
PROBLEM SET 1

DUE DATE: FEB 14

• Sections 1.2 - 2.3
• Questions are either directly from the text or a small variation of a problem in the text.
• Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
• The terms in the bracket indicate the problem number from the text.

Section 1.2
1) (Prob 3,6, Pg 10) Solve the following equations and sketch some of the characteristics for each case.
a) (1 + x)ux + uy = 0
Soln:

u (x, y) = f
(
(1 + x) e−y

)
b)
√

1− x2ux + uy = 0
Soln:

u (x, y) = f (y − arcsin (x))

2) (Prob 11, Pg 10) Solve aux + buy = f (x, y) where f (x, y) is aa given function and a, b are constants with a 6= 0.
Express the solution in the form

u (x, y) =
1√

a2 + b2

ˆ
L

f ds+ g (bx− ay)

where g is an arbitrary function of one variable, L is the characteristic line segment from the y axis to the point (x, y) and
the integral is a line integral. (Hint: Use the coordinate method.)

Solution:
The differential equation can be rewritten as

Dvu =
1√

a2 + b2
f (x, y)

where Dvu is the directional derivative of u in the unit direction
(

a√
a2+b2

, b√
a2+b2

)
. Integrating the above expression from(

0, y − a
bx
)
to (x, y), i.e. along, the characteristic, we get

u (x, y) =
1√

a2 + b2

ˆ
L

f ds+ u

(
0, y − b

a
x

)
.(1)

Relabelling g (−at) = u (0, t), we get the result.
Bonus: Where was the assumption a 6= 0 used in the above problem.
Solution: Clearly there is also a problem in equation 1 if a = 0. The issue is that characteristics run parallel to the y

axis and the characteristic starting from (x, y) would not intersect the y axis.

Section 1.3
3) (Prob 6, Pg 19) Consider the heat equation in a long cylinder where the temperature only depends on t and the distance

r to the axis of the cylinder. Here r =
√
x2 + y2 is the cylinder coordinate. From the three dimensional heat equation derive

the equation
ut = k

(
urr +

ur
r

)
.

Solution:
1
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The cylindrical coordinates are given by

x = r cos (θ)

y = r sin (θ)

z = z

and r =
√
x2 + y2, θ = arctan

(
y
x

)
, z = z.

We are looking for solutions of the form u (x, y, z, t) = u (r, t).

∂xu (r, t) = ∂ru (r, t)
∂r

∂x
= ∂ru (r, t) · x

r

∂xxu (r, t) = ∂ru(r, t) · ∂r
(x
r

)
+ ∂x∂ru (r, t) · x

r
= ∂ru (r, t)

y2

r3
+ ∂rru (r, t) · x

2

r2
.

Similarly,

∂yyu (r, t) = ∂ru (r, t)
x2

r3
+ ∂rru (r, t) · y

2

r2
.

And finally,

∂zzu (r, t) = 0

The heat equation in cylindrical coordinates is then given by

ut = k (uxx + uyy + uzz)

ut = k

(
∂ru (r, t)

y2

r3
+ ∂rru (r, t) · x

2

r2
+ ∂ru (r, t)

x2

r3
+ ∂rru (r, t) · y

2

r2
+ 0

)
= k

(
∂rru+

∂ru

r

)

4) (Prob 8, Pg 19) For the hydrogen atom, let e (t) =
´
|u (t,x)|2 dx. Show that if e (0) = 1, then e (t) = 1 for all t. (Hint:

compute e′ (t). Keep in mind that u is complex valued. Assume that |u (t,x)| = 0 for |x| > R (t) where R (t) <∞.
Solution:
Let u (t,x) = v + iw. Then |u|2 = v2 + w2.

e′ (t) =
d

dt

ˆ
|u (t,x)|2 dx

=

ˆ
d

dt

(
v2 + w2

)
dx (Since the integral converges absolutely)

=

ˆ
(2vvt + 2wwt) dx

u (t,x) satisfies the Schrodinger equation. Thus,

ihut =
h2

2m
∆u+

e2

r
u

ih (vt + iwt) =
h2

2m
∆v +

e2

r
v + i

(
h2

2m
∆w +

e2

r
w

)
vt =

h

2m
∆w +

e2

rh
w

wt = −
(
h

2m
∆v +

e2

rh
v

)

e′ (t) =

ˆ
(2vvt + 2wwt) dx

= C

ˆ
(v∆w − w∆v) dx

Consider the vector field v∇w on the domain r ≤ 2R (t). Then by the divergence theorem, we get
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ˆ
R3

∇ · (v∇w) dx =

ˆ
|r|≤2R(t)

∇ · (v∇w) dx =

ˆ
∂(|r|≤2R)

v
∂w

∂n
dS ,

where ∂ (|r| ≤ 2R) is the boundary of the sphere. But v = 0 on ∂ (|r| ≤ 2R). Thus,

ˆ
R3

∇ · (v∇w) dx =

ˆ
R3

∇v · ∇w dx +

ˆ
R3

v∆w dx = 0

∴
ˆ
R3

v∆wdx = −
ˆ
R3

∇v · ∇w dx .

From symmetry,

∴
ˆ
R3

w∆v dx = −
ˆ
R3

∇w · ∇v dx .

Therefore,

e′ (t) = 0 .

5) (Prob 11, Pg 20) If ∇× v = 0 in all of R3. Show that there exists a scalar function φ (x, y, z) such that v = ∇φ.
Solution:
Let’s construct the solution backwards. If there exists such a function φ such that v = ∇φ, then firstly, we can change φ

by any constant. So without loss of generality, φ (0, 0, 0) = 0. Then to obtain the value at (x, y, z), we integrate φ along the
path (0, 0, 0)→ (x, 0, 0)→ (x, y, 0)→ (x, y, z). Then

φ (x, y, z)− φ (0, 0, 0) =

ˆ x

0

∂xφ (t, 0, 0) dt+

ˆ y

0

∂yφ (x, t, 0) dt+

ˆ z

0

∂zφ (x, y, t) dt

φ (x, y, z) =

ˆ x

0

v1 (t, 0, 0) dt+

ˆ y

0

v2 (x, t, 0) dt+

ˆ z

0

v3 (x, y, t) dt

Now the only thing we need to verify is that if φ is as defined above, then is v = ∇φ.

∂xφ (x, y, z) = v1 (x, 0, 0) +

ˆ y

0

∂xv2 (x, t, 0) dt+

ˆ z

0

∂xv3 (x, y, t) dt .

Since ∇× v = 0, we have that

∂yv1 = ∂xv2 ,

∂zv1 = ∂xv3 ,

∂zv2 = ∂yv3 .

Plugging that back into the equation above, we get that,

∂xφ (x, y, z) = v1 (x, 0, 0) +

ˆ y

0

∂yv1 (x, t, 0) dt+

ˆ z

0

∂zv1 (x, y, t) dt

= v1 (x, 0, 0) + v1 (x, y, 0)− v1 (x, 0, 0) + v1 (x, y, z)− v1 (x, y, 0)

= v1 (x, y, z)

Similarly, it can be shown that ∂yφ = v2 and ∂zφ = v3.
Bonus: Is it true if ∇× v = 0 on an arbirtrary domain D? Under what conditions on the domain D is it true?
No. True on simply connected domains!

Section 1.4
6) (Prob 6, Pg 25) Two homogeneous rods have the same cross section, specific heat c, and density ρ but different heat

conductivities κ1 and κ2 and lengths L1 and L2. Let kj = κj/ (cρ) be their diffusion constants. They are welded together
so that the temperature u and the flux κux are continuous. The left hand rod has its left end maintained at temperature 0.
The right had rod has its right end at temperature T degrees.

a) Find the equilibrium temperature distribution in the composite rod.
b) Sketch it as a function of x in case k1 = 2, k1 = 1, L1 = 3, L2 = 2, T = 10.
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Solutions:
Since u1 and u2 satisfy the steady state heat equation in 1D, they satisfy ∂xxu1 = 0 and ∂xxu2 = 0. Thus, u1 = ax + b

and u2 = cx+ d. The boundary conditions for u1 and u2 are

u1 (0) = 0 =⇒ b = 0 , =⇒ u1 (x) = ax

u2 (L1 + L2) = T =⇒ u2 (x) = c (x− L1 − L2) + T

u1 (L1) = u2 (L1) =⇒ aL1 = −cL2 + T

k1u
′ (L1) = k2u

′
2 (L1) =⇒ k1a = k2c

Solving the above system of equations for a, c we get

u1 (x) =
Tk2

L1k2 + k1L2
x =

10x

7

u2 (x) =
Tk1

L1k2 + L2k1
(x− L1 − L2) + T =

10 (2x− 3)

7

Section 1.5
7) (Prob 1, Pg 27)Consider the boundary value ordinary differential equation

u′′ (x) + u (x) = 0 , u (0) = 0, u (L) = 0 .

Clearly, the function u (x) ≡ 0 is a solution. Is the solution unique? Does the answer depend on L?
Solution: The solution is unique as long as L 6= nπ. If L = nπ, then u (x) = sin (x) is also a solution to the differential

equation.

8) (Prob 4, Pg 28) Consider the Neumann problem

∆u = f (x, y, z) in D
∂u

∂n
= 0 on ∂D

a) Is the solution unique? What can we surely add to any solution to get another solution?
Solution: No, we can add a constant.
b) Use the divergence theorem and the PDE to show thatˆ ˆ ˆ

D

f (x, y, z) dx dy dz = 0

Solution:

ˆ ˆ ˆ
D

f (x, y, z) dx dy dz =

ˆ ˆ ˆ
D

∆u (x, y, z) dx dy dz

=

ˆ ˆ ˆ
D

∇ · ∇u (x, y, z) dx dy dz

=

ˆ ˆ
∂D

∇u (x, y, z) · n dS

=

ˆ ˆ
∂D

∂u

∂n
dS = 0

c) Give a physical interpretation of part a or part b either for heat flow or diffusion?
Solution: Since heat flux boundary conditions are specified, the temperature is well defined only up to a constant,

changing the temperature everywhere by a constant does not change the heat flux through the boundary.

Section 2.1
9) (Prob 1, Pg 38) Solve utt = 4uxx, u (x, 0) = ex, ut (x, 0) = sin (x).
Solution:

u (x, t) = ex cosh (2t) +
1

2
sin (x) sin (2t)
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10) (Prob 5, Pg 38) The hammer blow! A model for a note being played on a piano is the following.

utt = c2uxx u (x, 0) = φ (x) ut (x, 0) = ψ (x) .

Let φ (x) ≡ 0, and ψ (x) = 1 for |x| ≤ a and ψ (x) = 0 for |x| ≥ a. Sketch the string profile u (x) at each of the time
t = a/2c, a/c, 3a/2c, 2a/c, 5a/c.

Solution:

u (x, t) =
1

2c

ˆ x+ct

x−ct
I[−a,a] (s) ds

where IA (x) is the indicator function of the set A which is 1 if x ∈ A and 0 otherwise. Thus,

u (x, t) =
1

2c
L ([x− ct, x+ ct] ∩ [−a, a])

At t = a
2c

u (x, t) =

{
0 |x| ≥ 3a

2

a
(

1− 2|x|
3a

)
|x| ≤ 3a

2

At t = a
c

u (x, t) =

{
0 |x| ≥ 2a

2a
(

1− |x|2a

)
|x| ≤ 2a

At t = (m+1)a
c

u (x, t) =


0 |x| ≥ (m+ 2) a

2a |x| ≤ ma
((m+ 2) a− |x|) ma < |x| < (m+ 2) a

11) (Prob 8, Pg 38) A spherical wave is a solution of the three-dimensional wave equation of the form u (r, t), where r is
the distance to the origin (the spherical coordinate). The wave equation takes the form

utt = c2
(
urr +

2

r
ur

)
("spherical wave equation")

a) Change variables v = ru to get the equation for v : vtt = c2vrr.
b) Solve for v given initial condition u (r, 0) = φ (r) and ut (r, 0) = ψ (r) where both φ (r) and ψ (r) are even functions.
Solution:

∂tv = r∂tu ∂ttv = r∂ttu

∂rv = r∂ru+ ∂ru

∂rrv = r∂rru+ 2∂ru

1

r
∂rrv = ∂rru+

2

r
∂ru

Thus, v satisfies the wave equation:

∂ttv = c2∂rrv

v (r, t) =
1

2
((r + ct)φ (r + ct) + (r − ct)φ (r − ct)) +

1

2c

ˆ r+ct

r−ct
sψ (s) ds

u (r, t) =
1

2r
((r + ct)φ (r + ct) + (r − ct)φ (r − ct)) +

1

2cr

ˆ r+ct

r−ct
sψ (s) ds



PROBLEM SET 1 6

12) (Prob 9, Pg 38) Solve uxx − 3uxt − 4utt = 0, u (x, 0) = x2, ut (x, 0) = ex. (Hint: Factor the operator)
Solution:

u (x, t) =
4

5

(
ex+

t
4 − ex−t + x2 +

1

4
t2
)
.

Section 2.2
13) (Prob 5, Pg 41) Consider the damped string,

utt = c2uxx − rut
Show that the energy decreases as a function of time. Prove uniqueness for the damped string.
Solution:

E (t) =
1

2
ρ

ˆ ∞
−∞

u2t dx+
1

2
T

ˆ ∞
−∞

u2x dx

d

dt
E (t) =

ˆ ∞
−∞

ut (ρutt − Tuxx) dx

= ρ

ˆ ∞
−∞

ut
(
utt − c2uxx

)
dx = −ρr

ˆ ∞
−∞

u2t dx ≤ 0

Thus, the energy is a decreasing function of time. If E (0) = 0, then since d
dtE (t) ≤ 0 and E (t) ≥ 0, we conclude that

E (t) ≡ 0, which gives us that ∂tu ≡ 0 and ∂xu ≡ 0 from which uniqueness follows.

Section 2.3
14) (Prob 1, Pg 45) Consider the solution 1− x2 − 2kt of the diffusion equation. Find the locations of its maximum and

mimum in the closed rectangle {0 ≤ x ≤ 1 , 0 ≤ t ≤ T}.
Solution: Due to maximum principle, we need to look for maximium or minimum only on the boundary. The maximum

is at x, t = (0, 0) and the minimum is at (x, t) = (1, T ).

15) (Prob 5, Pg 46) Consider the variable coefficient heat equation ut = xuxx
a) Verify that u = −2xt−x2 is a solution. Find the location of its maximum in the closed rectangle {−2 ≤ x ≤ 2 , 0 ≤ t ≤ 1}.

Note that the maximum is not achieved on the boundary.
Solution: The location of the maximum is at (−1, 1).
b) Where precisely does our proof of the maximum principle break down for this equation?
Solution: The sign of xuxx depends on x.


