PROBLEM SET 5

DUE DATE: - APR 11

- Chap 5

- Questions are either directly from the text or a small variation of a problem in the text.
- Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
- The terms in the bracket indicate the problem number from the text.

Section 6.1

1) (Prob $7, \operatorname{Pg} 160)$ Solve $u_{x x}+u_{y y}+u_{z z}=1$ in the spherical shell $1<r<2$, with $u(1, \theta, \phi)=u(2, \theta, \phi)=0$ for all θ, ϕ. Solution:
We set

$$
u=u_{p}+u_{h}
$$

where u_{p} satisfies the Poisson equation, and u_{h} fixes the boundary condition. It is easier to take a radially symmetric solution to the inhomogeneous problem.

$$
u_{p}(r, \theta, \phi)=\frac{r^{2}}{6}
$$

It is easy to check that

$$
\Delta u_{p}=1
$$

Then on imposing the boundary condition on u, we get the following boundary condition for u_{h}.

$$
u_{h}(1, \theta, \phi)=-\frac{1}{6}, \quad u_{h}(2, \theta, \phi)=-\frac{4}{6}
$$

The only two radially symmetric solutions are $\frac{1}{r}$ and 1 . Since both the boundary data is radially symmetric, the solution must be a linear combination of both of these solutions:

$$
u_{h}(r, \theta, \phi)=\frac{c_{1}}{r}+c_{2}
$$

Solving for c_{1}, c_{2} we get

$$
u_{h}(r)=\frac{1}{r}-\frac{7}{6}
$$

The total solution is given by

$$
u(r, \theta, \phi)=\frac{r^{2}}{6}+\frac{1}{r}-\frac{7}{6}
$$

2) (Prob $13, \operatorname{Pg} 160)$ A function u is subharmonic in D if it satisfies $\Delta u \geq 0$ in D. Prove that it's maximum value is attained on the boundary. Note that the same is not true for the minimum value.

Solution:

This problem can be solved via either of the two routes that we've used to prove maximum principle. A way to prove it is to use $v=u+\epsilon|r|^{2}$ and take the limit as $\epsilon \rightarrow 0$. But we will proceed the alternate route using an alternate form of the mean value property.

$$
\iint_{\partial D} \frac{\partial u}{\partial r} d S=\iiint_{D} \Delta u d V \geq 0
$$

Proceeding as in the proof for the mean value theorem, we then conclude

$$
\partial_{r}\left[\frac{1}{4 \pi} \int_{0}^{2 \pi} \int_{0}^{\pi} u(r, \theta, \phi) \sin (\theta) d \theta d \phi\right]=\iint_{\partial D} \frac{\partial u}{\partial r} d S \geq 0
$$

Thus

$$
u(\boldsymbol{x}) \leq \frac{1}{4 \pi r^{2}} \iint_{\partial B_{r}(\boldsymbol{x})} u(\boldsymbol{y}) d S_{\boldsymbol{y}} \quad \forall r \geq 0
$$

Again, by the same reasoning as before, we can use the above result to conclude that

$$
u(\boldsymbol{x}) \leq \frac{1}{\frac{4}{3} \pi r^{3}} \iiint_{B_{r}(\boldsymbol{x})} u(\boldsymbol{y}) d V \quad \forall r \geq 0
$$

Now, we proceed with the clopen argument exactly in the text to show that maximum principle holds.
Let M be the maximum value of u in D. Let $A=u^{-1}\{M\}$. Then A is a closed subset of D. Furthermore suppose $\boldsymbol{x}_{0} \in A$. Then applying the inequality version of the mean value theorem, we get

$$
u\left(\boldsymbol{x}_{0}\right) \leq \frac{1}{\frac{4}{3} \pi r^{3}} \iiint_{B_{r}\left(\boldsymbol{x}_{0}\right)} u(\boldsymbol{y}) d V
$$

Since $u(\boldsymbol{y}) \leq M$ and $u\left(\boldsymbol{x}_{0}\right)=M$, we conclude that the only way the above inequality can hold is if $u(\boldsymbol{y})=M$ for all $\boldsymbol{y} \in B_{r}\left(\boldsymbol{x}_{0}\right)$, i.e. if $\boldsymbol{x}_{0} \in A$, then $B_{r}\left(\boldsymbol{x}_{0}\right) \in A$, i.e. A is an open set. Since A is both open and closed, we conclude that $A=D$ or $A=\phi$.

Section 6.2

3) (Prob 1, Pg 164) Solve $u_{x x}+u_{y y}=0$ in the rectangle $0<x<1,0<y<2$ with the following boundary conditions:

$$
\begin{array}{rl}
u_{x}=-1 & x=0 \\
u_{y}=2 & y=0 \\
u_{x}=0 & x=1 \\
u_{y}=0 & y=2
\end{array}
$$

Solution:

Solution strategy: In this case, we can take a shortcut

$$
u(x, y)=v(x)+h(y)
$$

where $v(x)$ satisfies the ode $v^{\prime \prime}=1$ with $v^{\prime}=-1$ at $x=0$ and $v^{\prime}=0$ at $x=1$, the solution to which is given by

$$
v(x)=\frac{1}{2} x^{2}-x+c .
$$

The reason we needed the one in there is to guarantee that the compatibility condition for the Neumann problem, i.e.

$$
\int_{0}^{1} v^{\prime \prime}=v^{\prime}(1)-v^{\prime}(0)
$$

is satisfied.
Then h has to satisfy the ODE,

$$
h^{\prime \prime}=-1
$$

with $h^{\prime}(0)=2$ and $h^{\prime}(2)=0$. It is easy to see that the compatibility condition for this bvp is automatically satisfied in this case (you could conclude this from the fact that $u(x, y)$ satisfies the compatibility condition too).

Thus,

$$
h(y)=-\frac{1}{2} y^{2}+2 y+c
$$

Combining, both of these, we get

$$
u(x, y)=\frac{1}{2} x^{2}-\frac{1}{2} y^{2}-x+2 y+c
$$

4) (Prob 7, Pg 165) Find the harmonic function in the semi-infinite strip $\{0 \leq x \leq \pi, 0 \leq y<\infty\}$ that satisfy the boundary conditions:

$$
u(0, y)=u(\pi, y)=0, \quad u(x, 0)=h(x), \quad \lim _{y \rightarrow \infty} u(x, y)=0
$$

b) What would be the issue if the condition at ∞ is not imposed?

Solution:

The separation of variables solutions in this case are given by

$$
u(x, y)=\sin (n x) e^{n y} \quad \text { and } \quad \sin (n x) e^{-n y}
$$

In order to obtain solutions which satisfy the boundary condition at ∞, we have to discard the solutions at grow exponentially as $y \rightarrow \infty$. Thus, we represent our solution as a linear combination of

$$
u(x, y)=\sum_{n=1}^{\infty} a_{n} \sin (n x) e^{-n y}
$$

On imposing the boundary conditions at $y=0$ and if the sine series of $h(x)$ is given by

$$
h(x)=\sum_{n=1}^{\infty} A_{n} \sin (n x)
$$

then the solution u is given by

$$
u(x, y)=\sum_{n=1}^{\infty} A_{n} \sin (n x) e^{-n y}
$$

b) If we do not impose the decay conditions at ∞ then

$$
u(x, y)=\sum_{n=1}^{\infty}\left(a_{n} e^{-n y}+b_{n} e^{n y}\right) \sin (n x)
$$

For the h given above, any set of values $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ which satisfy

$$
a_{n}+b_{n}=A_{n}
$$

will be a solution to the PDE. So we have non-uniqueness.

Section 6.3

5) (Prob 2, Pg 172) Solve $u_{x x}+u_{y y}=0$ in the disk $\{r<a\}$ with the boundary condition

$$
u(a, \theta)=1+3 \sin (\theta)
$$

Solution: The bounded solutions separation of variables in the interior of a disk are given by

$$
u(r, \theta)=r^{n} \cos (n \theta) \quad \text { and } \quad u(r, \theta)=r^{n} \sin (n \theta) \quad n>0
$$

and $u(r, \theta)=1$ for $n=1$. On imposing the boundary condition for $r=a$ and using the orthogonality of the basis, we conclude that the solution is given by

$$
u(r, \theta)=1+3\left(\frac{r}{a}\right) \sin (\theta)
$$

Section 6.4

6) (Prob 1, $\operatorname{Pg} 175)$ Solve $u_{x x}+u_{y y}=0$ in the exterior $\{r>a\}$ of the disk, with the boundary condition $u(a, \theta)=$ $1+3 \sin (\theta)$ and the condition that u remains bounded as $r \rightarrow \infty$.

Solution:

The bounded solutions separation of variables in the exterior of a disk are given by

$$
u(r, \theta)=r^{-n} \cos (n \theta) \quad \text { and } \quad u(r, \theta)=r^{-n} \sin (n \theta) \quad n>0
$$

and $u(r, \theta)=1$ for $n=1$. On imposing the boundary condition for $r=a$ and using the orthogonality of the basis, we conclude that the solution is given by

$$
u(r, \theta)=1+3\left(\frac{a}{r}\right) \sin (\theta)
$$

7) (Prob 4, Pg 176) Derive Poisson's formula for the exterior of a circle.

Solution:
The separation of variables solutions in this case are given by

$$
u(r, \theta)=r^{-n} \sin (n \theta) \quad \text { and } \quad r^{-n} \cos (n \theta) \quad n>0
$$

and $u(r, \theta)=1$ for $n=0$. Then

$$
u(r, \theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} r^{-n} \sin (n \theta)+b_{n} r^{-n} \cos (n \theta)
$$

On imposing the boundary conditions and expressing a_{n} and b_{n} as integrals of the boundary data h, we get

$$
\begin{aligned}
& a_{n}=\frac{a^{n}}{\pi} \int_{0}^{2 \pi} h(\phi) \cos (n \phi) d \phi \\
& b_{n}=\frac{a^{n}}{\pi} \int_{0}^{2 \pi} h(\phi) \sin (n \phi) d \phi
\end{aligned}
$$

Plugging it back into the expression for u, we get

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} h(\phi) d \phi+\int_{0}^{2 \pi} h(\phi)\left(\sum_{n=1}^{\infty}\left(\frac{a}{r}\right)^{n} \cos (n(\theta-\phi))\right) d \phi
$$

The above geometric series converges absolutely for all $r>a$, so all changes in order of integration and summation are valid. Explicitly computing the above sum as in class, we get

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r^{2}-a^{2}}{a^{2}-2 a r \cos (\theta-\phi)+r^{2}} h(\phi) d \phi
$$

The only thing different in the above formula is the change in sign from the poisson formula for the interior of the disk.

