Spectral Geometry Spring 2016

Michael Magee

Lecture 3: Elliptic regularity and densely defined operators.

Examples of symbols.

Around any point on M there exist normal coordinates x_1, \ldots, x_n where the metric $g_{ij} = \delta_{ij}$ and the Christoffel symbols for the Levi-Civita connection vanish. The Laplace-Beltrami operator is given in local coordinates by

$$-\frac{1}{\sqrt{|g|}}\partial_i\left(\sqrt{|g|}g^{ij}\partial_j f\right) = \sum_i -\partial_i^2 f$$

therefore the principal symbol at (ζ, ξ) should be given by $\sigma_2(\Delta) = \sum_i -\xi(\partial_i)^2 = -g_{\zeta}(\xi, \xi)$. As for the connection Laplacian, in a local orthonormal frame $\{e_i\}$ for E this can be calculated as

$$-\mathrm{tr}\nabla^2 = -\sum_{i} (\nabla_{\partial_i})^2 + \nabla_{(\nabla_{\partial_i}\partial_i)}.$$

and as such, the principal symbol is

$$\sigma_2(\Delta)(\zeta,\xi) = -\sum \xi(\partial_i)^2 = -g_{\zeta}(\xi,\xi)$$

where g_{ζ} is the fibre metric.

Definition 1. A differential operator is called elliptic if its principal symbol is invertible.

In the example above, the Laplace-Beltrami operator is elliptic since the principal symbol is given by the scalar function $(\zeta, \xi) \mapsto -g_{\zeta}(\xi, \xi)$. This is non zero at every point, so invertible (as a multiplication operator). The Laplace de-Rham operators are also elliptic.

For the remainder of this lecture we restrict to the Laplace-Beltrami operator. Whatever we say generalizes to a connection Laplacian or the Laplace-de Rham operators.

We are going to use a black box that follows from the theory of pseudodifferential operators. This requires the concept of a smoothing operator

Definition 2. A smoothing operator is an integral operator K obtained from a smooth kernel $k \in C^{\infty}(M \times M)$ by using the formula

$$K[f](x) = \int k(x, y) f(y) \operatorname{Vol}_y.$$

If M is compact a smoothing operator is compact on $L^2(M)$ with image in $C^{\infty}(M)$. For more general complete M one can say that a smoothing operator maps $L_c^2(M)$, the compactly supported L^2 functions, to $C^{\infty}(M)$.

Proposition 3. If $P \in \text{Diff}^k(M, E)$ is an elliptic differential operator then there exist **parametrices** Q, Q' such that

$$QP - Id = R,$$
 (1)
 $PQ' - Id = R'$

where R and R' are **smoothing operators** and Q, Q' are pseudodifferential operators¹ of order -k.

We also introduce the following Sobolev space: let

$$H^2(M) = \{ u \in L^2(M) : \|\nabla u\| \in L^2(M), \Delta u \in L^2(M) \}.$$

Proposition 4 (Elliptic regularity for eigenfunctions of the Laplacian). If $u \in H^2(M)$ with $\Delta u = \lambda u$ for some $\lambda \in \mathbf{R}$ then u is smooth.

Proof. The operator $\Delta - \lambda$ is elliptic (adding λ does not change the principal symbol of the operator). Let Q be a left parametrix for $P = \Delta - \lambda$ as in 1. For any point $x \in M$ let χ be a smooth compactly supported bump function that is $\equiv 1$ on a neighborhood U of x. Then

$$QPu \equiv 0$$

on U, using the property of the pseudodifferential operator Q that it acts locally (so preserves $Pu \equiv 0$ on U). Now using the parametrix equation we get

$$\chi u + Ru \equiv 0.$$

Since Ru is smooth, u is smooth near x. As x was arbitrary, u is smooth on M.

Theory of unbounded operators.

We are following here Reed and Simon [2, Chapter VIII]. We write (L, V) for a pair consisting of linear subspace V of a Hilbert space H and a linear map $L: V \to H$.

Definition 5. A pair (L, V) is densely defined on H if V is dense in H.

For example, we could take the pair $(\Delta, C_c^{\infty}(M))$ as a densely defined operator on the Hilbert space of square integrable functions $L^2(M, \text{Vol})$. Indeed this is the main example we are interested in

Definition 6. If (L,V) is a densely defined operator on H, the graph of L is the set

$$\Gamma(L, V) \equiv \{(v, Lv) : v \in V\} \subset V \times H.$$

The operator (L, V) is called closed if $\Gamma(L, V)$ is closed in the product topology on $H \times H$.

Definition 7. We say that (L', V') is an extension of (L, V) if $V \subset V'$ and $L'|_{V} \equiv L$.

Definition 8. We say a pair (L, V) is closable if it has a closed extension. Every closable operator has a 'smallest' closed extension called the closure of the operator.

¹It is not really necessary for our purposes to precisely define this. A good reference is Pierre Albin's notes [1].

Definition 9. For (L, V) densely defined on H let V^* be the set of $\phi \in H$ such that there is an η so that

$$\langle L\psi, \phi \rangle = \langle \psi, \eta \rangle$$

for all $\psi \in V$. Then define $L^*: V^* \to H$ by $L^*(\phi) = \eta$. Since V is assumed dense, η is uniquely determined. The pair (L^*, V^*) is called the adjoint to (L, V). Warning: here V^* might not be dense.

References

- [1] Pierre Albin Analysis on non-compact manifolds, Lecture notes.
- [2] Michael Reed, Barry Simon Methods of Modern Mathematical Physics I: Functional Analysis.