
1 Equivariant integrals over noncompact spaces

Let Y be a proper variety with an action of the group G. Let γ ∈ H∗G(Y ). The
equivariant integral ∫

Y

γ ∈ H∗G(pt)

is simply the equivariant pushforward of γ to a point. It is linear over H∗G(pt).
Using the Atiyah-Bott localization formula from Ryan Mickler’s talk, we can
extend the definition of the equivariant integral to certain noncompact spaces:

Definition: Let Y be smooth variety with an action of a torus T , such that
Y T is proper. Let γ ∈ H∗T (Y ). Let Fi be the fixed loci of T , with ιFi : Fi → Y
the inclusion maps. We define the equivariant integral∫

Y

γ =
∑
i

∫
Fi

ι∗Fi
γ

Eu(NFiY )
∈ H∗G(pt)loc. (1)

Note that the integral now lands inH∗G(pt)loc, i.e. the ring of fractions ofH∗G(pt).
The Atiyah-Bott formula shows when Y is proper, this definition matches the
usual integral and lands in H∗G(pt).

Example:. Consider C with the natural action of C∗. Then∫
C

1 =
ι∗01

Eu(T0C)
=

1

a

where a is a generator of H∗C∗(pt). The noncompactness of C is manifested by
the appearance of nontrivial denominators in the integral.

We note a useful property of the equivariant integral for further use:

Proposition: Let X be an n-dimensional variety with G-action, and let γ ∈
Hk
G(X). If X is proper and k < n, then

∫
X
γ = 0.

Note that if X is not proper, this may no longer hold. Note also that the
opposite inequality does not ensure vanishing of the integral, contrary to the
nonequivariant case.

2 Equivariant Gromov-Witten invariants

Let X be a smooth proper variety with a action of a group G. Recall that the
Gromov-Witten invariants of X are rational numbers

〈γ1, . . . , γn〉Xg,n,β ∈ Q

They are defined by the integral∫
M̄g,n(X,β)

ev∗1γ1 ∪ . . . ev∗nγn. (2)
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One can define an equivariant virtual fundamental class [?], living inHG
∗ (M̄g,n(X,β)).

If we let γ1, . . . , γn live in H∗G(X), then we can define the equivariant Gromov-
Witten invariant by the same formula, where the integral becomes equivariant:

〈γ1, . . . , γn〉X,Gg,n,β ∈ H
∗
G(pt,Q).

In fact, this allows to extend the range of Gromov-Witten theory to non-
compact varieties with compact fixed locus under the action of a torus T .

Definition: Let X be a possibly non-compact smooth variety with G-action,
such that T ⊂ G has proper fixed locus. Let γi ∈ H∗G(X), β ∈ H2(X,Z) The
equivariant Gromov-Witten invariant

〈γ1, . . . , γn〉X,Gg,n,β ∈ H
∗
G(pt,Q)loc

is defined by using 1 to define the integral in 2.

This extension will not be used in today’s talk, but will be handy in future
talks.

3 Equivariant Small Quantum Cohomology

Equipped with equivariant Gromov-Witten invariants, it is now straightforward
to define the equivariant quantum cohomology ofX, QH∗G(X), as a commutative
associative deformation of H∗G(X,C). The quantum product is determined by

(γ1 ∗ γ2, γ3)G =
∑
β

〈γ1, γ2, γ3〉X,G0,3,βq
β .

QH∗G(X) is a module over H∗G(pt); in other words, multiplication by purely
equivariant classes is not subject to quantum corrections. Finally, note that the
deformation parameter still lives inH2(X,C)/H2(X,Z), notH2

G(X,C)/H2
G(X,Z).

4 Equivariant Quantum Cohomology of P1

Consider P1 with C∗ acting by [x : y] → [z−1x : y]. Let u = c1(O(1)), where
O(1) is given the natural linearization. Set H∗C∗(pt) = C[a]. Then it follows
from the Leray-Hirsch formula for the cohomology of a P1 bundle that

H∗C∗(P1) = C[u, a]/u(u− a).

The equivariant integral is determined by∫
P1

1 = 0, (3)∫
P1

u = 1. (4)

Effective curve classes in P1 are given by multiples nl of the line l. Hence to
determine QH∗C∗(P1), we need only determine

〈u, u, 1〉X,G0,3,nl n = 0, 1, 2, . . . (5)

〈u, u, u〉X,G0,3,nl n = 0, 1, 2, . . . (6)
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All other invariants are determined by linearity over H∗C∗(pt) and by the fact
that 1 remains a unit in quantum cohomology. We have

dimC[M0,3(P1, nl)]vir = 1 + 2n.

Comparing the degree of the integrand to the dimension of the space, we con-
clude that all invariants vanish except possibly

〈u, u, 1〉X,G0,3,0 (7)

〈u, u, u〉X,G0,3,l (8)

We have

〈u ∗ u, 1〉X,G0,3,0 =

∫
P1

u2 =

∫
au = a.

To compute 15, we apply the divisor equation three times to get

〈u, u, u〉X,G0,3,l = 〈〉X,G0,0,l = 1

as there is a unique unpointed rational map to P1, up to automorphism. We
conclude

u ∗ u = au+ q

and
QH∗C∗(P1) = C[u, a]/u(u− a)− q

5 Quantum cohomology of T ∗P1

Consider the action of T = C∗ × C∗ on T ∗P1 where the first factor acts by
[x : y] → [z−1x : y] on P1 and by the induced action on T ∗P1, and the second
factors simply dilates the cotangent fibers. Write H∗T (pt) = C[a, ~], where a
corresponds to the first factor, ~ to the second. T ∗P1 retracts equivariantly
onto P1, whence it follows that

H∗T (T ∗P1) = C[~, a, u]/(u(u− a)).

T has two fixed points, at [1, 0] and [0, 1]. The reader may verify that the
normal bundles have equivariant euler classes

Eu(N[1,0]X) = a(~− a) (9)

Eu(N[0,1]X) = −a(~ + a) (10)

The reader may check that u|[1,0] = a, u|[0,1] = 0. The integral is thus given
by ∫

X

1 =
1

a(~− a)
+

1

−a(~ + a)
(11)∫

X

u =
a

a(~− a)
(12)

(13)

The space of rational maps to T ∗P1 is the same as that for P1: all maps land
in the zero section. The Gromov-Witten theory is different, however, since the
virtual fundamental class is different: it is no longer the fundamental class of
M̄0,n(X,nl).
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5.1 Non-equivariant quantum cohomology

We have

dimC[M0,3(T ∗P1, nl)]vir = dimC(T ∗P1) + c1(T ∗P1)(nl) + 3− 3 = 2.

This means that 〈γ1, γ2, γ3〉X0,3,ml vanishes unless one of the insertions γi = 1.
This forces n = 0, hence the ordinary quantum cohomology has no quantum
corrections. Note that the same would be true of any surface S with c1(S) = 0;
in fact, any embedded copy of P1 in such a surface will have normal bundle
isomorphic to T ∗P1.

5.2 Equivariant quantum cohomology

As with P1, we need only compute

〈u, u, 1〉X,G0,3,0 (14)

〈u, u, u〉X,G0,3,nl (15)

We have

〈u, u, 1〉X,G0,3,0 =

∫
X

u2 =
a2

a(~− a)

We now compute the degree one case of 15. We can again use the divisor
equation to get

〈u, u, u〉X,G0,3,l = 〈〉X,G0,0,l.

The moduli space M̄0,0(X, l) is, as before, a single point corresponding to the
isomorphism f : C → P1. We label the domain curve by C, though it is also
a copy of P1, to avoid confusion. Its virtual fundamental class is defined using
the deformation-obstruction sequence described in Barbara Bolognese’s talk; in
this case the result is

[M̄0,0(X, l)]vir =
Eu(H1(C, f∗TX)⊕H0(C, TC))

Eu(H0(C, f∗TX))

Here H∗(C, f∗TX) is thought of as an equivariant bundle over the point. The
terms in the numerator record obstructions and automorphisms, whereas the
denominator records deformations. We have

f∗TX = O(2)⊕
(
O(−2)⊗ C~

)
= TC ⊕

(
T ∗C ⊗ C~

)
where C~ is the defining representation of the C∗ which dilates the cotangent
fibers. Hence

H1(C, f∗TX) = H1(C,O(−2)⊗ C~) = H1(C,O(−2))⊗ C~ = C~

and

[M̄0,0(X, l)]vir =
Eu(C~ ⊕H0(C, TC))

Eu(H0(C, TC))
= Eu(C~) = ~

In fact, one can check that

〈u, u, u〉X,G0,3,nl = ~
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for any n. It follows that

u ∗ u = au+ ~
∑
n

qnl(~ + a− 2u) (16)

and hence, after analytic continuation of the geometric series, we obtain

QH∗C∗×C∗(T ∗P1) = C[u, a, ~]/u2 = a+ ~
ql

1− ql
(~ + a− 2u). (17)

5.3 Quantum corrections via Steinberg correspondences

Let Z = P1×P1 ⊂ T ∗P1×T ∗P1 be the nondiagonal component of the Steinberg
variety. It acts on H∗T (T ∗P1) via

Z(θ) = (π2)∗(Z ∪ π∗1(θ))

where π1, π2 are the projections to the two factors of T ∗P1 × T ∗P1. We leave it
to the reader to check, via localization, that equation 16 is equivalent to

u ∗ θ = u ∪ θ + ~
ql

1− ql
Z(θ).

Hence the quantum corrections are neatly expressed in terms of the Steinberg
variety.
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