PROBLEM SET 1

DUE DATE: FEB 14

- Sections 1.2-2.3
- Questions are either directly from the text or a small variation of a problem in the text.
- Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
- The terms in the bracket indicate the problem number from the text.

Section 1.2

1) (Prob $3,6, \operatorname{Pg} 10)$ Solve the following equations and sketch some of the characteristics for each case.
a) $(1+x) u_{x}+u_{y}=0$

Soln:

$$
u(x, y)=f\left((1+x) e^{-y}\right)
$$

b) $\sqrt{1-x^{2}} u_{x}+u_{y}=0$

Soln:

$$
u(x, y)=f(y-\arcsin (x))
$$

2) (Prob 11, Pg 10) Solve $a u_{x}+b u_{y}=f(x, y)$ where $f(x, y)$ is aa given function and a, b are constants with $a \neq 0$. Express the solution in the form

$$
u(x, y)=\frac{1}{\sqrt{a^{2}+b^{2}}} \int_{L} f d s+g(b x-a y)
$$

where g is an arbitrary function of one variable, L is the characteristic line segment from the y axis to the point (x, y) and the integral is a line integral. (Hint: Use the coordinate method.)

Solution:

The differential equation can be rewritten as

$$
D_{v} u=\frac{1}{\sqrt{a^{2}+b^{2}}} f(x, y)
$$

where $D_{v} u$ is the directional derivative of u in the unit direction $\left(\frac{a}{\sqrt{a^{2}+b^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}}}\right)$. Integrating the above expression from $\left(0, y-\frac{a}{b} x\right)$ to (x, y), i.e. along, the characteristic, we get

$$
\begin{equation*}
u(x, y)=\frac{1}{\sqrt{a^{2}+b^{2}}} \int_{L} f d s+u\left(0, y-\frac{b}{a} x\right) . \tag{1}
\end{equation*}
$$

Relabelling $g(-a t)=u(0, t)$, we get the result.
Bonus: Where was the assumption $a \neq 0$ used in the above problem.
Solution: Clearly there is also a problem in equation 1 if $a=0$. The issue is that characteristics run parallel to the y axis and the characteristic starting from (x, y) would not intersect the y axis.

Section 1.3

3) (Prob 6, Pg 19) Consider the heat equation in a long cylinder where the temperature only depends on t and the distance r to the axis of the cylinder. Here $r=\sqrt{x^{2}+y^{2}}$ is the cylinder coordinate. From the three dimensional heat equation derive the equation

$$
u_{t}=k\left(u_{r r}+\frac{u_{r}}{r}\right) .
$$

Solution:

The cylindrical coordinates are given by

$$
\begin{aligned}
& x=r \cos (\theta) \\
& y=r \sin (\theta) \\
& z=z
\end{aligned}
$$

and $r=\sqrt{x^{2}+y^{2}}, \theta=\arctan \left(\frac{y}{x}\right), z=z$.
We are looking for solutions of the form $u(x, y, z, t)=u(r, t)$.

$$
\begin{aligned}
\partial_{x} u(r, t) & =\partial_{r} u(r, t) \frac{\partial r}{\partial x}=\partial_{r} u(r, t) \cdot \frac{x}{r} \\
\partial_{x x} u(r, t) & =\partial_{r} u(r, t) \cdot \partial_{r}\left(\frac{x}{r}\right)+\partial_{x} \partial_{r} u(r, t) \cdot \frac{x}{r}=\partial_{r} u(r, t) \frac{y^{2}}{r^{3}}+\partial_{r r} u(r, t) \cdot \frac{x^{2}}{r^{2}}
\end{aligned}
$$

Similarly,

$$
\partial_{y y} u(r, t)=\partial_{r} u(r, t) \frac{x^{2}}{r^{3}}+\partial_{r r} u(r, t) \cdot \frac{y^{2}}{r^{2}}
$$

And finally,

$$
\partial_{z z} u(r, t)=0
$$

The heat equation in cylindrical coordinates is then given by

$$
\begin{aligned}
u_{t} & =k\left(u_{x x}+u_{y y}+u_{z z}\right) \\
u_{t} & =k\left(\partial_{r} u(r, t) \frac{y^{2}}{r^{3}}+\partial_{r r} u(r, t) \cdot \frac{x^{2}}{r^{2}}+\partial_{r} u(r, t) \frac{x^{2}}{r^{3}}+\partial_{r r} u(r, t) \cdot \frac{y^{2}}{r^{2}}+0\right) \\
& =k\left(\partial_{r r} u+\frac{\partial_{r} u}{r}\right)
\end{aligned}
$$

4) (Prob $8, \operatorname{Pg} 19)$ For the hydrogen atom, let $e(t)=\int|u(t, \boldsymbol{x})|^{2} d \boldsymbol{x}$. Show that if $e(0)=1$, then $e(t)=1$ for all t. (Hint: compute $e^{\prime}(t)$. Keep in mind that u is complex valued. Assume that $|u(t, \boldsymbol{x})|=0$ for $|\boldsymbol{x}|>R(t)$ where $R(t)<\infty$.

Solution:

Let $u(t, \boldsymbol{x})=v+i w$. Then $|u|^{2}=v^{2}+w^{2}$.

$$
\begin{aligned}
e^{\prime}(t) & =\frac{d}{d t} \int|u(t, \boldsymbol{x})|^{2} d \boldsymbol{x} \\
& =\int \frac{d}{d t}\left(v^{2}+w^{2}\right) d \boldsymbol{x} \quad \text { (Since the integral converges absolutely) } \\
& =\int\left(2 v v_{t}+2 w w_{t}\right) d \boldsymbol{x}
\end{aligned}
$$

$u(t, \boldsymbol{x})$ satisfies the Schrodinger equation. Thus,

$$
\begin{aligned}
i h u_{t} & =\frac{h^{2}}{2 m} \Delta u+\frac{e^{2}}{r} u \\
i h\left(v_{t}+i w_{t}\right) & =\frac{h^{2}}{2 m} \Delta v+\frac{e^{2}}{r} v+i\left(\frac{h^{2}}{2 m} \Delta w+\frac{e^{2}}{r} w\right) \\
v_{t} & =\frac{h}{2 m} \Delta w+\frac{e^{2}}{r h} w \\
w_{t} & =-\left(\frac{h}{2 m} \Delta v+\frac{e^{2}}{r h} v\right) \\
e^{\prime}(t) & =\int\left(2 v v_{t}+2 w w_{t}\right) d \boldsymbol{x} \\
& =C \int(v \Delta w-w \Delta v) d \boldsymbol{x}
\end{aligned}
$$

Consider the vector field $v \nabla w$ on the domain $r \leq 2 R(t)$. Then by the divergence theorem, we get

$$
\int_{\mathbb{R}^{3}} \nabla \cdot(v \nabla w) d \boldsymbol{x}=\int_{|r| \leq 2 R(t)} \nabla \cdot(v \nabla w) d \boldsymbol{x}=\int_{\partial(|r| \leq 2 R)} v \frac{\partial w}{\partial n} d S
$$

where $\partial(|r| \leq 2 R)$ is the boundary of the sphere. But $v=0$ on $\partial(|r| \leq 2 R)$. Thus,

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} \nabla(v \nabla w) d \boldsymbol{x}=\int_{\mathbb{R}^{3}} \nabla v \cdot \nabla w d \boldsymbol{x}+\int_{\mathbb{R}^{3}} v \Delta w d \boldsymbol{x}=0 \\
& \therefore \int_{\mathbb{R}^{3}} v \Delta w d \boldsymbol{x}=-\int_{\mathbb{R}^{3}} \nabla v \cdot \nabla w d \boldsymbol{x}
\end{aligned}
$$

From symmetry,

$$
\therefore \int_{\mathbb{R}^{3}} w \Delta v d \boldsymbol{x}=-\int_{\mathbb{R}^{3}} \nabla w \cdot \nabla v d \boldsymbol{x}
$$

Therefore,

$$
e^{\prime}(t)=0
$$

5) (Prob 11, Pg 20) If $\nabla \times \boldsymbol{v}=\mathbf{0}$ in all of \mathbb{R}^{3}. Show that there exists a scalar function $\phi(x, y, z)$ such that $\boldsymbol{v}=\nabla \phi$.

Solution:

Let's construct the solution backwards. If there exists such a function ϕ such that $\boldsymbol{v}=\nabla \phi$, then firstly, we can change ϕ by any constant. So without loss of generality, $\phi(0,0,0)=0$. Then to obtain the value at (x, y, z), we integrate ϕ along the path $(0,0,0) \rightarrow(x, 0,0) \rightarrow(x, y, 0) \rightarrow(x, y, z)$. Then

$$
\begin{aligned}
\phi(x, y, z)-\phi(0,0,0) & =\int_{0}^{x} \partial_{x} \phi(t, 0,0) d t+\int_{0}^{y} \partial_{y} \phi(x, t, 0) d t+\int_{0}^{z} \partial_{z} \phi(x, y, t) d t \\
\phi(x, y, z) & =\int_{0}^{x} v_{1}(t, 0,0) d t+\int_{0}^{y} v_{2}(x, t, 0) d t+\int_{0}^{z} v_{3}(x, y, t) d t
\end{aligned}
$$

Now the only thing we need to verify is that if ϕ is as defined above, then is $\boldsymbol{v}=\nabla \phi$.

$$
\partial_{x} \phi(x, y, z)=v_{1}(x, 0,0)+\int_{0}^{y} \partial_{x} v_{2}(x, t, 0) d t+\int_{0}^{z} \partial_{x} v_{3}(x, y, t) d t
$$

Since $\nabla \times \boldsymbol{v}=\mathbf{0}$, we have that

$$
\begin{aligned}
\partial_{y} v_{1} & =\partial_{x} v_{2} \\
\partial_{z} v_{1} & =\partial_{x} v_{3} \\
\partial_{z} v_{2} & =\partial_{y} v_{3}
\end{aligned}
$$

Plugging that back into the equation above, we get that,

$$
\begin{aligned}
\partial_{x} \phi(x, y, z) & =v_{1}(x, 0,0)+\int_{0}^{y} \partial_{y} v_{1}(x, t, 0) d t+\int_{0}^{z} \partial_{z} v_{1}(x, y, t) d t \\
& =v_{1}(x, 0,0)+v_{1}(x, y, 0)-v_{1}(x, 0,0)+v_{1}(x, y, z)-v_{1}(x, y, 0) \\
& =v_{1}(x, y, z)
\end{aligned}
$$

Similarly, it can be shown that $\partial_{y} \phi=v_{2}$ and $\partial_{z} \phi=v_{3}$.
Bonus: Is it true if $\nabla \times \boldsymbol{v}=\mathbf{0}$ on an arbirtrary domain D ? Under what conditions on the domain D is it true?
No. True on simply connected domains!

Section 1.4

6) (Prob 6, Pg 25) Two homogeneous rods have the same cross section, specific heat c, and density ρ but different heat conductivities κ_{1} and κ_{2} and lengths L_{1} and L_{2}. Let $k_{j}=\kappa_{j} /(c \rho)$ be their diffusion constants. They are welded together so that the temperature u and the flux κu_{x} are continuous. The left hand rod has its left end maintained at temperature 0 . The right had rod has its right end at temperature T degrees.
a) Find the equilibrium temperature distribution in the composite rod.
b) Sketch it as a function of x in case $k_{1}=2, k_{1}=1, L_{1}=3, L_{2}=2, T=10$.

Solutions:

Since u_{1} and u_{2} satisfy the steady state heat equation in $1 D$, they satisfy $\partial_{x x} u_{1}=0$ and $\partial_{x x} u_{2}=0$. Thus, $u_{1}=a x+b$ and $u_{2}=c x+d$. The boundary conditions for u_{1} and u_{2} are

$$
\begin{aligned}
u_{1}(0) & =0 \Longrightarrow b=0, \Longrightarrow u_{1}(x)=a x \\
u_{2}\left(L_{1}+L_{2}\right) & =T \Longrightarrow u_{2}(x)=c\left(x-L_{1}-L_{2}\right)+T \\
u_{1}\left(L_{1}\right) & =u_{2}\left(L_{1}\right) \Longrightarrow a L_{1}=-c L_{2}+T \\
k_{1} u^{\prime}\left(L_{1}\right) & =k_{2} u_{2}^{\prime}\left(L_{1}\right) \Longrightarrow k_{1} a=k_{2} c
\end{aligned}
$$

Solving the above system of equations for a, c we get

$$
\begin{aligned}
& u_{1}(x)=\frac{T k_{2}}{L_{1} k_{2}+k_{1} L_{2}} x=\frac{10 x}{7} \\
& u_{2}(x)=\frac{T k_{1}}{L_{1} k_{2}+L_{2} k_{1}}\left(x-L_{1}-L_{2}\right)+T=\frac{10(2 x-3)}{7}
\end{aligned}
$$

Section 1.5

7) (Prob 1, Pg 27)Consider the boundary value ordinary differential equation

$$
u^{\prime \prime}(x)+u(x)=0, \quad u(0)=0, u(L)=0
$$

Clearly, the function $u(x) \equiv 0$ is a solution. Is the solution unique? Does the answer depend on L ?
Solution: The solution is unique as long as $L \neq n \pi$. If $L=n \pi$, then $u(x)=\sin (x)$ is also a solution to the differential equation.
8) (Prob 4, Pg 28) Consider the Neumann problem

$$
\begin{aligned}
\Delta u & =f(x, y, z) \quad \text { in } \mathrm{D} \\
\frac{\partial u}{\partial \boldsymbol{n}} & =0 \quad \text { on } \partial D
\end{aligned}
$$

a) Is the solution unique? What can we surely add to any solution to get another solution?

Solution: No, we can add a constant.
b) Use the divergence theorem and the PDE to show that

$$
\iiint_{D} f(x, y, z) d x d y d z=0
$$

Solution:

$$
\begin{aligned}
\iiint_{D} f(x, y, z) d x d y d z & =\iiint_{D} \Delta u(x, y, z) d x d y d z \\
& =\iiint_{D} \nabla \cdot \nabla u(x, y, z) d x d y d z \\
& =\iint_{\partial D} \nabla u(x, y, z) \cdot \boldsymbol{n} d S \\
& =\iint_{\partial D} \frac{\partial u}{\partial \boldsymbol{n}} d S=0
\end{aligned}
$$

c) Give a physical interpretation of part a or part b either for heat flow or diffusion?

Solution: Since heat flux boundary conditions are specified, the temperature is well defined only up to a constant, changing the temperature everywhere by a constant does not change the heat flux through the boundary.

Section 2.1

9) (Prob 1, Pg 38) Solve $u_{t t}=4 u_{x x}, u(x, 0)=e^{x}, u_{t}(x, 0)=\sin (x)$.

Solution:

$$
u(x, t)=e^{x} \cosh (2 t)+\frac{1}{2} \sin (x) \sin (2 t)
$$

10) (Prob 5, Pg 38) The hammer blow! A model for a note being played on a piano is the following.

$$
u_{t t}=c^{2} u_{x x} \quad u(x, 0)=\phi(x) \quad u_{t}(x, 0)=\psi(x) .
$$

Let $\phi(x) \equiv 0$, and $\psi(x)=1$ for $|x| \leq a$ and $\psi(x)=0$ for $|x| \geq a$. Sketch the string profile $u(x)$ at each of the time $t=a / 2 c, a / c, 3 a / 2 c, 2 a / c, 5 a / c$.

Solution:

$$
u(x, t)=\frac{1}{2 c} \int_{x-c t}^{x+c t} \mathbb{I}_{[-a, a]}(s) d s
$$

where $\mathbb{I}_{A}(x)$ is the indicator function of the set A which is 1 if $x \in A$ and 0 otherwise. Thus,

$$
u(x, t)=\frac{1}{2 c} L([x-c t, x+c t] \cap[-a, a])
$$

At $t=\frac{a}{2 c}$

$$
u(x, t)= \begin{cases}0 & |x| \geq \frac{3 a}{2} \\ a\left(1-\frac{2|x|}{3 a}\right) & |x| \leq \frac{3 a}{2}\end{cases}
$$

At $t=\frac{a}{c}$

$$
u(x, t)= \begin{cases}0 & |x| \geq 2 a \\ 2 a\left(1-\frac{|x|}{2 a}\right) & |x| \leq 2 a\end{cases}
$$

At $t=\frac{(m+1) a}{c}$

$$
u(x, t)= \begin{cases}0 & |x| \geq(m+2) a \\ 2 a & |x| \leq m a \\ ((m+2) a-|x|) & m a<|x|<(m+2) a\end{cases}
$$

11) (Prob 8, Pg 38) A spherical wave is a solution of the three-dimensional wave equation of the form $u(r, t)$, where r is the distance to the origin (the spherical coordinate). The wave equation takes the form

$$
u_{t t}=c^{2}\left(u_{r r}+\frac{2}{r} u_{r}\right) \quad(\text { "spherical wave equation" })
$$

a) Change variables $v=r u$ to get the equation for $v: v_{t t}=c^{2} v_{r r}$.
b) Solve for v given initial condition $u(r, 0)=\phi(r)$ and $u_{t}(r, 0)=\psi(r)$ where both $\phi(r)$ and $\psi(r)$ are even functions.

Solution:

$$
\begin{gathered}
\partial_{t} v=r \partial_{t} u \quad \partial_{t t} v=r \partial_{t t} u \\
\partial_{r} v=r \partial_{r} u+\partial_{r} u \\
\partial_{r r} v=r \partial_{r r} u+2 \partial_{r} u \\
\frac{1}{r} \partial_{r r} v=\partial_{r r} u+\frac{2}{r} \partial_{r} u
\end{gathered}
$$

Thus, v satisfies the wave equation:

$$
\begin{gathered}
\partial_{t t} v=c^{2} \partial_{r r} v \\
v(r, t)=\frac{1}{2}((r+c t) \phi(r+c t)+(r-c t) \phi(r-c t))+\frac{1}{2 c} \int_{r-c t}^{r+c t} s \psi(s) d s \\
u(r, t)=\frac{1}{2 r}((r+c t) \phi(r+c t)+(r-c t) \phi(r-c t))+\frac{1}{2 c r} \int_{r-c t}^{r+c t} s \psi(s) d s
\end{gathered}
$$

12) (Prob 9, Pg 38) Solve $u_{x x}-3 u_{x t}-4 u_{t t}=0, u(x, 0)=x^{2}, u_{t}(x, 0)=e^{x}$. (Hint: Factor the operator)

Solution:

$$
u(x, t)=\frac{4}{5}\left(e^{x+\frac{t}{4}}-e^{x-t}+x^{2}+\frac{1}{4} t^{2}\right) .
$$

Section 2.2

13) (Prob 5, Pg 41) Consider the damped string,

$$
u_{t t}=c^{2} u_{x x}-r u_{t}
$$

Show that the energy decreases as a function of time. Prove uniqueness for the damped string.

Solution:

$$
\begin{aligned}
E(t) & =\frac{1}{2} \rho \int_{-\infty}^{\infty} u_{t}^{2} d x+\frac{1}{2} T \int_{-\infty}^{\infty} u_{x}^{2} d x \\
\frac{d}{d t} E(t) & =\int_{-\infty}^{\infty} u_{t}\left(\rho u_{t t}-T u_{x x}\right) d x \\
& =\rho \int_{-\infty}^{\infty} u_{t}\left(u_{t t}-c^{2} u_{x x}\right) d x=-\rho r \int_{-\infty}^{\infty} u_{t}^{2} d x \leq 0
\end{aligned}
$$

Thus, the energy is a decreasing function of time. If $E(0)=0$, then since $\frac{d}{d t} E(t) \leq 0$ and $E(t) \geq 0$, we conclude that $E(t) \equiv 0$, which gives us that $\partial_{t} u \equiv 0$ and $\partial_{x} u \equiv 0$ from which uniqueness follows.

Section 2.3

14) (Prob 1, $\operatorname{Pg} 45$) Consider the solution $1-x^{2}-2 k t$ of the diffusion equation. Find the locations of its maximum and mimum in the closed rectangle $\{0 \leq x \leq 1, \quad 0 \leq t \leq T\}$.

Solution: Due to maximum principle, we need to look for maximium or minimum only on the boundary. The maximum is at $x, t=(0,0)$ and the minimum is at $(x, t)=(1, T)$.
15) (Prob 5, Pg 46) Consider the variable coefficient heat equation $u_{t}=x u_{x x}$
a) Verify that $u=-2 x t-x^{2}$ is a solution. Find the location of its maximum in the closed rectangle $\{-2 \leq x \leq 2,0 \leq t \leq 1\}$.

Note that the maximum is not achieved on the boundary.
Solution: The location of the maximum is at $(-1,1)$.
b) Where precisely does our proof of the maximum principle break down for this equation?

Solution: The sign of $x u_{x x}$ depends on x.

