PROBLEM SET 3

DUE DATE: - MAR 9

Sections 4.1 - 4.3

Questions are either directly from the text or a small variation of a problem in the text.

Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
The terms in the bracket indicate the problem number from the text.

Section 4.1
1) (Prob 4,5 Pg 89) Consider waves in a resistant medium which satisfy the following PDE:

U = gy — Uy 0< </
u(0,t) =u(l,t)=0 Vt>0
u(r,0)=¢(x) O0<z<{

Ou (z,0) =9 () O<z<{,

where 7 is a constant. Write down a series expansion for the following cases:

i)

27mc
O<r<—
TS
= nwT
=3 " (A c0s (But) + By sin (But)) sin (7) :
n=1
where
52— 4n?m2c? 2

02
Here, the initial data satisfy,

x) = nij:lAn sin (n—7>

0(@) = 3 (rnc+ B sin ()
ii)
2me 4dme
— < r < —.

¢ 14
u(z,t) = (Are”"" + Bie ™) Sln( ) Ze " (A, cos (Bnt) + By sin (But)) sin (nlg) ,

n=2
where

and

2,2
—r 44 /72 — 4”@26

Here, the initial data satisfy,

¢ (x) = (A1 + By) sm( ) ZA sm(mm)

n=2

Y () = — (r1Ay +r2B1) sin (%) + nz:;( rA, + BnfBs)sin (m;x)
1
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Section 4.2

2) (Prob 2, Pg 92) Solve the wave equation with mixed boundary conditions using separation of variables, i.e. write down

a series representation for the solution. You may assume that the initial conditions can be represented using an appropriate
Fourier series.:

Uy = kg 0<ax<{
uy (0,t) =u(f,t) =0
u(z,0)=¢(z) O<z<{

O (z,0)=¢ () O0<xz</{

u(z,t) = 2 (An cos (W) + B,, sin (W)) cos <(n+j)mz> ,

Solution:

where

n=0
ot - S LB (e
n=0

3) (Prob 3, Pg 92) Solve the Schrodinger equation u; = iku,, for real k in the interval 0 < x < ¢ with mixed boundary
conditions uy (0,t) = u (¢,t) = 0.
Solution:

~3 4, cos<("+ 3) ™ )a‘k("*fﬁ?”Zt
Y4

n=0

4) (Prob 4, Pg 92) (Periodic boundary conditions) Consider diffusion inside an enclosed circular tube. Let it’s length be
2(. Let x denote the arclength parameter. The concentration of the diffusing substance satisfies

U = kttyy, —LC0<x</¥
u(—=0,t) =u(l,t)
Ozu (=L, t) = Opu (L, t) ,
Show that the solution is given by

u(z,t) = fAOJrZ(A cos(ng )+anm(nzx))exp <n2222kt> .

n=1

Section 4.3
5) (Prob 2, Pg 100) Consider the Robin eigenvalue value problem

X" =-)2X
X' (0) — apX (0) = X' (€) + agX (€) = 0.

a) Show that A = 0 is an eigenvalue if and only if ag + ay = —agasl.
b) Find the eigenfunctions corresponding to the zero eigenvalue.
Solution:

The eigenfunction corresponding to the zero eigenvalue is

X (z) =Bo+ piz.
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On imposing the boundary conditions, we get

B1 = aoBo
B = —a¢ (Bo + Bif)
apfo = —agBo — araoBol = ao + ar = —apael

The corresponding eigenfunction is
X (z) = Bo (14 apx) .

6) (Prob 4, Pg 100) Consider the Robin eigenvalue problem. If ag < 0, ay < 0 and —ag — ay < agael, show that there are

two negative eigenvalues. (Hint: Show that the rational curve
~(ao +ar)y
v2 +apae ’

has a single maximum and crosses the line y = 1 in two places. Deduce that it crosses the tanh curve in two places as well.

Solution: \ = —4? if and only if v > 0 satisfies

fanh (1) = _M
¥4+ apay
The location of the maximum of the function
_ —(ag +ap)y
v = v2 + apay
is at Ymazr = v/aoa¢ and the maximum value is
ag + ay
Y ('Vmaw) = _g

2/apar
Since arithmatic mean of two numbers is greater than the geometric mean of two numbers, we conclude that
Yy (’Ymax) Z 1.

Furthermore, we note that tanh (ymaxf) < 1 and limit v — oo tanh (7¢) = 1 and y(v) = 0. Owing to the continuity of
tanh () and y (), we conclude that there exists a 71 > Ymax such that tanh (y1£) =y (71).
The second intersection of the two functions 7, satisfies 0 < ¥2 < Ymax. ¥y (0) = tanh (0-¥¢) = 0. Furthermore, 3’ (0) =

—laotar) apg £ ~ tanh (7€) |y=0 = £. Thus, there exists dy, sufficiently small, such that y () < tanh (6¢) and we know that

apgayp
Y (Ymax) > tanh (’ymaxﬁ) Again by continuity, we conclude that there exists 0 < 72 < Ymax such that y (y2) = tanh (y2f).

7) (Prob 18, Pg 102-103). A tuning fork may be regarded as a pair of vibrating flexible bars with a certain degree of
stiffness. The governing equation for such a fork is given by the fourth order PDE

Ut + Clgpes =0 0<z </
u(0,t) = uy (0,¢) =0 (Fixed end/clamped boundary conditions)
Ugy (0, 1) = Ugay (£,1) =0  (Free end/No stress at the end) .
a) Separate the time and space variables to get the eigenvalue problem

X" =X .

b) Show that 0 is not an eigenvalue.
Solution: The eigenfunction corresponding to

X" =0
is given by X (z) = ag + a12 + as2? + azz® where X (x) satisfies the boundary conditions
X0)=X"0)=0=X")=X""(¢) .
On imposing the boundary conditions, we get
ap=X(0)=0
=X'(0)=0
2as + 6a3£ =X")=0
6as = X" (¢) =0
From which we conclude that X (z) = 0.

c) Assuming that all the eigenvalues are positive, write them as A = 3% and find the equation for /3.
Solution: cosh (3¢) cos (8¢) = —
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d) Find the frequencies of vibration.
Solution: 14 = 1.88, B2 = 4.69, B3¢ = 7.85 and the frequency of vibration is

n:CﬁEL

e) Compare the answer in part (d) with the overtones of the vibrating string by comparing at the ratio 33/8% . Explain why
you hear an almost pure tone when you listen to a tuning fork.

Solution: For the bar A—Q = 6.27 while that for a string is 2. Thus, relative to the fundamental frequency, the first
overtone of the bar is hlgher than the fifth overtone.



