
PRACTICE PROBLEM SET 2

Practice problems:
1) (Sec 2.3, prob 6) Prove the comparison principle for the diffusion equation or heat equation. If u, v are both solutions

to the heat equation for x ∈ [0, 1] and t ∈ [0, T ], and if u ≤ v for t = 0, for x = 0 and for x = 1. Then u ≤ v for all x ∈ [0, 1]
and t ∈ [0, T ].

Solution: Follows from the maximum principle. Consider w = u−v. By linearity w satisfies the heat equation. Moreover
w ≤ 0 on the boundary. By the maximum principle, w ≤ 0 everywhere in the domain from which the result follows.

2) (Sec 2.3, prob 8) Consider the diffusion equation for x ∈ [0, 1] with the Robin boundary condition, ux (0, t)−a0u (0, t) = 0
and ux (1, t) + a1u (1, t) = 0. If a0, a1 > 0 show that

e (t) =

ˆ 1

0

u2 (x, t) dx

is a decreasing function of time, i.e. energy is lost at the boundary.
Solution:

e′ (t) =

ˆ 1

0

2uut dx

= 2

ˆ 1

0

kuuxx dx

= 2kuux|10 − 2k

ˆ 1

0

u2x dx

= −2ka1u (1, t)2 − 2ka0u (0, t)
2 − 2k

ˆ 1

0

u2x dx

≤ 0

3) (Sec 2.4, prob 1) Solve the diffusion equation with initial condition

φ (x) =

{
1 −2 < x < 1

0 otherwise

You may express the solution in terms of the erf function defined below:

erf (x) =
2√
π

ˆ x

0

e−p
2

dp

Solution:

u (x, t) =
1√
4πkt

ˆ ∞
−∞

e−
(x−y)2

4kt φ (y) dy

=
1√
4πkt

ˆ 1

−2
e−

(x−y)2

4kt φ (y) dy

=
1√
π

ˆ (x+2)√
4kt

(x−1)√
4kt

e−p
2

dp

(
(x− y)√

4kt
= p

)
=

1

2

(
erf
(
x+ 2√
4kt

)
− erf

(
x− 1√
4kt

))
4) (Sec 2.4, Prob 6,7) Compute ˆ ∞

−∞

ˆ ∞
−∞

e−(x
2+y2)dxdy

by transforming the integral to polar coordinates. Using the computation above and symmetry arguments, computeˆ ∞
−∞

e−x
2

dx.

Using a suitable change of variables, deduce that
1
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ˆ ∞
−∞

S (x, t) dx = 1 ∀t.

Suppose u (x, t) is a solution to the heat equation with initial data φ (x). Show that

ˆ ∞
−∞
|u (x, t)| dx ≤

ˆ ∞
−∞
|φ (x)| dx ∀t.

Solution:

ˆ ∞
−∞

ˆ ∞
−∞

e−(x
2+y2)dxdy =

ˆ ∞
0

ˆ 2π

0

e−r
2

r dr dθ

= π

π =

ˆ ∞
−∞

ˆ ∞
−∞

e−(x
2+y2)dxdy

=

ˆ ∞
−∞

e−x
2

dx

ˆ ∞
−∞

e−y
2

dy

=

(ˆ ∞
−∞

e−x
2

dx

)2

∴
ˆ ∞
−∞

e−x
2

dx =
√
π

ˆ ∞
−∞

S (x, t) dx =
1√
4πkt

ˆ ∞
−∞

e−
x2

4kt dx

=
1√
π

ˆ ∞
−∞

e−p
2

dp

(
x√
4kt

= p

)
= 1

ˆ ∞
−∞
|u (x, t)| dx =

ˆ ∞
−∞

∣∣∣∣ 1√
4πkt

ˆ ∞
−∞

e−
(x−y)2

4kt φ (y) dy

∣∣∣∣ dx
≤ 1√

4πkt

ˆ ∞
−∞

ˆ ∞
−∞

∣∣∣∣e− (x−y)2

4kt φ (y)

∣∣∣∣ dy dx (∣∣∣∣ˆ f

∣∣∣∣ ≤ ˆ |f |)
=

ˆ ∞
−∞
|φ (y)| 1√

4πkt

ˆ ∞
−∞

e−
(x−y)2

4kt dx dy (Switching order of integration)

=

ˆ ∞
−∞
|φ (y)| dy

5) (Sec 2.5, Prob 1) Construct an example to show that there is no maximum principle for the wave equation.
Solution: φ (x) = 1 and ψ (x) = 1 for −1 ≤ x ≤ 1. Then u

(
0, 1c
)
= 2.

6) Solve the following heat and wave equation on the half line 0 < x <∞ and comment on the results:

ut = uxx u (x, 0) = φ (x)

utt = uxx u (x, 0) = φ (x) ut (x, 0) = 0

where φ (x) is the function

φ (x) =

{
1 1 ≤ x ≤ 2

0 otherwise

Carefully sketch the solution for the wave equation.
Solution:
Diffusion equation:
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u (x, t) =
1√
4πkt

ˆ ∞
0

(
exp

(
− (x− y)2

4kt

)
− exp

(
− (x+ y)

2

4kt

))
φ (y) dy

=
1√
4πkt

ˆ 2

1

(
exp

(
− (x− y)2

4kt

)
− exp

(
− (x+ y)

2

4kt

))
dy

=
1

2

(
erf
(
x− 1√
4kt

)
− erf

(
x− 2√
4kt

)
-erf

(
x+ 2√
4kt

)
+ erf

(
x+ 1√
4kt

))
Wave equation:
Think of the solution as two copies of − 1

2 supported on both [−2,−1] and two copies of 1
2 supported on [1, 2]. Now one

of each of this copy moves to the left with speed c and the other copy moves to the right with speed c. Restrict the solution
to x > 0, to get the final answer.

Additional problem:
1) Maximum principle and Uniqueness for solutions to heat equation on the real line:
Consider the heat equation on the real line:

ut = uxx x ∈ (−∞,∞) t ∈ (0, T ] ,(1)
u (x, 0) = g (x)(2)

Unfortunately, it is known that without additional conditions on u or g, there exist more than one solution to the above
equation. For those interested, you should look up Tychonoff solutions to the heat equation. However, let us make a further
assumption on the growth of u:

(3) |u (x, t)| ≤Mea|x|
2

∀t ∈ [0, T ]

Prove that if u satisfies equations 1, 2, and 3, then u satisfies the maximum principle

u (x, t) ≤ sup
−∞<x<∞

g (x) ∀x ∈ (−∞,∞) , t ∈ [0, T ] .(4)

To prove this result fill follow the steps outlined below:
i) Without loss of generality, one may assume that sup g <∞ and furthermore assume 4aT < 1. Consider the function

v (x, t) = u (x, t)− µw (x, t) x ∈ (−∞,∞) t ∈ [0, T ]

where

w (x, t) =
1

(T + ε− t)
1
2

exp

(
|x|2

T + ε− t

)
What initial value problem does v (x, t) satisfy? How do the initial values of v (x, t) compare to the initial values of u (x, t),

i.e. what is the relation between v (x, 0) and supy g (y)
ii) Using the growth condition for u (x, t) ,show that there exists a sufficiently large R such that

(5) v (x, t) ≤ sup
y∈(−∞,∞)

g (y) |x| ≥ R, t ∈ [0, T ]

iii) Apply the maximum principle for v (x, t) on the finite domain |x| ≤ R, t ∈ [0, T ] to conclude that

v (x, t) ≤ sup
y∈(−∞,∞)

g (y) x ∈ (−∞,∞) , t ∈ [0, T ]

iv) The above result was valid for all values of µ. Take the limit µ→ 0 to conclude that u satisfies the maximum principle
v) Use the maximum principle to show that the heat equation coupled with the growth conditions on u has a unique

solution.


