1 Equivariant integrals over noncompact spaces

Let Y be a proper variety with an action of the group G. Let v € H:(Y'). The
equivariant integral
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is simply the equivariant pushforward of -y to a point. It is linear over H¢(pt).

Using the Atiyah-Bott localization formula from Ryan Mickler’s talk, we can
extend the definition of the equivariant integral to certain noncompact spaces:

Definition: Let Y be smooth variety with an action of a torus 7T, such that

YT is proper. Let v € H:(Y). Let F; be the fixed loci of T, with 1, : F; — Y
the inclusion maps. We define the equivariant integral
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Note that the integral now lands in HE (pt)ioc, i-€. the ring of fractions of Hf (pt).
The Atiyah-Bott formula shows when Y is proper, this definition matches the
usual integral and lands in HE (pt).

Example:. Consider C with the natural action of C*. Then
/ 15l 1
1 = —— = =
C Euw(ToC)  a

where a is a generator of H¢. (pt). The noncompactness of C is manifested by
the appearance of nontrivial denominators in the integral.

We note a useful property of the equivariant integral for further use:

Proposition: Let X be an n-dimensional variety with G-action, and let v €
HE(X). If X is proper and k < n, then [y v = 0.

Note that if X is not proper, this may no longer hold. Note also that the
opposite inequality does not ensure vanishing of the integral, contrary to the
nonequivariant case.

2 Equivariant Gromov-Witten invariants

Let X be a smooth proper variety with a action of a group G. Recall that the
Gromov-Witten invariants of X are rational numbers
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They are defined by the integral
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One can define an equivariant virtual fundamental class [?], living in HE (M, (X, B)).
If we let v1,...,7, live in Hj(X), then we can define the equivariant Gromov-
Witten invariant by the same formula, where the integral becomes equivariant:
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In fact, this allows to extend the range of Gromov-Witten theory to non-
compact varieties with compact fixed locus under the action of a torus 7'.

Definition: Let X be a possibly non-compact smooth variety with G-action,
such that T' C G has proper fixed locus. Let v; € HE(X), 8 € Ha(X,Z) The
equivariant Gromov-Witten invariant
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is defined by using 1 to define the integral in 2.

This extension will not be used in today’s talk, but will be handy in future
talks.

3 Equivariant Small Quantum Cohomology

Equipped with equivariant Gromov-Witten invariants, it is now straightforward
to define the equivariant quantum cohomology of X, QH(X), as a commutative
associative deformation of H} (X, C). The quantum product is determined by
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QH{(X) is a module over HE (pt); in other words, multiplication by purely
equivariant classes is not subject to quantum corrections. Finally, note that the
deformation parameter still lives in H?(X,C)/H?(X,Z), not HZ(X,C)/H%(X,Z).

4 Equivariant Quantum Cohomology of P!

Consider P! with C* acting by [z : y] — [z712 : y]. Let u = ¢;(O(1)), where
O(1) is given the natural linearization. Set H{.(pt) = Cla]. Then it follows
from the Leray-Hirsch formula for the cohomology of a P! bundle that

Hi. (P = Clu, a]/u(u — a).

The equivariant integral is determined by
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Effective curve classes in P! are given by multiples nl of the line . Hence to
determine QH¢. (P'), we need only determine

(u,u, g5, n=0,1,2,... (5)
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All other invariants are determined by linearity over H{.(pt) and by the fact
that 1 remains a unit in quantum cohomology. We have

dimec[Mo 3 (P, nl)]""" =1+ 2n.

Comparing the degree of the integrand to the dimension of the space, we con-
clude that all invariants vanish except possibly
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To compute 15, we apply the divisor equation three times to get

We have
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as there is a unique unpointed rational map to P!, up to automorphism. We
conclude
u*u=au-+q

and
QHE- (PY) = Clu, al/u(u — a) — ¢

5 Quantum cohomology of T*P!

Consider the action of T = C* x C* on T*P' where the first factor acts by
[z :y] = [z~ 'z : y] on P! and by the induced action on T*P!, and the second
factors simply dilates the cotangent fibers. Write H}.(pt) = Cla, hi], where a
corresponds to the first factor, A to the second. T*P' retracts equivariantly
onto P!, whence it follows that

H:(T*PY) = C[h, a,u]/(u(u — a)).
T has two fixed points, at [1,0] and [0,1]. The reader may verify that the
normal bundles have equivariant euler classes
Eu(Np,0X) = a(h —a) (9)
Bu(Ny.X) = ~a(h +a) (10)

The reader may check that ul;1,0) = a,ul,1] = 0. The integral is thus given
by
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The space of rational maps to T*P! is the same as that for P': all maps land
in the zero section. The Gromov-Witten theory is different, however, since the
virtual fundamental class is different: it is no longer the fundamental class of
Mo (X, nl).



5.1 Non-equivariant quantum cohomology

We have
dime[Mo (TP, nl)|""" = dime(T*PY) + ¢ (T*PY)(nl) +3 -3 = 2.

This means that (71,72,73%{3’”” vanishes unless one of the insertions v; = 1.
This forces n = 0, hence the ordinary quantum cohomology has no quantum
corrections. Note that the same would be true of any surface S with ¢1(S5) = 0;
in fact, any embedded copy of P! in such a surface will have normal bundle
isomorphic to T*P".

5.2 Equivariant quantum cohomology

As with P!, we need only compute
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We have
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We now compute the degree one case of 15. We can again use the divisor
equation to get
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The moduli space Mg (X, 1) is, as before, a single point corresponding to the
isomorphism f : C — P'. We label the domain curve by C, though it is also
a copy of P!, to avoid confusion. Its virtual fundamental class is defined using
the deformation-obstruction sequence described in Barbara Bolognese’s talk; in
this case the result is

HYC, f*TX) & H(C,TC))
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Here H*(C, f*TX) is thought of as an equivariant bundle over the point. The
terms in the numerator record obstructions and automorphisms, whereas the
denominator records deformations. We have

FFTX =0@2) e (0(—2) ® ch) —TC& (T*C ® <cﬁ>

where Cj is the defining representation of the C* which dilates the cotangent
fibers. Hence

HY(C,f*TX)= H'(C,0(-2)®Cp) = H(C,0(-2)) ® C;, = Cp,
and

Eu(Cy & H(C,TC))
Eu(HO(C,TC))

[Mo,o(X,1)]"" = = Bu(Cp)=h

In fact, one can check that
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for any n. It follows that

u*u:au—Fth”l(fH—a—Qu) (16)

n
and hence, after analytic continuation of the geometric series, we obtain
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QHG« (T*]Pl) = Clu, a, h]/u2 =a+ hl —¢

(h+a—2u). (17)

5.3 Quantum corrections via Steinberg correspondences

Let Z = P! x P! € T*P! x T*P! be the nondiagonal component of the Steinberg
variety. It acts on Hy(T*P!) via

Z(0) = (m2)«(Z Ui (0))

where 71, 7o are the projections to the two factors of T*P! x T*P!. We leave it
to the reader to check, via localization, that equation 16 is equivalent to
g

uxf@=uUbO+h
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Z(9).

Hence the quantum corrections are neatly expressed in terms of the Steinberg
variety.



