PROBLEM SET 1

DUE DATE: FEB 14

- Sections 1.2-2.3

- Questions are either directly from the text or a small variation of a problem in the text.
- Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
- The terms in the bracket indicate the problem number from the text.

Section 1.2

1) (Prob $3,6, \operatorname{Pg} 10)$ Solve the following equations and sketch some of the characteristics for each case.
a) $(1+x) u_{x}+u_{y}=0$
b) $\sqrt{1-x^{2}} u_{x}+u_{y}=0$
2) (Prob 11, Pg 10) Solve $a u_{x}+b u_{y}=f(x, y)$ where $f(x, y)$ is aa given function and a, b are constants with $a \neq 0$. Express the solution in the form

$$
u(x, y)=\frac{1}{\sqrt{a^{2}+b^{2}}} \int_{L} f d s+g(b x-a y)
$$

where g is an arbitrary function of one variable, L is the characteristic line segment from the y axis to the point (x, y) and the integral is a line integral. (Hint: Use the coordinate method.)

Bonus: Where was the assumption $a \neq 0$ used in the above problem.

Section 1.3

3) (Prob 6, Pg 19) Consider the heat equation in a long cylinder where the temperature only depends on t and the distance r to the axis of the cylinder. Here $r=\sqrt{x^{2}+y^{2}}$ is the cylinder coordinate. From the three dimensional heat equation derive the equation

$$
u_{t}=k\left(u_{r r}+\frac{u_{r}}{r}\right) .
$$

4) (Prob $8, \operatorname{Pg} 19)$ For the hydrogen atom, let $e(t)=\int|u(t, \boldsymbol{x})|^{2} d \boldsymbol{x}$. Show that if $e(0)=1$, then $e(t)=1$ for all t. (Hint: compute $e^{\prime}(t)$. Keep in mind that u is complex valued. Assume that $|u(t, \boldsymbol{x})|=0$ for $|\boldsymbol{x}|>R(t)$ where $R(t)<\infty$.
5) (Prob 11, Pg 20) If $\nabla \times \boldsymbol{v}=\mathbf{0}$ in all of \mathbb{R}^{3}. Show that there exists a scalar function $\phi(x, y, z)$ such that $\boldsymbol{v}=\nabla \phi$.

Bonus: Is it true if $\nabla \times \boldsymbol{v}=\mathbf{0}$ on an arbirtrary domain D ? Under what conditions on the domain D is it true?

Section 1.4

6) (Prob 6, Pg 25) Two homogeneous rods have the same cross section, specific heat c, and density ρ but different heat conductivities κ_{1} and κ_{2} and lengths L_{1} and L_{2}. Let $k_{j}=\kappa_{j} /(c \rho)$ be their diffusion constants. They are welded together so that the temperature u and the flux κu_{x} are continuous. The left hand rod has its left end maintained at temperature 0 . The right had rod has its right end at temperature T degrees.
a) Find the equilibrium temperature distribution in the composite rod.
b) Sketch it as a function of x in case $k_{1}=2, k_{1}=1, L_{1}=3, L_{2}=2, T=10$.

Section 1.5

7) (Prob 1, Pg 27)Consider the boundary value ordinary differential equation

$$
u^{\prime \prime}(x)+u(x)=0, \quad u(0)=0, u(L)=0
$$

Clearly, the function $u(x) \equiv 0$ is a solution. Is the solution unique? Does the answer depend on L ?
8) (Prob 4, Pg 28) Consider the Neumann problem

$$
\begin{aligned}
\Delta u & =f(x, y, z) \quad \text { in } \mathrm{D} \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \quad \text { on } \partial D
\end{aligned}
$$

a) Is the solution unique? What can we surely add to any solution to get another solution?
b) Use the divergence theorem and the PDE to show that

$$
\iiint_{D} f(x, y, z) d x d y d z=0
$$

c) Give a physical interpretation of part a or part b either for heat flow or diffusion?

Section 2.1

9) (Prob 1, Pg 38) Solve $u_{t t}=4 u_{x x}, u(x, 0)=e^{x}, u_{t}(x, 0)=\sin (x)$.
10) (Prob 5, Pg 38) The hammer blow! A model for a note being played on a piano is the following.

$$
u_{t t}=c^{2} u_{x x} \quad u(x, 0)=\phi(x) \quad u_{t}(x, 0)=\psi(x) .
$$

Let $\phi(x) \equiv 0$, and $\psi(x)=1$ for $|x| \leq a$ and $\psi(x)=0$ for $|x| \geq a$. Sketch the string profile $u(x)$ at each of the time $t=a / 2 c, a / c, 3 a / 2 c, 2 a / c, 5 a / c$.
11) (Prob $8, \operatorname{Pg} 38)$ A spherical wave is a solution of the three-dimensional wave equation of the form $u(r, t)$, where r is the distance to the origin (the spherical coordinate). The wave equation takes the form

$$
u_{t t}=c^{2}\left(u_{r r}+\frac{2}{r} u_{r}\right) \quad(\text { "spherical wave equation" })
$$

a) Change variables $v=r u$ to get the equation for $v: v_{t t}=c^{2} v_{r r}$.
b) Solve for v given initial condition $u(r, 0)=\phi(r)$ and $u_{t}(r, 0)=\psi(r)$ where both $\phi(r)$ and $\psi(r)$ are even functions.
12) (Prob 9, Pg 38) Solve $u_{x x}-3 u_{x t}-4 u_{t t}=0, u(x, 0)=x^{2}, u_{t}(x, 0)=e^{x}$. (Hint: Factor the operator)

Section 2.2

13) (Prob 5, Pg 41) Consider the damped string,

$$
u_{t t}=c^{2} u_{x x}-r u_{t}
$$

Show that the energy decreases as a function of time. Prove uniqueness for the damped string.

Section 2.3

14) (Prob 1, $\operatorname{Pg} 45)$ Consider the solution $1-x^{2}-2 k t$ of the diffusion equation. Find the locations of its maximum and mimum in the closed rectangle $\{0 \leq x \leq 1, \quad 0 \leq t \leq T\}$.
15) (Prob 5, Pg 46) Consider the variable coefficient heat equation $u_{t}=x u_{x x}$
a) Verify that $u=-2 x t-x^{2}$ is a solution. Find the location of its maximum in the closed rectangle $\{-2 \leq x \leq 2,0 \leq t \leq 1\}$. Note that the maximum is not achieved on the boundary.
b) Where precisely does our proof of the maximum principle break down for this equation?
