PRACTICE PROBLEM SET 1

Review questions:

1. Differentiating under the integral:

$$
\frac{d}{d x} \int_{a(x)}^{b(x)} f(x, s) d s=\int_{a(x)}^{b(x)} \frac{\partial f}{\partial x}(x, s)+b^{\prime}(x) f(x, b(x))-a^{\prime}(x) f(x, a(x))
$$

Compute
a)

$$
\frac{d}{d x} \int_{0}^{-x} e^{x+s} d s
$$

b)

$$
\frac{d}{d x} \int_{x}^{\pi}\left(\sin (x) y+y^{2} x\right) d y
$$

2. Chain rule in multivariable case:

Consider the chain $(s, t) \rightarrow(x, y) \rightarrow u$. If u is a function of x, y and if x, y are differentiable functions of s, t then

$$
\begin{aligned}
& u_{s}=u_{x} \frac{\partial x}{\partial s}+u_{y} \frac{\partial y}{\partial s} \\
& u_{t}=u_{x} \frac{\partial x}{\partial t}+u_{y} \frac{\partial y}{\partial t}
\end{aligned}
$$

Consider the function of two variables

$$
u(x, y)=\cos (x) \sin (y)+\sin (x) \cos (y)+x^{2}-2 x y+y^{2}
$$

Consider the change of variables $\xi=x+y$ and $\eta=x-y$. Compute $u_{\xi}, u_{\eta}, u_{\xi \xi}, u_{\eta \eta}$ and $u_{\xi \eta}$.
3. Series and radius of convergence
a. Compute the radii of convergence for the series of functions:

$$
\sum_{n=1}^{\infty} \frac{x^{2 n+1}}{n}, \sum_{n=1}^{\infty} \frac{x^{n}}{n!}, \sum_{n=1}^{\infty} \frac{x^{2 n}}{3^{n}}
$$

b. Compute the derivative of the following series of functions, you may express your answer as another series

$$
\sum_{n=1}^{\infty} \frac{(2 x-1)^{n}}{n}, \sum_{n=1}^{\infty} x^{n!}
$$

4. Parametrization of curves

a. Describe what curves each of these parametrizations represent

$$
\left(t, t^{2}\right),\left(t, \frac{1}{t}\right),(\sin (\pi t), \cos (\pi t)),\left(\sqrt{1-t^{2}}, t\right),(t, 2 t, 3 t) \quad t \in(0,1)
$$

Note, that the last one is in three dimensions.
b. Describe what the following parametrization represent in three dimensions

$$
\begin{gathered}
(R \cos (\theta), R \sin (\theta), z) \quad R=1, \theta \in[0,2 \pi), z \in[0,1] \\
(2 \cos (\theta) \sin (\phi), \cos (\theta) \cos (\phi), 3 \sin (\theta)), \quad \theta \in[0, \pi], \phi \in(0,2 \pi]
\end{gathered}
$$

5. Green's theorem and divergence theorem
i) Let D be a bounded domain in \mathbb{R}^{2} with piecewise C^{1} boundary ∂D. Let ∂D be parametrized so that the boundary is traversed once with D on the left. Let $p(x, y), q(x, y)$ be C^{1} functions then

$$
\iint_{D}\left(q_{x}-p_{y}\right) d x d y=\int_{\partial D} p d x+q d y
$$

ii) Let D be a bounded spatial domain with piecewise C^{1} boundary ∂D. Let \boldsymbol{n} be the unit outward normal on ∂D. Let $\boldsymbol{f}(\boldsymbol{x})$ be a C^{1} vector field on D. Then

$$
\iiint_{D} \nabla \cdot \boldsymbol{f}(\boldsymbol{x})=\iint_{\partial D} \boldsymbol{f} \cdot \boldsymbol{n} d S
$$

a. Evaluate

$$
\iint_{\partial D}(2 x, 3 y, 4 x y) \cdot \frac{(x, y, z)}{\sqrt{x^{2}+y^{2}+z^{2}}} d S
$$

where D is the sphere $x^{2}+y^{2}+z^{2}=16$
b. Compute the integral

$$
\int_{\partial D} y^{3} d x-x^{3} d y
$$

where D is an annulus with inner radius 1 and outer radius 2 .

