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Lecture 4: The spectral theorem.

Recall we consider pairs (L, V ) where V is a subspace of a Hilbert space H and L : V ! H is a
linear operator.

Definition 1. We say (L, V ) is closable if it has a closed extension. Every closable operator has
a ‘smallest’ closed extension called the closure of the operator.

Definition 2. For (L, V ) densely defined on H let V ⇤ be the set of � 2 H such that there is an
⌘ so that

hL ,�i = h , ⌘i

for all  2 V. Then define L⇤ : V ⇤ ! H by L⇤(�) = ⌘. Since V is assumed dense, ⌘ is uniquely
determined. The pair (L⇤, V ⇤) is called the adjoint to (L, V ).

Warning: V ⇤ might not be dense.

Theorem 3 ([1, Theorem VIII.1]). If (L, V ) is densely defined on H then

1. L⇤
is closed.

2. L is closable i↵ V ⇤
is dense, in which case the closure of (L, V ) is (L⇤⇤, V ⇤⇤).

3. If L is closable with closure (L̄, D̄) then the adjoint of (L̄, D̄) is the pair (L⇤, V ⇤).

Definition 4. A densely defined operator (L, V ) is symmetric i↵

hL�, i = h�, L i

for all �, in V.

Lemma 5. Let � denote the Laplace-de Rham operator. (�,⌦i
c(M)) is symmetric.

Proof. It is enough to check for ↵,� in ⌦i
c(M) that

h�↵,�i = h(d� + �d)↵,�i = h�↵, ��i+ hd↵, d�i = h↵, (d� + �d)�i = h↵,��i.

Fact 6. A symmetric operator is always closable since (by symmetry) every element in V is in

V ⇤
: we can just set ⌘ = T�. Therefore V ⇤

is dense so Theorem 3 applies.

Definition 7. (L, V ) is self-adjoint if L is symmetric and V ⇤ = V.

Definition 8. (L, V ) is essentially self-adjoint if its closure is self-adjoint.
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We note here that an essentially self-adjoint operator has a unique self adjoint extension. (Any
S a self adjoint extension of T extends T ⇤⇤. Then S = S⇤ is extended by (T ⇤⇤)⇤ = T ⇤⇤. So then
S = T ⇤⇤.)

Theorem 9. The Laplace de-Rham operator (�,⌦i
c(M)) is essentially self adjoint.

We’ll follow the proof of Strichartz from [3], using the following criterion.

Lemma 10 ([2, Theorem X.1]). If (L, V ) is closed, positive definite, symmetric and densely

defined, then (L, V ) = (L⇤, V ⇤) i↵ there are no eigenvectors with negative eigenvalue in V ⇤.

Let �̄ be the closure of the Laplace de-Rham operator (�,⌦i
c(M)) in the Hilbert space L2.

Let V be its domain, and V ⇤ the domain of its adjoint. By Theorem 3, V ⇤ is the domain of the
adjoint to (�,⌦i

c(M)), that is, those L2 forms v for which the distribution �v can be identified
with an L2 section, as per our definition of the adjoint. We will apply the criterion of Lemma 10
to the closed, positive definite, symmetric and densely defined operator �̄.

Suppose now that (�̄)⇤v = �v for some � < 0. Since v is the weak solution to an elliptic
eigenvalue equation, elliptic regularity tells us that in fact, v is infinitely di↵erentiable. Let � be
a compactly supported test function. Direct calculation involving integration by parts gives

0 � �h�2v, vi = h�2dv, dvi+ h�2�v, �vi+ 2h�d� ^ v, �vi � 2hv,�d� ^ �vi.

Then by Cauchy-Schwarz and so on,

k�dvk22 + k��vk22  2kd�k1kuvk(k�dvk2 + k��vk).

Then

k�dvk2 + k��vk2  4kd�k1kvk2.

Around every point we can find a family of compactly supported functions that are each ⌘ 1 on
a fixed neighborhood of that point and with kd�k1 ! 0. Doing this for each point then changing
the point implies dv ⌘ 0 and �v ⌘ 0, hence v = ��1�v ⌘ 0. This shows there can be no weak
eigenvector with negative eigenvalue, which completes the proof that � is essentially self-adjoint.

From now on, on a complete Riemann manifold, we just write � for the unique self adjoint

extension of the Laplace-de Rham operator from compactly supported sections to L2.

The spectral theorem.

Definition 11 (Projection valued measure). A projection valued measure on a Hilbert space H
is a function ⌦ ! P⌦ from the Borel measurable sets B(R) on R to the bounded operators on H
such that

1. For each ⌦ in B(R), P⌦ is an orthogonal projection.

2. P; = 0, PR = I.

3. If ⌦ is the countable disjoint union ⌦ =
`1

i=1 ⌦n then P⌦ = limN!1
PN

i=1 Pi where the
limit is in the strong operator topology.

4. P⌦1 \ P⌦2 = P⌦1\⌦2 .
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Notice given a projection valued measure, and a Borel measurable function g 2 R that will
be denoted by the formula

P [g] =

ˆ
R
g(�)dP (�).

This is just formalism so far - the definition is as follows. Note that for all �, in H one can form
a Borel measure µ�, by defining

µ�, (⌦) = hP⌦�, i.

Then we define

hP [g]�, i ⌘
ˆ
R
g(�)dµ�, (�).

Knowing all these matrix coe�cients defines an operator on the domain

Dg ⌘ {� :

ˆ
R
|g(�)|2dµ�,�(�) < 1}.

If g is real valued, then P [g] is self-adjoint on Dg.

Theorem 12 (Spectral Theorem for unbounded operators, [1, Theorem VIII.6]). The mapping

P 7!
ˆ
R
�dP (�)

gives a one-to-one correspondence between projection valued measures on H and self adjoint op-

erators on H.
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