PROBLEM SET 4

DUE DATE: - MAR 28

- Chap 5

- Questions are either directly from the text or a small variation of a problem in the text.
- Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
- The terms in the bracket indicate the problem number from the text.

Section 5.1

1) (Prob 2, Pg 111) Compute the fourier sine and fourier cosine series of $\phi(x)=x^{2}$ for $0 \leq x \leq 1$.

Solution:

$$
\begin{aligned}
& x^{2}=\frac{1}{6}+\sum_{m=1}^{\infty} \frac{4}{m^{2} \pi^{2}}(-1)^{m} \cos (m \pi x) \\
& x^{2}=2 \sum_{m=1}^{\infty} \frac{\left(2-\pi^{2} m^{2}\right)(-1)^{m}-2}{\pi^{3} m^{3}} \sin (m \pi x)
\end{aligned}
$$

2) (Prob $10, \operatorname{Pg} 111$) A string (of tension T and density ρ) with fixed ends at $x=0$ and $x=\ell$ is hit by a hammer so that $u(x, 0)=0$ and $\partial_{t} u(x, 0)=V$ for $x \in\left[-\delta+\frac{1}{2} \ell, \delta+\frac{1}{2} \ell\right]$ and $\partial_{t} u(x, 0)=0$ otherwise. Find the solution explicitly in series form. Find the energy

$$
E_{n}[h](t)=\frac{1}{2} \int_{0}^{\ell}\left[\rho \partial_{t} h(x, t)^{2}+T \partial_{x} h(x, t)^{2}\right] d x
$$

of the nth harmonic $h=h_{n}$. Conclude that if δ is small (a concentrated blow), each of the first few overtones has almost as much energy as the fundamental mode.

Solution:

$$
E_{n}=\frac{4 \ell \rho V^{2}}{(n \pi)^{2}} \sin ^{2}\left(\frac{n \pi \delta}{\ell}\right) \approx 4 \rho V^{2} \ell^{-1} \delta^{2}
$$

as long as $n \delta \ll 1$.

Section 5.3

3) (Prob 4, Pg 123) Consider the problem $u_{t}=k u_{x x}$ for $0<x<\ell$, with the boundary conditions $u(0, t)=U, u_{x}(\ell, t)=0$, and the initial condition $u(x, 0)=0$, where U is a constant.
a) Find the solution in series form (Consider $u(x, t)-U)$
b) Using a direct argument, show that the series converges for each time slice $t=t_{0}$ uniformly in x for $t_{0}>0$.

Solution:

a)

$$
u(x, t)=U-\frac{4 U}{\pi} \sum_{n=0}^{\infty} \frac{1}{(2 m+1)} e^{-\frac{\left(m+\frac{1}{2}\right)^{2} \pi^{2} k t}{\ell^{2}}} \sin \left(\left(m+\frac{1}{2}\right) \frac{\pi x}{\ell}\right)
$$

b) Uniform convergence for time slice t_{0} follows from the fact that

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{1}{(2 m+1)} e^{-\frac{\left(m+\frac{1}{2}\right)^{2} \pi^{2} k t_{0}}{\ell^{2}}}<\infty \tag{1}
\end{equation*}
$$

4) (Prob 9, Pg 123) Show that the boundary conditions

$$
X(b)=\alpha X(a)+\beta X^{\prime}(a) \quad \text { and } \quad X^{\prime}(b)=\gamma X(a)+\delta X^{\prime}(a)
$$

on an interval $a \leq x \leq b$ are symmetric if and only if $\alpha \delta-\beta \gamma=1$.

Solution:

An operator is symmetric if

$$
\begin{aligned}
(u, L v)-(L u, v)=u v^{\prime}-\left.u^{\prime} v\right|_{a} ^{b} & =u(b) v^{\prime}(b)-u^{\prime}(b) v(b)-u(a) v^{\prime}(a)+u^{\prime}(a) v(a) \\
& =\left(\alpha u(a)+\beta u^{\prime}(a)\right)\left(\gamma v(a)+\delta v^{\prime}(a)\right)-\left(\gamma u(a)+\delta u^{\prime}(a)\right)\left(\alpha v(a)+\beta v^{\prime}(a)\right)-u(a) v^{\prime}(a)+u^{\prime}(a) v(a) \\
& =(\alpha \delta-\beta \gamma-1) u(a) v^{\prime}(a)-(\alpha \delta-\beta \gamma-1) u^{\prime}(a) v(a)=0 \Longleftrightarrow \alpha \delta-\beta \gamma=1
\end{aligned}
$$

Section 5.4

5) (Prob $1, \operatorname{Pg} 134) \sum_{n=0}^{\infty}(-1)^{n} x^{2 n}$ is a geometric series.
a) Does it converge pointwise in the interval $-1<x<1$?
b) Does it converge uniformly in the interval $-1<x<1$?
c) Does it converge in the \mathbb{L}^{2} sense in the interval $-1<x<1$?

Solution:

a) Yes, to the function $\frac{1}{1+x^{2}}$
b) No, the convergence is not uniform as

$$
\sup _{|x|<1}\left|\sum_{n=0}^{N}(-1)^{n} x^{2 n}-\frac{1}{1+x^{2}}\right|=\sup _{|x|<1}\left|\frac{-x^{2 N+2}}{1+x^{2}}\right|=\frac{1}{2} \nrightarrow 0
$$

c) Yes, the function converges in \mathbb{L}^{2}

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \int_{-1}^{1}\left|f_{n}-\frac{1}{1+x^{2}}\right|^{2} d x & =\int_{-1}^{1} \frac{x^{4 N+4}}{\left(1+x^{2}\right)^{2}} d x \\
& \leq \frac{1}{2(4 N+5)} \rightarrow 0
\end{aligned}
$$

6) (Prob $3, \operatorname{Pg} 134)$ Let $f_{n}(x)$ be the sequence of functions defined as follows: $f_{n}(0.5)=0, f_{n}(x)=\gamma_{n}$ in the interval [0.5- $\left.\frac{1}{n}, 0.5\right)$, let $f_{n}(x)=-\gamma_{n}$ in the interval $\left(0.5,0.5+\frac{1}{n}\right]$ and let $f_{n}(x)=0$ elsewhere. Show that:
a) $f_{n}(x) \rightarrow 0$ pointwise.
b) The convergence is not uniform.
c) $f_{n} \rightarrow 0$ in the \mathbb{L}^{2} sense if $\gamma_{n}=n^{1 / 3}$
d) f_{n} does not converge in the L^{2} sense if $\gamma_{n}=n$.

Solution:

a) Let $x<0.5$, then for large enough $n>N, x \notin\left[0.5-\frac{1}{n}, 0.5\right)$, and $f_{n}(x)=0$. Similarly if $x>0.5$, then for large enough $N, x \notin\left(0.5,0.5+\frac{1}{n}\right]$ and $f_{n}(x)=0$. If $x=0.5, f_{n}(x)=0$ for all n. Thus $f_{n} \rightarrow 0$ pointwise
b)

$$
\sup _{0<x<1}\left|f_{n}-0\right|=\gamma_{n}
$$

and the convergence is not uniform unless $\gamma_{n} \rightarrow 0$.
$\mathrm{c}, \mathrm{d})$

$$
\int_{0}^{1}\left|f_{n}-0\right|^{2} d x=\int_{0.5-\frac{1}{n}}^{0.5+\frac{1}{n}} \gamma_{n}^{2} d x=\frac{2}{n} \gamma_{n}^{2}
$$

From the above expression, if $\gamma_{n}=n^{\frac{1}{3}}$, then $f_{n} \rightarrow 0$ in \mathbb{L}^{2}. If $\gamma_{n}=n$, then $f_{n} \nrightarrow 0$ in \mathbb{L}^{2}.

