PRACTICE PROBLEM SET 2

Practice problems:

1) (Sec 2.3, prob 6) Prove the comparison principle for the diffusion equation or heat equation. If u, v are both solutions to the heat equation for $x \in[0,1]$ and $t \in[0, T]$, and if $u \leq v$ for $t=0$, for $x=0$ and for $x=1$. Then $u \leq v$ for all $x \in[0,1]$ and $t \in[0, T]$.

Solution: Follows from the maximum principle. Consider $w=u-v$. By linearity w satisfies the heat equation. Moreover $w \leq 0$ on the boundary. By the maximum principle, $w \leq 0$ everywhere in the domain from which the result follows.
2) (Sec 2.3, prob 8) Consider the diffusion equation for $x \in[0,1]$ with the Robin boundary condition, $u_{x}(0, t)-a_{0} u(0, t)=0$ and $u_{x}(1, t)+a_{1} u(1, t)=0$. If $a_{0}, a_{1}>0$ show that

$$
e(t)=\int_{0}^{1} u^{2}(x, t) d x
$$

is a decreasing function of time, i.e. energy is lost at the boundary.

Solution:

$$
\begin{aligned}
e^{\prime}(t) & =\int_{0}^{1} 2 u u_{t} d x \\
& =2 \int_{0}^{1} k u u_{x x} d x \\
& =\left.2 k u u_{x}\right|_{0} ^{1}-2 k \int_{0}^{1} u_{x}^{2} d x \\
& =-2 k a_{1} u(1, t)^{2}-2 k a_{0} u(0, t)^{2}-2 k \int_{0}^{1} u_{x}^{2} d x \\
& \leq 0
\end{aligned}
$$

3) (Sec 2.4, prob 1) Solve the diffusion equation with initial condition

$$
\phi(x)= \begin{cases}1 & -2<x<1 \\ 0 & \text { otherwise }\end{cases}
$$

You may express the solution in terms of the erf function defined below:

$$
\operatorname{erf}(x)=\frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-p^{2}} d p
$$

Solution:

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y \\
& =\frac{1}{\sqrt{4 \pi k t}} \int_{-2}^{1} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y \\
& =\frac{1}{\sqrt{\pi}} \int_{\frac{(x-1)}{\sqrt{4 k t}}}^{\frac{(x+2)}{\sqrt{4 k t}}} e^{-p^{2}} d p \quad\left(\frac{(x-y)}{\sqrt{4 k t}}=p\right) \\
& =\frac{1}{2}\left(\operatorname{erf}\left(\frac{x+2}{\sqrt{4 k t}}\right)-\operatorname{erf}\left(\frac{x-1}{\sqrt{4 k t}}\right)\right)
\end{aligned}
$$

4) (Sec 2.4, Prob 6,7) Compute

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y
$$

by transforming the integral to polar coordinates. Using the computation above and symmetry arguments, compute

$$
\int_{-\infty}^{\infty} e^{-x^{2}} d x
$$

Using a suitable change of variables, deduce that

$$
\int_{-\infty}^{\infty} S(x, t) d x=1 \quad \forall t
$$

Suppose $u(x, t)$ is a solution to the heat equation with initial data $\phi(x)$. Show that

$$
\int_{-\infty}^{\infty}|u(x, t)| d x \leq \int_{-\infty}^{\infty}|\phi(x)| d x \quad \forall t
$$

Solution:

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\int_{0}^{\infty} \int_{0}^{2 \pi} e^{-r^{2}} r d r d \theta \\
& =\pi \\
& \pi=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\int_{-\infty}^{\infty} e^{-x^{2}} d x \int_{-\infty}^{\infty} e^{-y^{2}} d y \\
& =\left(\int_{-\infty}^{\infty} e^{-x^{2}} d x\right)^{2} \\
& \therefore \int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \\
& \int_{-\infty}^{\infty} S(x, t) d x=\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{x^{2}}{4 k t}} d x \\
& \begin{array}{l}
=\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-p^{2}} d p \quad\left(\frac{x}{\sqrt{4 k t}}=p\right) \\
=1
\end{array} \\
& \int_{-\infty}^{\infty}|u(x, t)| d x=\int_{-\infty}^{\infty}\left|\frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y) d y\right| d x \\
& \leq \frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|e^{-\frac{(x-y)^{2}}{4 k t}} \phi(y)\right| d y d x \quad\left(\left|\int f\right| \leq \int|f|\right) \\
& =\int_{-\infty}^{\infty}|\phi(y)| \frac{1}{\sqrt{4 \pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} d x d y \quad \text { (Switching order of integration) } \\
& =\int_{-\infty}^{\infty}|\phi(y)| d y
\end{aligned}
$$

5) (Sec 2.5, Prob 1) Construct an example to show that there is no maximum principle for the wave equation. Solution: $\phi(x)=1$ and $\psi(x)=1$ for $-1 \leq x \leq 1$. Then $u\left(0, \frac{1}{c}\right)=2$.
6) Solve the following heat and wave equation on the half line $0<x<\infty$ and comment on the results:

$$
\begin{aligned}
u_{t} & =u_{x x}
\end{aligned} \quad u(x, 0)=\phi(x) \quad \text { (x,0)=申(x)} \quad u_{t}(x, 0)=0
$$

where $\phi(x)$ is the function

$$
\phi(x)= \begin{cases}1 & 1 \leq x \leq 2 \\ 0 & \text { otherwise }\end{cases}
$$

Carefully sketch the solution for the wave equation.

Solution:

Diffusion equation:

$$
\begin{aligned}
u(x, t) & =\frac{1}{\sqrt{4 \pi k t}} \int_{0}^{\infty}\left(\exp \left(-\frac{(x-y)^{2}}{4 k t}\right)-\exp \left(-\frac{(x+y)^{2}}{4 k t}\right)\right) \phi(y) d y \\
& =\frac{1}{\sqrt{4 \pi k t}} \int_{1}^{2}\left(\exp \left(-\frac{(x-y)^{2}}{4 k t}\right)-\exp \left(-\frac{(x+y)^{2}}{4 k t}\right)\right) d y \\
& =\frac{1}{2}\left(\operatorname{erf}\left(\frac{x-1}{\sqrt{4 k t}}\right)-\operatorname{erf}\left(\frac{x-2}{\sqrt{4 k t}}\right)-\operatorname{erf}\left(\frac{x+2}{\sqrt{4 k t}}\right)+\operatorname{erf}\left(\frac{x+1}{\sqrt{4 k t}}\right)\right)
\end{aligned}
$$

Wave equation:
Think of the solution as two copies of $-\frac{1}{2}$ supported on both $[-2,-1]$ and two copies of $\frac{1}{2}$ supported on $[1,2]$. Now one of each of this copy moves to the left with speed c and the other copy moves to the right with speed c. Restrict the solution to $x>0$, to get the final answer.

Additional problem:

1) Maximum principle and Uniqueness for solutions to heat equation on the real line:

Consider the heat equation on the real line:

$$
\begin{align*}
u_{t} & =u_{x x} \quad x \in(-\infty, \infty) \quad t \in(0, T] \tag{1}\\
u(x, 0) & =g(x) \tag{2}
\end{align*}
$$

Unfortunately, it is known that without additional conditions on u or g, there exist more than one solution to the above equation. For those interested, you should look up Tychonoff solutions to the heat equation. However, let us make a further assumption on the growth of u :

$$
\begin{equation*}
|u(x, t)| \leq M e^{a|x|^{2}} \quad \forall t \in[0, T] \tag{3}
\end{equation*}
$$

Prove that if u satisfies equations 1,2 , and 3 , then u satisfies the maximum principle

$$
\begin{equation*}
u(x, t) \leq \sup _{-\infty<x<\infty} g(x) \quad \forall x \in(-\infty, \infty), \quad t \in[0, T] \tag{4}
\end{equation*}
$$

To prove this result fill follow the steps outlined below:
i) Without loss of generality, one may assume that $\sup g<\infty$ and furthermore assume $4 a T<1$. Consider the function

$$
v(x, t)=u(x, t)-\mu w(x, t) \quad x \in(-\infty, \infty) \quad t \in[0, T]
$$

where

$$
w(x, t)=\frac{1}{(T+\epsilon-t)^{\frac{1}{2}}} \exp \left(\frac{|x|^{2}}{T+\epsilon-t}\right)
$$

What initial value problem does $v(x, t)$ satisfy? How do the initial values of $v(x, t)$ compare to the initial values of $u(x, t)$, i.e. what is the relation between $v(x, 0)$ and $\sup _{y} g(y)$
ii) Using the growth condition for $u(x, t)$,show that there exists a sufficiently large R such that

$$
\begin{equation*}
v(x, t) \leq \sup _{y \in(-\infty, \infty)} g(y) \quad|x| \geq R, t \in[0, T] \tag{5}
\end{equation*}
$$

iii) Apply the maximum principle for $v(x, t)$ on the finite domain $|x| \leq R, t \in[0, T]$ to conclude that

$$
v(x, t) \leq \sup _{y \in(-\infty, \infty)} g(y) \quad x \in(-\infty, \infty), t \in[0, T]
$$

iv) The above result was valid for all values of μ. Take the limit $\mu \rightarrow 0$ to conclude that u satisfies the maximum principle
v) Use the maximum principle to show that the heat equation coupled with the growth conditions on u has a unique solution.

