PRACTICE PROBLEM SET 5

- Chap 5

- Questions are either directly from the text or a small variation of a problem in the text.
- Collaboration is okay, but final submission must be written individually. Mention all collaborators on your submission.
- The terms in the bracket indicate the problem number from the text.

Section 9.2

1) (Prob $6, \operatorname{Pg} 240)$ a) Let S be the spehere of center \boldsymbol{x} and radius R. What is the surface area of $S \cap\{|\boldsymbol{x}|<\rho\}$, the portion of S that lies within the spehere of center 0 and radius ρ ?
b) Solve the wave equation in three dimensions for $t>0$ with the initial conditions $\phi(\boldsymbol{x})=0, \psi(\boldsymbol{x})=A$ for $|\boldsymbol{x}|<\rho$, and $\psi(\boldsymbol{x})=0$ for $|\boldsymbol{x}|>\rho$, where A is a constant.
c) Let $\left|\boldsymbol{x}_{0}\right|<\rho$. Ride the wave along a light ray emanating from $\left(\boldsymbol{x}_{0}, 0\right)$. That is, look at $u\left(\boldsymbol{x}_{0}+t \boldsymbol{v}, t\right)$, where $|\boldsymbol{v}|=c$. Prove that

$$
t \cdot u\left(\boldsymbol{x}_{0}+t \boldsymbol{v}, t\right) \text { converges as } t \rightarrow \infty
$$

2) (Prob 13, Pg 241) Solve the wave equation in the half-space $\{(x, y, z, t): z>0\}$ with the Neumann condition $\frac{\partial u}{\partial z}=0$ on $z=0$ and with initial data $\phi(x, y, z) \equiv 0$ and general $\psi(x, y, z)$.
3) (Prob 16, Pg 241) Solve part b) for the same problem in 2 dimensions. Furthermore, compute $u(0, t)$ by computing the integral explicitly and compute the limit of $u(0, t)$ as $t \rightarrow \infty$.

Section 14.1

4) (Prob 5, Pg 389) Solve $u_{t}+u^{2} u_{x}=0$ with $u(x, 0)=2+x$
5) (Prob 10, Pg 389) Solve $u_{t}+u u_{x}=0$ with initial conditions $u(x, 0)=1$ for $x \leq 0,1-x$ for $0 \leq x \leq 1$ and 0 for $x \geq 1$. Solve for all $t \geq 0$, allowing for a shock wave.

Section 14.3

6) (Prob 4, Pg 400) Find the curve $y=u(x)$ that makes the integral $\int_{0}^{1}\left(\left(u^{\prime}\right)^{2}+x u\right) d x$ sationary subject to the constraints $u(0)=0$ and $u(1)=1$.
7) (Prob 7, Pg 401) Show that there are an infinite number of functions that minimize the integral

$$
\int_{0}^{2}\left(y^{\prime}\right)^{2}\left(1+y^{\prime}\right)^{2} \quad \text { subject to } y(0)=1 \text { and } y(2)=0
$$

They are continuous functions with piecewise continuous first derivatives.
8) (Prob 11, $\operatorname{Pg} 401)$ If the action $A[u]=\iint\left(u_{x x}^{2}-u_{t}^{2}\right) d x d t$, show that the Euler-Lagrange equation is the beam equation $u_{t t}+u_{x x x x}=0$, the equation for a stiff rod.

