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1 The Springer resolution

1.1 Symplectic structure on the cotangent bundle

Let G be a semisimple algebraic group with Lie algebra g. Fix a Borel subgroup B of G, and let B = G/B
be the corresponding flag variety. The cotangent bundle T ∗B comes equipped with symplectic form ω = dλ
defined as follows. For x ∈ B and α ∈ T ∗xB, let π : T ∗B → B be the projection and π∗ : TαT

∗B → TxB be its
differential. Then, for ξ ∈ TαT ∗B, we set

〈λ, ξ〉 = 〈α, π∗(ξ)〉.

If qi, pi are dual coordinates on T ∗B (with qi coordinates on B), then λ =
∑
i pidqi and therefore

ω =
∑
i

dpi ∧ dqi.

1.2 Poisson structure on coadjoint orbits

Recall that a coadjoint orbit O of G on g∗ is equipped with the Kirillov-Kostant-Souriau symplectic structure
given as follows. For α ∈ O, we have O ' G/Gα, where Gα is the stabilizer of α under G. This means that

TαO = g/gα,

where gα = {x ∈ g | α([x,−]) = 0} is the Lie algebra of Gα. The Poisson bivector ω on g∗ is defined by

ωα(x, y) = α([x, y]).

Evidently, ω is skew-symmetric.

Exercise. The Poisson bivector ω is non-degenerate when restricted to each O, and its dual on O is a
symplectic form.

1.3 Moment map

We recall briefly the definition of a moment map. Let (M,ω) be a symplectic manifold, with a G-action pre-
serving the symplectic form (meaning that ω(x, y) = ω(gx, gy) for x, y ∈ TmM). The action is Hamiltonian
if there is a Lie algebra map g→ O(M) given by x 7→ Hx so that the diagram

g

O(M)

H

?
- symplectic vector fields on M

-
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commutes and so that the moment map µ : M → g∗ is given by

µ(m) =
(
x 7→ Hx(m)

)
is G-equivariant. Here, the diagonal arrow is given by the differential of the G-action and the horizontal
map by sending f to ξf (which is defined by ω(−, ξf ) = 〈−, df〉).

Exercise. The pullback µ∗ : O(g∗)→ O(M) is a map of Poisson algebras.

Exercise. If G is connected, then µ is automatically G-equivariant with respect to the adjoint action of G
on g∗, so this assumption can be removed from the definition of a Hamiltonian action.

1.4 Resolution of the nilpotent cone

Identify g with g∗ via the Killing form so that g inherits a Poisson structure from g∗. Recall that x ∈ g is
nilpotent if adx : g→ g is nilpotent, and let N ⊂ g denote the cone of nilpotent elements. Now, define

Ñ = {(x, b) | x ∈ N , b 3 x} ⊂ N × B,

where we now view B as the variety of Borel subalgebras. The second projection Ñ → B is a vector bundle
with fiber n = [b, b] above each b; on the other hand, we see that T ∗bB ' n for each b ∈ B, which shows that

Ñ ' T ∗B. For ξ ∈ N , write Bξ = π−1(ξ).

Proposition 1.1. The map π : Ñ → N is a resolution of singularities.

Proof. Recall that an element is regular if its centralizer has minimal dimension. Note that regular nilpotent
elements form a Zariski dense set in N ; further, any regular nilpotent element is contained in a unique Borel
subalgebra, hence π is birational on Nreg, as needed.

Corollary 1.2. We have dimN = 2 dimB.

The map of Proposition 1.1 is known as Springer’s resolution.

Exercise. Springer’s resolution corresponds to the moment map T ∗B → g∗ induced by the G-action on
T ∗B.

Remark. The corresponding map
O(g)→ O(N )→ O(T ∗B)

of Poisson algebras may be quantized to a map

U(g)→ U(g)/Z(g)→ DB,

where DB denotes the global sections of the sheaf of differential operators on B. This connection will be
pursued further in later lectures.

2 Grothendieck’s simultaneous resolution

2.1 The simultaneous resolution

We may generalize the resolution of Proposition 1.1 as follows. Define the subvariety

g̃ = {(x, b) | x ∈ g, b 3 x} ⊂ g× B

and equip it with the maps π : g̃→ g and θ : g̃→ B given by projection on the first and second coordinates.
Evidently, θ makes g̃ a vector bundle over B with fiber b, so g̃ is smooth. Equip g̃ also with the map ψ : g̃→ h
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given by ψ(x, b) = x (mod [b, b]) in b/[b, b] ' h. Consider now the diagram below.

g̃
ψ - h

Ñ

-

g

π

? φ- h//W
?

N

π

?
-

-

{0}

-

(1)

Here, W ' NG(h)/h is the Weyl group of G, and φ : g→ h//W denotes the Chevalley map, which originates
from the map of algebras

C[g]← C[g]G ' C[h]W ,

where the latter isomorphism is realized by restriction from g to h (viewed as a subspace of g here). We
summarize the properties of this diagram below.

Proposition 2.1. The following properties hold:

(a) diagram (1) commutes, and

(b) for each x ∈ h, the map π : ψ−1(x)→ φ−1(x) is a resolution of singularities.

Observe that Proposition 1.1 is a special case of Proposition 2.1(b) with x = 0.

2.2 The regular locus

Recall that an element x ∈ g is called regular if its centralizer

zg(x) = {y ∈ g | [y, x] = 0}

has minimal dimension rankg = dim h and semisimple if adx : g→ g is semisimple as a linear map. Let greg
denote the locus of regular elements and gsr denote the locus of semisimple regular elements.

Exercise. Show that codim(g− greg) ≥ 3.

Proposition 2.2. The restriction to the regular locus

g̃reg
ψ - h

greg

π

? φ- h//W
?

of Grothendieck’s resolution is Cartesian.

Proof. We will prove this for gsr instead of greg. In this case, hsr → hsr//W is a ramified covering with group
of deck transformations W . On the other hand, if x ∈ gsr, it lies in a unique Cartan subalgebra h = Zg(x),
hence any Borel containing x must contain h, so the set of Borels containing h also gives a W -covering.

In light of Proposition 2.2, we see that g̃sr → gsr is a |W |-to-1 covering map. In particular, this means
that g̃sr is equipped with a W -action. This action does not extend to all of g̃, however.
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2.3 The Steinberg variety

The Steinberg variety is defined as the fiber product

Z = Ñ ×
N
Ñ = {(x, b, b′) | x ∈ b, x ∈ b′}.

Observe that Z is equipped with a natural map i : Z → B × B. Recalling the Schubert decomposition

B × B =
⊔
w∈W

O(w) =
⊔
w∈W

G · (B,wB),

we define the variety Zw = i−1(O(w)). We identify Zw as a subvariety of T ∗B × T ∗B. Now, consider the
isomorphism

T ∗B × T ∗B → T ∗(B × B)

given by (
(x1, b1), (x2, b2)

)
7→
(

(x1,−x2), (b1, b2)
)
.

Note that there is a sign change applied to x2.

Proposition 2.3. Viewed as a subvariety of T ∗(B × B), Zw is the conormal bundle to O(w).

Proof. The fiber of the conormal bundle of O(w) at a point α = (b, b′) ∈ B×B consists of
(

(x1, x2), (b1, b2)
)

with x1 ∈ [b1, b1], x2 ∈ [b2, b2] such that (x1, x2) annihilates the tangent space TαO(w) ' g/b × g/b′. This
condition is equivalent to x1+x2 = 0, hence coincides with the fiber of Zw under the identification above.

Proposition 2.4. The irreducible components of Z are Zw for w ∈W .

Proof. The Zw partition Z, hence it suffices to check that they are irreducible of the same dimension, which
follows Proposition 2.3.

On the other hand, for an orbit O ⊂ N , let ZO denote its preimage under the map Z → N . Assuming
the following technical lemma, we now undertake a more detailed analysis of the dimension of ZO.

Lemma 2.5 (Chriss-Ginzburg Theorem 3.3.7). For any n ⊂ g, each irreducible component of O ∩ n is a
Lagrangian subvariety of O, hence has dimension 1

2 dimO.

Lemma 2.6. Each ZO has dimension dimZO = dimZ = dimN .

Proof. Let Õ = π−1(O) be the preimage of O in Ñ . Viewed as a subvariety of Ñ , we see that

Õ = G×B (O ∩ n),

which is a fibration over B with fiber O ∩ n. By Lemma 2.5, this implies that Õ has pure dimension

dim Õ = dimB +
1

2
dimO.

Finally, because Õ → O is a fiber bundle, we see that ZO ' Õ ×
O
Õ has pure dimension

dimZO = 2 dim Õ − dimO = 2 dimB = dimN ,

where the last equality follows from Corollary 1.2.

Because each ZO is top dimensional in Z, the irreducible components of Z divide into irreducible com-
ponents of ZO for some O. To understand the irreducible components of ZO, for ξ ∈ O let G(ξ) be the
stabilizer of ξ and let Bξ be the set of Borel subalgebras containing ξ. Then we have

ZO ' G×G(ξ) (Bξ × Bξ).

The following description of the irreducible components of ZO now follows formally.
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Proposition 2.7. The irreducible components of ZO are indexed by orbits of C(ξ) = G(ξ)/G0(ξ) on pairs
of irreducible components of Bξ.

Corollary 2.8. All irreducible components of Bξ have the same dimension, which is determined by dimZO =
dimO + 2 dimBξ.

Proof. Combine Proposition 2.7 and Lemma 2.6.

3 Springer representations

3.1 Preliminaries on Borel-Moore homology

In this talk, we consider topological spaces X which satisfy the following technical conditions.

• X is locally compact,

• X has the homotopy type of a finite CW-complex, and

• X admits a closed embedding into a C∞ manifold.

We will not concern ourselves too much with these assumptions but note only that any complex algebraic
variety will satisfy them. We now define Borel-Moore homology, which will be our main geometric tool.

For a space X, we define the complex CBM∗ (X) of infinite singular chains

∞∑
i=0

ciσi,

where the σi are singular chains of the same dimension and where any compact set D ⊂ X intersects the
support of only finitely many of the σi with ci non-zero. The Borel-Moore homology HBM

? (X) of X is defined
to be the homology of CBM∗ (X) under the standard boundary map.

Remark. There are a number of equivalent definitions of Borel-Moore homology; we list a few useful ones
below.

• If X ⊃ X is compact so that (X,X \X) is a CW-pair, then

HBM
∗ (X) = H∗(X,X \X).

• If M is a smooth oriented manifold with dimM = m in which X is a closed subset, then

HBM
∗ (X) = Hm−∗(M,M −X).

This is a version of Poincare duality for Borel-Moore homology.

• Recall that for p : X → {pt}, the dualizing sheaf DX on X is the complex DX = p!(C) of constructible
sheaves on X.1 Then we have

HBM
d (X) = H−d(X,DX).

Because taking preimages preserves compact sets for proper maps, they induce valid pushforwards in

Borel-Moore homology. Now, suppose that V
j→ X

i← U is a decomposition of X into an open subset U
and its closed complement V = X − U . Then we have a pullback map i∗ : HBM

∗ (X) → HBM
∗ (U) and a

pushforward map j∗ : HBM
∗ (V )→ HBM

∗ (X).

1Here, we work in Db
c(X), the bounded derived category of constructible sheaves on X. For a map f : X → Y , the exceptional

inverse image f ! is a functor Db
c(Y ) → Db

c(X) given by f ! = f∗RΓX , where ΓX is the functor of sections supported on X. If
f is smooth of relative dimension d, then f ! = f∗[2d].
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3.2 Fundamental classes

If X is a smooth oriented manifold with dimX = n, then taking a (possibly infinite) CW-complex decom-
position of X yields a non-trivial cycle in HBM

n (X), which is known as the fundamental class [X] of X.
Such a class only exists for compact manifolds in ordinary homology, but allowing infinite chains allows us
to extend it in Borel-Moore homology.

If X is a complex algebraic variety of complex dimension n, this construction works without the the
smoothness condition. For X singular, let Xreg ⊂ X be the (open dense) non-singular locus with fundamental
class [Xreg] ∈ HBM

2n (Xreg). Then X−Xreg has real codimension at least 2, hence the long exact sequence in
relative homology and the second definition of Borel-Moore homology shows that the restriction HBM

2n (X)→
HBM

2n (Xreg) is an isomorphism. We take [X] to be the preimage of [Xreg] under this restriction.
This construction allows us a convenient geometric description of the top dimensional Borel-Moore ho-

mology of a complex algebraic variety.

Proposition 3.1. Let X be a complex algebraic variety of complex dimension n with top dimensional
irreducible components X1, . . . , Xm. Then the top dimensional Borel-Moore homology HBM

2n (X) of X has
basis [X1], . . . , [Xm], where [Xi] is the (pushforward of) the fundamental class of Xi.

3.3 Kunneth formula, smooth pullback, and intersection product

We discuss now a few operations on Borel-Moore homology which are necessary for our next construction.
If M1 and M2 are two spaces, then there is a Kunneth isomorphism

� : HBM
i (M1)⊗HBM

j (M2)→ HBM
i+j (M1 ×M2)

which is defined similarly to ordinary homology on chains. The fact that it is an isomorphism can be seen
from the relative Kunneth formula in ordinary homology.

Using this isomorphism, for a trivial fibration π : B × F → B with F smooth oriented of real dimension
dimF = d, we may define the smooth pullback π∗ : HBM

∗ (B)→ HBM
∗+d (B) by π∗(−) = −� [F ], where [F ] is

the fundamental class of F . It is possible to define this map more generally on any locally trivial fibration
with oriented fibers, but we mention only that it restricts to the map we have described over any open set
where the fibration is trivial.

Finally, for M1,M2 closed subsets of a smooth oriented manifold M with dimM = m, consider the
relative cup product

Hm−i(M,M−M1)⊗Hm−j(M,M−M2)→ H2m−i−j(M, (M−M1)∪(M−M2)) = H2m−i−j(M,M−(M1∩M2)).

Under Poincare duality, this becomes the operation

∩ : HBM
i (M1)⊗HBM

j (M2)→ HBM
i+j−m(M1 ∩M2),

which is known as the intersection product in Borel-Moore homology. We note that if [N1] and [N2] are two
fundamental classes which intersect transversely, then the intersection product satisfies

[N1] ∩ [N2] = [N1 ∩N2].

3.4 Borel-Moore homology as a convolution algebra

If f : X → Y is a proper map of complex varieties with X non-singular, then letting Z = X ×
Y
X, we give

HBM
∗ (Z) an algebra structure as follows. Let πij : X ×

Y
X ×

Y
X → Z denote the projection in the ith and jth

coordinates. Then for α ∈ HBM
i (Z) and β ∈ HBM

j (Z), we define their convolution product to be

α ? β = (π13)∗(π
∗
12(α) ∩ π∗23(β)) ∈ HBM

i+j−dimX(Z),

where π∗12 and π∗23 are the smooth pullbacks HBM
∗ (Z)→ HBM

∗ (Z ×X) and HBM
∗ (Z)→ HBM

∗ (X × Z) and
∩ is the intersection product. If α = [M1] and β = [M2] are cycles such that π−112 (M1) and π−123 (M2) intersect
tranversely, then α ? β is the class of the set-theoretic convolution of M1 and M2.
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We may check that this product is associative and that the fundamental class of the diagonal ∆ ⊂ Z is an
identity element. This endows HBM

∗ (Z) with its convolution algebra structure. If X has complex dimension
n, we note that HBM

2n (Z) is a subalgebra of HBM
∗ (Z).

3.5 Convolution structure of the Steinberg variety

We now specialize to our specific situation. By the previous subsection, the Borel-Moore homologyHBM
dimR Ñ

(Z)

of the Steinberg variety Z is endowed with a natural convolution algebra structure. Recall that Z, Ñ , and N
have the same dimension, hence by Proposition 3.1, HBM

dimR Ñ
(Z) has a natural basis given by the fundamental

classes of the irreducible components of Z. By Proposition 2.4, these irreducible components Zw are labeled
by elements w ∈W , suggesting the following theorem.

Theorem 3.2. There is an isomorphism of algebras

C[W ]
∼→ HBM

dimR Ñ
(Z).

Remark. We caution that the isomorphism of Proposition 3.2 is not given by w 7→ [Zw], where Zw are the
components of Proposition 2.4.

We now construct the map of Theorem 3.2. For w ∈W , define Λw ⊂ g̃×
g
g̃ by

Λw = {(x, b, b′) | (b, b′) ∈ O(w), x ∈ b ∩ b′},

where O(w) = G ·(B,wB) is the Bruhat cell corresponding to W . For (b, b′) ∈ O(w), b∩b′ is the Lie algebra
of the stabilizer of the G-action on O(w), meaning that Λw is a vector bundle over O(w) and in particular
has dimension dimG. We thus obtain a decomposition

g̃×
g
g̃ =

⊔
w∈W

Λw

of g̃ ×
g
g̃ into irreducible components. For h ∈ h, let g̃h be the fiber of g̃ above h ∈ h (recalling the map

g̃→ h), and let Λwh be the preimage of Λw above g̃h along the second projection.
If h ∈ hsr, then observe that Λwh is the graph of the map g̃h → g̃w(h) induced by the W -action on g̃sr.

Therefore, in the Borel-Moore homology of g̃×
g
g̃, we have

[Λywh ] = [Λyw(h)] ? [Λwh ] (2)

for every h ∈ hsr. To proceed, we will degenerate each class [Λwh ] as h → 0 to a class in Λw0 ' Z. For this,
we must discuss another construction in Borel-Moore homology.

3.6 Specialization in Borel-Moore homology

Fix a base space S which is a smooth manifold of real dimension d and a point o ∈ S; denote S − {o} by
S∗. For a map π : Z → S, write Zo = π−1(o) and Z∗ = π−1(S∗) for the special fiber and its neighborhood.
Suppose that π : Z∗ → S∗ is a locally trivial fibration with fiber F . We will construct a specialization map

HBM
∗ (Z∗)→ HBM

∗−d (Zo)

to the Borel-Moore homology of the special fiber. For this, we may assume that (S, o) = (Rd, 0). In this
case, write S+ for the positive half plane in the first coordinate, I+ for the positive first coordinate axis, and
I≥0 for the non-negative first coordinate axis. The specialization is then given by the composition

HBM
∗ (Z∗)→ HBM

∗ (π−1(S+)) ' HBM
∗−d (F )⊗HBM

d (S+)

→ HBM
∗−d (F )⊗HBM

1 (I+) ' HBM
∗−d+1(π−1(I+))→ HBM

∗−d (Zo),
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where the first map is given by restriction, the middle maps by the Kunneth theorem, and the last map by the
exact sequence of the pair (π−1(I≥0), π−1(I+)). It is known that the specialization map is independent of the
choices of coordinates made above; further, it is known that specialization is compatible with a convolution
structure on Z.

For a fixed w ∈ W , choose a 2-dimensional real subspace l ⊂ h whose non-zero elements lie in hsr; write
l∗ = l−{0}. Letting Λwl and Λwl∗ be the preimages of Λw above l and l∗, we may form the Cartesian diagram

Λw0 - Λwl

{0}
?

- l
?

where Λwl∗ → l∗ is a locally trivial fibration because l∗ ⊂ hsr. We may therefore apply the specialization
construction above to obtain a map

HBM
∗ (Λwl∗)→ HBM

∗−2 (Λw0 ) = HBM
∗−2 (Z).

We define [Λw0 ] to be the image of the fundamental class [Λwl∗ ] under this map, which may be checked to be
independent of the choice of l∗. Define the map of Theorem 3.2 by

w 7→ [Λw0 ].

Proof of Theorem 3.2. We must check that w 7→ [Λw0 ] is a map of algebras and that it induces an isomorphism
of vector spaces. For the first property, if we take l to be the complex span of some h ∈ hsr, then

Λwl∗ ' Λwh × l∗

is a trivial fibration and [Λwl∗ ] ' [Λwh ] � [l∗]. Combining this with (2), we see that

[Λywl∗ ] = [Λyw(l∗)] ? [Λwl∗ ],

from which we conclude by specialization that

[Λyw0 ] = [Λy0] ? [Λw0 ].

It remains now to check that the map C[W ] → HBM
dimRN (Z) is an isomoprhism of vector spaces. First,

because the projection of each [Λwh ] to B × B is supported in O(w), the projection of [Λw0 ] is supported at

most on O(w). Therefore, recalling that {[Zw]}w∈W form a basis by Proposition 2.4, we may write

[Λw0 ] =
∑
v≤w

cv,w[Zv]

for some cv,w and where v ≤ w is taken under the Bruhat ordering. We claim that cw,w = 1 for all w ∈ W .
For this, notice that the restriction of Λwh to O(w) is given by

G×B∩wB (h+ n ∩ w(n)),

which is a flat family of affine bundles above O(w). Thus, as h → 0, we see that [Λwh ]|O(w) degenerates to

the fundamental class of G×B∩wB (n∩w(n)), which is exactly [Zw] = [Zw]|O(w). This shows that cw,w = 1,
completing the proof.
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