Spectral Geometry Spring 2016

Michael Magee

Lecture 4: The spectral theorem.

Recall we consider pairs (L, V) where V is a subspace of a Hilbert space H and $L: V \to H$ is a linear operator.

Definition 1. We say (L, V) is closable if it has a closed extension. Every closable operator has a 'smallest' closed extension called the closure of the operator.

Definition 2. For (L, V) densely defined on H let V^* be the set of $\phi \in H$ such that there is an η so that

$$\langle L\psi, \phi \rangle = \langle \psi, \eta \rangle$$

for all $\psi \in V$. Then define $L^*: V^* \to H$ by $L^*(\phi) = \eta$. Since V is assumed dense, η is uniquely determined. The pair (L^*, V^*) is called the adjoint to (L, V).

Warning: V^* might not be dense.

Theorem 3 ([1, Theorem VIII.1]). If (L, V) is densely defined on H then

- 1. L^* is closed.
- 2. L is closable iff V^* is dense, in which case the closure of (L, V) is (L^{**}, V^{**}) .
- 3. If L is closable with closure (\bar{L}, \bar{D}) then the adjoint of (\bar{L}, \bar{D}) is the pair (L^*, V^*) .

Definition 4. A densely defined operator (L, V) is symmetric iff

$$\langle L\phi, \psi \rangle = \langle \phi, L\psi \rangle$$

for all ϕ, ψ in V.

Lemma 5. Let Δ denote the Laplace-de Rham operator. $(\Delta, \Omega_c^i(M))$ is symmetric.

Proof. It is enough to check for α, β in $\Omega_c^i(M)$ that

$$\langle \Delta \alpha, \beta \rangle = \langle (d\delta + \delta d)\alpha, \beta \rangle = \langle \delta \alpha, \delta \beta \rangle + \langle d\alpha, d\beta \rangle = \langle \alpha, (d\delta + \delta d)\beta \rangle = \langle \alpha, \Delta \beta \rangle.$$

Fact 6. A symmetric operator is always closable since (by symmetry) every element in V is in V^* : we can just set $\eta = T\phi$. Therefore V^* is dense so Theorem 3 applies.

Definition 7. (L, V) is self-adjoint if L is symmetric and $V^* = V$.

Definition 8. (L, V) is essentially self-adjoint if its closure is self-adjoint.

We note here that an essentially self-adjoint operator has a unique self adjoint extension. (Any S a self adjoint extension of T extends T^{**} . Then $S = S^*$ is extended by $(T^{**})^* = T^{**}$. So then $S = T^{**}$.)

Theorem 9. The Laplace de-Rham operator $(\Delta, \Omega_c^i(M))$ is essentially self adjoint.

We'll follow the proof of Strichartz from [3], using the following criterion.

Lemma 10 ([2, Theorem X.1]). If (L, V) is closed, positive definite, symmetric and densely defined, then $(L, V) = (L^*, V^*)$ iff there are no eigenvectors with negative eigenvalue in V^* .

Let $\bar{\Delta}$ be the closure of the Laplace de-Rham operator $(\Delta, \Omega_c^i(M))$ in the Hilbert space L^2 . Let V be its domain, and V^* the domain of its adjoint. By Theorem 3, V^* is the domain of the adjoint to $(\Delta, \Omega_c^i(M))$, that is, those L^2 forms v for which the distribution Δv can be identified with an L^2 section, as per our definition of the adjoint. We will apply the criterion of Lemma 10 to the closed, positive definite, symmetric and densely defined operator $\bar{\Delta}$.

Suppose now that $(\bar{\Delta})^*v = \lambda v$ for some $\lambda < 0$. Since v is the weak solution to an elliptic eigenvalue equation, elliptic regularity tells us that in fact, v is infinitely differentiable. Let ϕ be a compactly supported test function. Direct calculation involving integration by parts gives

$$0 \ge \lambda \langle \phi^2 v, v \rangle = \langle \phi^2 dv, dv \rangle + \langle \phi^2 \delta v, \delta v \rangle + 2 \langle \phi d\phi \wedge v, \delta v \rangle - 2 \langle v, \phi d\phi \wedge \delta v \rangle.$$

Then by Cauchy-Schwarz and so on,

$$\|\phi dv\|_2^2 + \|\phi \delta v\|_2^2 \le 2\|d\phi\|_{\infty} \|uv\| (\|\phi dv\|_2 + \|\phi \delta v\|).$$

Then

$$\|\phi dv\|_2 + \|\phi \delta v\|_2 \le 4\|d\phi\|_{\infty} \|v\|_2.$$

Around every point we can find a family of compactly supported functions that are each $\equiv 1$ on a fixed neighborhood of that point and with $||d\phi||_{\infty} \to 0$. Doing this for each point then changing the point implies $dv \equiv 0$ and $\delta v \equiv 0$, hence $v = \lambda^{-1} \Delta v \equiv 0$. This shows there can be no weak eigenvector with negative eigenvalue, which completes the proof that Δ is essentially self-adjoint.

From now on, on a complete Riemann manifold, we just write Δ for the unique self adjoint extension of the Laplace-de Rham operator from compactly supported sections to L^2 .

The spectral theorem.

Definition 11 (Projection valued measure). A projection valued measure on a Hilbert space H is a function $\Omega \to P_{\Omega}$ from the Borel measurable sets $\mathcal{B}(\mathbf{R})$ on \mathbf{R} to the bounded operators on H such that

- 1. For each Ω in $\mathcal{B}(\mathbf{R})$, P_{Ω} is an orthogonal projection.
- 2. $P_{\emptyset} = 0, P_{\mathbf{R}} = I.$
- 3. If Ω is the countable disjoint union $\Omega = \coprod_{i=1}^{\infty} \Omega_n$ then $P_{\Omega} = \lim_{N \to \infty} \sum_{i=1}^{N} P_i$ where the limit is in the strong operator topology.
- 4. $P_{\Omega_1} \cap P_{\Omega_2} = P_{\Omega_1 \cap \Omega_2}$.

Notice given a projection valued measure, and a Borel measurable function $g \in \mathbf{R}$ that will be denoted by the formula

$$P[g] = \int_{\mathbf{R}} g(\lambda) dP(\lambda).$$

This is just formalism so far - the definition is as follows. Note that for all ϕ, ψ in H one can form a Borel measure $\mu_{\phi,\psi}$ by defining

$$\mu_{\phi,\psi}(\Omega) = \langle P_{\Omega}\phi, \psi \rangle.$$

Then we define

$$\langle P[g]\phi,\psi\rangle \equiv \int_{\mathbf{R}} g(\lambda)d\mu_{\phi,\psi}(\lambda).$$

Knowing all these matrix coefficients defines an operator on the domain

$$D_g \equiv \{\phi : \int_{\mathbf{R}} |g(\lambda)|^2 d\mu_{\phi,\phi}(\lambda) < \infty\}.$$

If g is real valued, then P[g] is self-adjoint on D_g .

Theorem 12 (Spectral Theorem for unbounded operators, [1, Theorem VIII.6]). The mapping

$$P \mapsto \int_{\mathbf{R}} \lambda dP(\lambda)$$

gives a one-to-one correspondence between projection valued measures on H and self adjoint operators on H.

References

- [1] Michael Reed, Barry Simon Methods of Modern Mathematical Physics I: Functional Analysis.
- [2] Michael Reed, Barry Simon Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness.
- [3] Robert S. Strichartz. Analysis of the Laplacian on the Complete Riemannian Manifold. Journal of Functional Analysis **52**, 48-79 (1983)