PROBLEM SET 3

DUE DATE: - MAR 9

- Sections 4.1-4.3
- Questions are either directly from the text or a small variation of a problem in the text.
- Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
- The terms in the bracket indicate the problem number from the text.

Section 4.1

1) (Prob $4,5 \operatorname{Pg} 89)$ Consider waves in a resistant medium which satisfy the following PDE:

$$
\begin{aligned}
u_{t t} & =c^{2} u_{x x}-r u_{t} \quad 0<x<\ell \\
u(0, t) & =u(\ell, t)=0 \quad \forall t>0 \\
u(x, 0) & =\phi(x) \quad 0<x<\ell \\
\partial_{t} u(x, 0) & =\psi(x) \quad 0<x<\ell
\end{aligned}
$$

where r is a constant. Write down a series expansion for the following cases:
i)

$$
\begin{gathered}
0<r<\frac{2 \pi c}{\ell} \\
u(x, t)=\sum_{n=1}^{\infty} e^{-r t}\left(A_{n} \cos \left(\beta_{n} t\right)+B_{n} \sin \left(\beta_{n} t\right)\right) \sin \left(\frac{n \pi x}{\ell}\right)
\end{gathered}
$$

where

$$
\beta_{n}^{2}=\frac{4 n^{2} \pi^{2} c^{2}}{\ell^{2}}-r^{2}
$$

Here, the initial data satisfy,

$$
\begin{aligned}
& \phi(x)=\sum_{n=1}^{\infty} A_{n} \sin \left(\frac{n \pi x}{\ell}\right) \\
& \psi(x)=\sum_{n=1}^{\infty}\left(-r A_{n}+B_{n} \beta_{n}\right) \sin \left(\frac{n \pi x}{\ell}\right)
\end{aligned}
$$

ii)

$$
\begin{gathered}
\frac{2 \pi c}{\ell}<r<\frac{4 \pi c}{\ell} \\
u(x, t)=\left(A_{1} e^{-r_{1} t}+B_{1} e^{-r_{2} t}\right) \sin \left(\frac{\pi x}{\ell}\right)+\sum_{n=2}^{\infty} e^{-r t}\left(A_{n} \cos \left(\beta_{n} t\right)+B_{n} \sin \left(\beta_{n} t\right)\right) \sin \left(\frac{n \pi x}{\ell}\right),
\end{gathered}
$$

where

$$
\beta_{n}^{2}=\frac{4 n^{2} \pi^{2} c^{2}}{\ell^{2}}-r^{2} \quad n \geq 2
$$

and

$$
r_{1,2}=\frac{-r+\sqrt{r^{2}-\frac{4 \pi^{2} c^{2}}{\ell^{2}}}}{2}
$$

Here, the initial data satisfy,

$$
\begin{aligned}
& \phi(x)=\left(A_{1}+B_{1}\right) \sin \left(\frac{\pi x}{\ell}\right)+\sum_{n=2}^{\infty} A_{n} \sin \left(\frac{n \pi x}{\ell}\right) \\
& \psi(x)=-\left(r_{1} A_{1}+r_{2} B_{1}\right) \sin \left(\frac{\pi x}{\ell}\right)+\sum_{n=2}^{\infty}\left(-r A_{n}+B_{n} \beta_{n}\right) \sin \left(\frac{n \pi x}{\ell}\right)
\end{aligned}
$$

Section 4.2

2) (Prob 2, Pg 92) Solve the wave equation with mixed boundary conditions using separation of variables, i.e. write down a series representation for the solution. You may assume that the initial conditions can be represented using an appropriate Fourier series.:

$$
\begin{aligned}
u_{t t} & =k u_{x x} \quad 0<x<\ell \\
u_{x}(0, t) & =u(\ell, t)=0 \\
u(x, 0) & =\phi(x) \quad 0<x<\ell \\
\partial_{t} u(x, 0) & =\psi(x) \quad 0<x<\ell
\end{aligned}
$$

Solution:

$$
u(x, t)=\sum_{n=0}^{\infty}\left(A_{n} \cos \left(\frac{\left(n+\frac{1}{2}\right) \pi \sqrt{k} t}{\ell}\right)+B_{n} \sin \left(\frac{\left(n+\frac{1}{2}\right) \pi \sqrt{k} t}{\ell}\right)\right) \cos \left(\frac{\left(n+\frac{1}{2}\right) \pi x}{\ell}\right)
$$

where

$$
\begin{aligned}
& \phi(x)=\sum_{n=0}^{\infty} A_{n} \cos \left(\frac{\left(n+\frac{1}{2}\right) \pi x}{\ell}\right) \\
& \psi(x)=\sum_{n=0}^{\infty} \frac{\left(n+\frac{1}{2}\right) \pi \sqrt{k} B_{n}}{\ell} \cos \left(\frac{\left(n+\frac{1}{2}\right) \pi x}{\ell}\right)
\end{aligned}
$$

3) (Prob 3, Pg 92) Solve the Schrodinger equation $u_{t}=i k u_{x x}$ for real k in the interval $0<x<\ell$ with mixed boundary conditions $u_{x}(0, t)=u(\ell, t)=0$.

Solution:

$$
u(x, t)=\sum_{n=0}^{\infty} A_{n} \cos \left(\frac{\left(n+\frac{1}{2}\right) \pi x}{\ell}\right) e^{i k \frac{\left(n+\frac{1}{2}\right)^{2} \pi^{2}}{\ell^{2}} t}
$$

4) (Prob 4, Pg 92) (Periodic boundary conditions) Consider diffusion inside an enclosed circular tube. Let it's length be 2ℓ. Let x denote the arclength parameter. The concentration of the diffusing substance satisfies

$$
\begin{aligned}
u_{t} & =k u_{x x} \quad-\ell \leq x \leq \ell \\
u(-\ell, t) & =u(\ell, t) \\
\partial_{x} u(-\ell, t) & =\partial_{x} u(\ell, t),
\end{aligned}
$$

Show that the solution is given by

$$
u(x, t)=\frac{1}{2} A_{0}+\sum_{n=1}^{\infty}\left(A_{n} \cos \left(\frac{n \pi x}{\ell}\right)+B_{n} \sin \left(\frac{n \pi x}{\ell}\right)\right) \exp \left(-\frac{n^{2} \pi^{2} k t}{\ell^{2}}\right)
$$

Section 4.3

5) (Prob 2, Pg 100) Consider the Robin eigenvalue value problem

$$
\begin{aligned}
X^{\prime \prime} & =-\lambda X \\
X^{\prime}(0) & -a_{0} X(0)=X^{\prime}(\ell)+a_{\ell} X(\ell)=0
\end{aligned}
$$

a) Show that $\lambda=0$ is an eigenvalue if and only if $a_{0}+a_{\ell}=-a_{0} a_{\ell} \ell$.
b) Find the eigenfunctions corresponding to the zero eigenvalue.

Solution:

The eigenfunction corresponding to the zero eigenvalue is

$$
X(x)=\beta_{0}+\beta_{1} x
$$

On imposing the boundary conditions, we get

$$
\begin{aligned}
\beta_{1} & =a_{0} \beta_{0} \\
\beta_{1} & =-a_{\ell}\left(\beta_{0}+\beta_{1} \ell\right) \\
a_{0} \beta_{0} & =-a_{\ell} \beta_{0}-a_{\ell} a_{0} \beta_{0} \ell \Longrightarrow a_{0}+a_{\ell}=-a_{0} a_{\ell} \ell
\end{aligned}
$$

The corresponding eigenfunction is

$$
X(x)=\beta_{0}\left(1+a_{0} x\right)
$$

6) (Prob 4, Pg 100) Consider the Robin eigenvalue problem. If $a_{0}<0, a_{\ell}<0$ and $-a_{0}-a_{\ell}<a_{0} a_{\ell} \ell$, show that there are two negative eigenvalues. (Hint: Show that the rational curve

$$
y=-\frac{\left(a_{0}+a_{\ell}\right) \gamma}{\gamma^{2}+a_{0} a_{\ell}}
$$

has a single maximum and crosses the line $y=1$ in two places. Deduce that it crosses the tanh curve in two places as well.
Solution: $\lambda=-\gamma^{2}$ if and only if $\gamma>0$ satisfies

$$
\tanh (\gamma \ell)=-\frac{\left(a_{0}+a_{\ell}\right) \gamma}{\gamma^{2}+a_{0} a_{\ell}}
$$

The location of the maximum of the function

$$
y(\gamma)=\frac{-\left(a_{0}+a_{\ell}\right) \gamma}{\gamma^{2}+a_{0} a_{\ell}}
$$

is at $\gamma_{\max }=\sqrt{a_{0} a_{\ell}}$ and the maximum value is

$$
y\left(\gamma_{\max }\right)=-\frac{\left(a_{0}+a_{\ell}\right)}{2 \sqrt{a_{0} a_{\ell}}}
$$

Since arithmatic mean of two numbers is greater than the geometric mean of two numbers, we conclude that

$$
y\left(\gamma_{\max }\right) \geq 1
$$

Furthermore, we note that $\tanh \left(\gamma_{\max } \ell\right)<1$ and limit $\gamma \rightarrow \infty \tanh (\gamma \ell)=1$ and $y(\gamma)=0$. Owing to the continuity of $\tanh (\gamma \ell)$ and $y(\gamma)$, we conclude that there exists a $\gamma_{1}>\gamma_{\max }$ such that $\tanh \left(\gamma_{1} \ell\right)=y\left(\gamma_{1}\right)$.

The second intersection of the two functions γ_{2} satisfies $0<\gamma_{2}<\gamma_{\max } \cdot y(0)=\tanh (0 \cdot \ell)=0$. Furthermore, $y^{\prime}(0)=$ $-\frac{\left(a_{0}+a_{\ell}\right)}{a_{0} a_{\ell}}$ and $\left.\frac{d}{d \gamma} \tanh (\gamma \ell)\right|_{\gamma=0}=\ell$. Thus, there exists δ_{0}, sufficiently small, such that $y(\delta)<\tanh (\delta \ell)$ and we know that $y\left(\gamma_{\max }\right)>\tanh \left(\gamma_{\max } \ell\right)$. Again by continuity, we conclude that there exists $0<\gamma_{2}<\gamma_{\max }$ such that $y\left(\gamma_{2}\right)=\tanh \left(\gamma_{2} \ell\right)$.
7) (Prob 18, Pg 102-103). A tuning fork may be regarded as a pair of vibrating flexible bars with a certain degree of stiffness. The governing equation for such a fork is given by the fourth order PDE

$$
\begin{aligned}
u_{t t} & +c^{2} u_{x x x x}=0 \quad 0<x<\ell \\
u(0, t) & =u_{x}(0, t)=0 \quad \text { (Fixed end/clamped boundary conditions) } \\
u_{x x}(\ell, t) & =u_{x x x}(\ell, t)=0 \quad \text { (Free end/No stress at the end) } .
\end{aligned}
$$

a) Separate the time and space variables to get the eigenvalue problem

$$
X^{\prime \prime \prime \prime}=\lambda X
$$

b) Show that 0 is not an eigenvalue.

Solution: The eigenfunction corresponding to

$$
X^{\prime \prime \prime \prime}=0
$$

is given by $X(x)=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}$ where $X(x)$ satisfies the boundary conditions

$$
X(0)=X^{\prime}(0)=0=X^{\prime \prime}(\ell)=X^{\prime \prime \prime}(\ell) .
$$

On imposing the boundary conditions, we get

$$
\begin{aligned}
a_{0} & =X(0)=0 \\
a_{1} & =X^{\prime}(0)=0 \\
2 a_{2}+6 a_{3} \ell & =X^{\prime \prime}(\ell)=0 \\
6 a_{3} & =X^{\prime \prime \prime}(\ell)=0
\end{aligned}
$$

From which we conclude that $X(x)=0$.
c) Assuming that all the eigenvalues are positive, write them as $\lambda=\beta^{4}$ and find the equation for β.

Solution: $\cosh (\beta \ell) \cos (\beta \ell)=-1$
d) Find the frequencies of vibration.

Solution: $\beta_{1} \ell=1.88, \beta_{2} \ell=4.69, \beta_{3} \ell=7.85$ and the frequency of vibration is

$$
\lambda_{n}=c \beta_{n}^{2}
$$

e) Compare the answer in part (d) with the overtones of the vibrating string by comparing at the ratio $\beta_{2}^{2} / \beta_{1}^{2}$. Explain why you hear an almost pure tone when you listen to a tuning fork.

Solution: For the bar $\frac{\lambda_{2}}{\lambda_{1}}=6.27$ while that for a string is 2 . Thus, relative to the fundamental frequency, the first overtone of the bar is higher than the fifth overtone.

