted duality we have L(λ)∨ = L(λ). In
particular, •∨ fixes all the blocks Repζ(G).

Exercise 5.2. We have a natural isomorphism Tζ→η(•∨) = Tζ→η(•)∨.

3) Let us investigate the behavior of Tζ→η on the dual Weyl modules. Suppose that η
lies in the closure of the face of A+ containing ζ. The following property is proved in the
same way as for the Verma modules (or, even better, the parabolic Verma modules) in the
category O.

Proposition 5.3. Let λ = u ·p ζ for u ∈ W a. Set µ := u ·p η. Then Tζ→ηM(λ) = M(µ)
(where we set M(µ) = 0 if µ is not dominant).

Note that, thanks to 2), the similar claim holds for Weyl modules.
4) When Fζ = Fη, then Tζ→η and Tη→ζ are mutually inverse equivalences. This follows

from 1) and 3).
5) Now suppose that η lies in the closure of the face of A+ containing ζ. Then Tη→ζ maps

(dual) Weyl modules to modules that admit (dual) Weyl filtration. This follows from 1),3)
and the equality dim Exti(W (λ),M(µ)) = δi0δλµ.

5.2. Reflection functors and tilting modules. Assume p > h so that 0 is regular. Con-
sider the special case of 5): ζ = 0 and ηi ∈ A+, i = 0, . . . , r is such that StabWa(ηi) = 〈si〉.

Definition 5.4. We define the reflection functor Θi as Tηi→0 ◦ T0→ηi .

This is a self-biadjoint functor that intertwines the twisted duality functor •∨. For u ∈ W a

shortest in Wu the property 5) gives the following:

• ΘiM(u ·p 0) = 0 if usi is no longer shortest in Wusi,
• if usi is shortest in Wusi, then ΘiM(u ·p 0) is filtered with M(u ·p 0) and M(usi ·p 0).

Let us state the latter result on the level of K0. Consider the right W a-module sgn⊗ZWZW a

(a.k.a. the anti-spherical module). We identify K0(Rep0(G)) with sgn⊗ZWZW a by sending
[∆(u ·p 0)] to the image of u. Then the class of Θi in K0 satisfies [Θi] = (1 + si), the equality
of operators on K0. One can say that Rep0(G) with the reflection functors categorifies the
anti-spherical module.

Finally, let us discuss an application of reflection functors to tilting modules (i.e. G-
representations that are both Weyl filtered and dual Weyl filtered). For general highest
weight reasons, we have one indecomposable tilting T (λ) per highest weight λ of Rep0(G).



RATIONAL REPRESENTATIONS IN POSITIVE CHARACTERISTIC 11

Note that 0 is the minimal highest weight in Rep0(G). So W (0) = M(0) = L(0) (or we
can simply recall that M(0) is one-dimensional). This is a tilting object. Every Θi maps a
(dual) Weyl filtered module to a (dual) Weyl filtered module, hence it maps a tilting to a
tilting. The following proposition mirrors the corresponding property of projectives in the
BGG category O.

Proposition 5.5. Let u ∈ W a be minimal in Wu and u = si1 . . . sik be a reduced expression.
Set λ = u ·p 0. Then T (λ) appears as a summand of Θi1 . . .ΘikT (0) with multiplicity 1, while
all other summands T (µ) satisfy µ ↑ λ.


