Spectral Geometry Spring 2016

Michael Magee

Lecture 1: Laplacian type operators

Let (M^n, g) be a complete oriented Riemannian manifold. By the Hopf-Rinow Theorem this means that the exponential map is defined on the whole fibre to any point, and means that geodesics do not terminate.

Definition 1. Let $E \to M$ be a smooth vector bundle over M. A connection on E is an \mathbf{R} -linear map

$$\nabla: C^{\infty}(M, E) \to C^{\infty}(M, E \otimes T^*M)$$

that satisfies the Leibniz rule

$$\nabla (f\sigma) = \sigma \otimes df + f\nabla \sigma$$

for
$$f \in C^{\infty}(M)$$
, $\sigma \in C^{\infty}(M, E)$.

Remark 2. This notation also captures the exterior derivative on functions, viewing smooth functions as sections of the trivial line bundle.

We usually view ∇ as a map $C^{\infty}(M, E) \to C^{\infty}(M, E \otimes T^*M)$. For $\sigma \in C^{\infty}(M, E)$ and X a vector field, we write $\nabla_X \sigma \in C^{\infty}(M, E)$ for the evaluation of the T^*M -valued one form $\nabla \sigma$ at X. Also note for fixed vector field X, ∇_X is a linear endomorphism of $C^{\infty}(M, E)$. Recall the fundamental theorem of Riemannian geometry.

Theorem 3. There is a unique connection

$$\nabla: TM \to TM \otimes T^*M$$

on the tangent bundle to M that is metric:

$$d(q(\alpha, \beta)) = q(\nabla \alpha, \beta) + q(\alpha, \nabla \beta)$$

and torsion free:

$$\nabla_X Y - \nabla_Y X - [X, Y] \equiv 0.$$

This is called the Levi-Civita connection.

One has a chain complex

$$C^{\infty}(M) \xrightarrow{d} \Omega^{1}(M) \xrightarrow{d} \Omega^{2}(M) \xrightarrow{d} \dots \xrightarrow{d} \Omega^{n}(M)$$

where $\Omega^{i}(M)$ are the smooth *i*-forms. We will also work with the subcomplex of compactly supported forms:

$$C_c^{\infty}(M) \xrightarrow{d} \Omega_c^1(M) \xrightarrow{d} \Omega_c^2(M) \xrightarrow{d} \dots \xrightarrow{d} \Omega_c^n(M).$$

In the case of compact M there is of course no distinction drawn.

We are now going to define another operator δ that maps in the opposite direction to d. The orientation of M determines a top dimensional volume form. In oriented local coordinates x_1, \ldots, x_n this is given by

$$Vol = \sqrt{|\det g|} dx_1 \dots dx_n.$$

We now introduce the Hodge star operator $\star : \Omega^i(M) \to \Omega^{n-i}(M)$. It is the unique operator so that for $\alpha, \beta \in \Omega^i(M)$

$$\alpha \wedge \star \beta = g(\alpha, \beta) \text{Vol}$$

where $g(\bullet, \bullet)$ is the local bilinear form on $\Omega^i(M)$ induced by g. Note that this is a local definition. It is easy to check on Ω^i that $\star\star = (-1)^{i(n-i)}$. Now note that for $\alpha \in \Omega^i_c(M)$, $\beta \in \Omega^{i+1}_c(M)$,

$$\int_{M} g(\alpha, \star d \star \beta) \mathrm{Vol} = \int_{M} \alpha \wedge \star \star d \star \beta = (-1)^{i(n-i)} \int_{M} \alpha \wedge d \star \beta.$$

On the other hand

$$d(\alpha \wedge \star \beta) = d\alpha \wedge \star \beta + (-1)^{(n-i-1)}\alpha \wedge d \star \beta.$$

By Stoke's theorem, the integral of the above is zero, so

$$\int_{M}g(\alpha,\star d\star\beta)\mathrm{Vol}=(-1)^{i(n-i)+(n-i)}\int d\alpha\wedge\star\beta=(-1)^{(i+1)(n-i)}\int g(d\alpha,\beta)\mathrm{Vol}.$$

Therefore, with respect to the bilinear form

$$\langle \alpha_1, \alpha_2 \rangle \equiv \int_M g(\alpha_1, \alpha_2) \text{Vol},$$

we have for $\alpha \in \Omega_c^i(M), \beta \in \Omega_c^{i+1}(M)$

$$\langle d\alpha, \beta \rangle = \langle \alpha, \delta\beta \rangle$$

where $\delta = (-1)^{(i+1)(n)} \star d\star$ on Ω^{i+1} (i(i+1)) is always even).

Definition 4. The Laplace-de Rham operator is defined on each $\Omega^i_c(M)$ as

$$\Delta = \delta d + d\delta.$$

When i = 0 this is called the Laplace-Beltrami operator (or just Laplacian on M).

There is another way that a Laplacian type operator can arise on a vector bundle E with connection ∇ . The tensor product of any two connections is a well defined connection, hence the Levi-Civita connection along with ∇ gives a connection on $E \otimes T^*M$. Then for any $\sigma \in C^{\infty}(M, E)$ one has $\nabla^2 \sigma$ an E valued two tensor. The metric defines a trace on these two forms that has values in $C^{\infty}(M, E)$.

Definition 5. The connection (or trace) Laplacian is given by

$$\Lambda = -\mathrm{tr}\nabla^2$$

The symbol of a differential operator.

We follow Lecture notes of Pierre Albin [1] here in our development of the symbolic calculus.

Suppose that D is a differential operator on a smooth vector bundle $E \to M$. By this we mean that there is some connection ∇ on E and D is generated by sections of $\operatorname{End}(E)$ and some ∇_{X_i} where X_i are vector fields. The differential operators of order k on E are defined to be the $C^{\infty}(M, \operatorname{End}(E))$ module

$$\operatorname{Diff}^{k}(M, E) \equiv \langle \nabla_{X_{1}} \nabla_{X_{2}} \dots \nabla_{X_{j}} : j \leq k \rangle_{C^{\infty}(M, \operatorname{End}(E))}.$$

There is a principal symbol map σ_k which maps

$$\sigma_k: \mathrm{Diff}^k(M,E) \to C^\infty(T^*M,\pi^*\mathrm{End}(E)).$$

We define this first for an operator

$$D = a \nabla_{X_1} \nabla_{X_2} \dots \nabla_{X_i}$$

where $j \leq k$, a is a local section of $\operatorname{End}(E)$ and X_i are locally defined vector fields. We define the principal symbol of D at $(\zeta, \xi) \in T^*M$ to be the element of $\operatorname{End}(E)_{\zeta}$

$$\sigma_k(D)(\zeta,\xi) \equiv a(\zeta)\xi(X_1)\dots\xi(X_k)$$
 if $j=k$
0 else.

We extend this definition linearly over **R**. Note that changing the connection changes the value of ∇_{X_i} by a scalar function, so the definition of σ_k is independent of the choice of connection.

References

[1] Pierre Albin - Analysis on non-compact manifolds, Lecture notes