
PROBLEM SET 5

DUE DATE: - APR 11

• Chap 5
• Questions are either directly from the text or a small variation of a problem in the text.
• Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
• The terms in the bracket indicate the problem number from the text.

Section 6.1
1) (Prob 7, Pg 160) Solve uxx + uyy + uzz = 1 in the spherical shell 1 < r < 2, with u (1, θ, φ) = u (2, θ, φ) = 0 for all θ, φ.
Solution:
We set

u = up + uh ,

where up satisfies the Poisson equation, and uh fixes the boundary condition. It is easier to take a radially symmetric solution
to the inhomogeneous problem.

up (r, θ, φ) =
r2

6
.

It is easy to check that

∆up = 1 .

Then on imposing the boundary condition on u, we get the following boundary condition for uh.

uh (1, θ, φ) = −1

6
, uh (2, θ, φ) = −4

6
.

The only two radially symmetric solutions are 1
r and 1. Since both the boundary data is radially symmetric, the solution

must be a linear combination of both of these solutions:

uh (r, θ, φ) =
c1
r

+ c2 .

Solving for c1, c2 we get

uh (r) =
1

r
− 7

6
.

The total solution is given by

u (r, θ, φ) =
r2

6
+

1

r
− 7

6
.

2) (Prob 13, Pg 160) A function u is subharmonic in D if it satisfies ∆u ≥ 0 in D. Prove that it’s maximum value is
attained on the boundary. Note that the same is not true for the minimum value.

Solution:
This problem can be solved via either of the two routes that we’ve used to prove maximum principle. A way to prove it

is to use v = u + ε|r|2 and take the limit as ε → 0. But we will proceed the alternate route using an alternate form of the
mean value property. ¨

∂D

∂u

∂r
dS =

˚
D

∆u dV ≥ 0 .

Proceeding as in the proof for the mean value theorem, we then conclude

∂r

[
1

4π

ˆ 2π

0

ˆ π

0

u (r, θ, φ) sin (θ) dθ dφ

]
=

¨
∂D

∂u

∂r
dS ≥ 0 .

Thus

u (x) ≤ 1

4πr2

¨
∂Br(x)

u (y) dSy ∀r ≥ 0 .

1
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Again, by the same reasoning as before, we can use the above result to conclude that

u (x) ≤ 1
4
3πr

3

˚
Br(x)

u (y) dV ∀r ≥ 0

Now, we proceed with the clopen argument exactly in the text to show that maximum principle holds.
LetM be the maximum value of u in D. Let A = u−1 {M}. Then A is a closed subset of D. Furthermore suppose x0 ∈ A.

Then applying the inequality version of the mean value theorem, we get

u (x0) ≤ 1
4
3πr

3

˚
Br(x0)

u (y) dV .

Since u (y) ≤ M and u (x0) = M , we conclude that the only way the above inequality can hold is if u (y) = M for all
y ∈ Br (x0), i.e. if x0 ∈ A, then Br (x0) ∈ A, i.e. A is an open set. Since A is both open and closed, we conclude that A = D
or A = φ.

Section 6.2
3) (Prob 1, Pg 164) Solve uxx + uyy = 0 in the rectangle 0 < x < 1, 0 < y < 2 with the following boundary conditions:

ux = −1 x = 0

uy = 2 y = 0

ux = 0 x = 1

uy = 0 y = 2 .

Solution:
Solution strategy: In this case, we can take a shortcut

u (x, y) = v (x) + h (y)

where v (x) satisfies the ode v′′ = 1 with v′ = −1 at x = 0 and v′ = 0 at x = 1, the solution to which is given by

v (x) =
1

2
x2 − x+ c .

The reason we needed the one in there is to guarantee that the compatibility condition for the Neumann problem, i.e.

ˆ 1

0

v′′ = v′ (1)− v′ (0)

is satisfied.
Then h has to satisfy the ODE,

h′′ = −1

with h′ (0) = 2 and h′ (2) = 0. It is easy to see that the compatibility condition for this bvp is automatically satisfied in this
case (you could conclude this from the fact that u (x, y) satisfies the compatibility condition too).

Thus,

h (y) = −1

2
y2 + 2y + c .

Combining, both of these, we get

u (x, y) =
1

2
x2 − 1

2
y2 − x+ 2y + c

4) (Prob 7, Pg 165) Find the harmonic function in the semi-infinite strip {0 ≤ x ≤ π , 0 ≤ y <∞} that satisfy the boundary
conditions:

u (0, y) = u (π, y) = 0 , u (x, 0) = h (x) , lim
y→∞

u (x, y) = 0 .

b) What would be the issue if the condition at ∞ is not imposed?
Solution:
The separation of variables solutions in this case are given by

u(x, y) = sin (nx) eny and sin (nx) e−ny .
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In order to obtain solutions which satisfy the boundary condition at∞, we have to discard the solutions at grow exponentially
as y →∞. Thus, we represent our solution as a linear combination of

u (x, y) =

∞∑
n=1

an sin (nx) e−ny .

On imposing the boundary conditions at y = 0 and if the sine series of h (x) is given by

h (x) =

∞∑
n=1

An sin (nx) ,

then the solution u is given by

u (x, y) =

∞∑
n=1

An sin (nx) e−ny .

b) If we do not impose the decay conditions at ∞ then

u (x, y) =

∞∑
n=1

(
ane
−ny + bne

ny
)

sin (nx) .

For the h given above, any set of values {an} and {bn} which satisfy

an + bn = An

will be a solution to the PDE. So we have non-uniqueness.

Section 6.3
5) (Prob 2, Pg 172) Solve uxx + uyy = 0 in the disk {r < a} with the boundary condition

u (a, θ) = 1 + 3 sin (θ) .

Solution: The bounded solutions separation of variables in the interior of a disk are given by

u (r, θ) = rn cos (nθ) and u (r, θ) = rn sin (nθ) n > 0

and u (r, θ) = 1 for n = 1. On imposing the boundary condition for r = a and using the orthogonality of the basis, we
conclude that the solution is given by

u (r, θ) = 1 + 3
( r
a

)
sin (θ)

Section 6.4
6) (Prob 1, Pg 175) Solve uxx + uyy = 0 in the exterior {r > a} of the disk, with the boundary condition u (a, θ) =

1 + 3 sin (θ) and the condition that u remains bounded as r →∞ .
Solution:
The bounded solutions separation of variables in the exterior of a disk are given by

u (r, θ) = r−n cos (nθ) and u (r, θ) = r−n sin (nθ) n > 0

and u (r, θ) = 1 for n = 1. On imposing the boundary condition for r = a and using the orthogonality of the basis, we
conclude that the solution is given by

u (r, θ) = 1 + 3
(a
r

)
sin (θ)

7) (Prob 4, Pg 176) Derive Poisson’s formula for the exterior of a circle.
Solution:
The separation of variables solutions in this case are given by

u (r, θ) = r−n sin (nθ) and r−n cos (nθ) n > 0

and u (r, θ) = 1 for n = 0. Then

u (r, θ) =
1

2
a0 +

∞∑
n=1

anr
−n sin (nθ) + bnr

−n cos (nθ) .
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On imposing the boundary conditions and expressing an and bn as integrals of the boundary data h, we get

an =
an

π

ˆ 2π

0

h (φ) cos (nφ) dφ

bn =
an

π

ˆ 2π

0

h (φ) sin (nφ) dφ

Plugging it back into the expression for u, we get

u (r, θ) =
1

2π

ˆ 2π

0

h (φ) dφ+

ˆ 2π

0

h (φ)

( ∞∑
n=1

(a
r

)n
cos (n (θ − φ))

)
dφ

The above geometric series converges absolutely for all r > a, so all changes in order of integration and summation are valid.
Explicitly computing the above sum as in class, we get

u (r, θ) =
1

2π

ˆ 2π

0

r2 − a2

a2 − 2ar cos (θ − φ) + r2
h (φ) dφ

The only thing different in the above formula is the change in sign from the poisson formula for the interior of the disk.


