PROBLEM SET 4

DUE DATE: - MAR 28

- Chap 5

- Questions are either directly from the text or a small variation of a problem in the text.
- Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
- The terms in the bracket indicate the problem number from the text.

Section 5.1

1) (Prob 2, Pg 111) Compute the fourier sine and fourier cosine series of $\phi(x)=x^{2}$ for $0 \leq x \leq 1$.
2) (Prob 10, Pg 111) A string (of tension T and density ρ) with fixed ends at $x=0$ and $x=\ell$ is hit by a hammer so that $u(x, 0)=0$ and $\partial_{t} u(x, 0)=V$ for $x \in\left[-\delta+\frac{1}{2} \ell, \delta+\frac{1}{2} \ell\right]$ and $\partial_{t} u(x, 0)=0$ otherwise. Find the solution explicitly in series form. Find the energy

$$
E_{n}[h](t)=\frac{1}{2} \int_{0}^{\ell}\left[\rho \partial_{t} h(x, t)^{2}+T \partial_{x} h(x, t)^{2}\right] d x
$$

of the nth harmonic $h=h_{n}$. Conclude that if δ is small (a concentrated blow), each of the first few overtones has almost as much energy as the fundamental mode.

Section 5.3

3) (Prob 4, Pg 123) Consider the problem $u_{t}=k u_{x x}$ for $0<x<\ell$, with the boundary conditions $u(0, t)=U, u_{x}(\ell, t)=0$, and the initial condition $u(x, 0)=0$, where U is a constant.
a) Find the solution in series form (Consider $u(x, t)-U)$
b) Using a direct argument, show that the series converges for each time slice $t=t_{0}$ uniformly in x for $t_{0}>0$.
4) (Prob 9, Pg 123) Show that the boundary conditions

$$
X(b)=\alpha X(a)+\beta X^{\prime}(a) \quad \text { and } \quad X^{\prime}(b)=\gamma X(a)+\delta X^{\prime}(a)
$$

on an interval $a \leq x \leq b$ are symmetric if and only if $\alpha \delta-\beta \gamma=1$.

Section 5.4

5) (Prob $1, \operatorname{Pg} 134) \sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$ is a geometric series.
a) Does it converge pointwise in the interval $-1<x<1$?
b) Does it converge uniformly in the interval $-1<x<1$?
c) Does it converge in the \mathbb{L}^{2} sense in the interval $-1<x<1$?
6) (Prob 3, Pg 134) Let $f_{n}(x)$ be the sequence of functions defined as follows: $f_{n}(0.5)=0, f_{n}(x)=\gamma_{n}$ in the interval [0.5- $\left.\frac{1}{n}, 0.5\right)$, let $f_{n}(x)=-\gamma_{n}$ in the interval $\left(0.5,0.5+\frac{1}{n}\right]$ and let $f_{n}(x)=0$ elsewhere. Show that:
a) $f_{n}(x) \rightarrow 0$ pointwise.
b) The convergence is not uniform.
c) $f_{n} \rightarrow 0$ in the \mathbb{L}^{2} sense if $\gamma_{n}=n^{1 / 3}$
d) f_{n} does not converge in the L^{2} sense if $\gamma_{n}=n$.
