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Lecture 5: The resolvent.

Last time we proved that the Laplacian has a closure whose domain is the Sobolev space

H2(M) = {u 2 L2(M) : kruk 2 L2(M), �u 2 L2(M) }.

We view the Laplacian as an unbounded densely defined self-adjoint operator on L2 with
domain H2. We also stated the spectral theorem. We’ll now ask what is the nature of the pro-
jection valued measure associated to the Laplacian (its ‘spectral decomposition’). Until otherwise
specified, suppose M is a complete Riemannian manifold.

Definition 1. The resolvent set R of the Laplacian is the set of � 2 C such that �I � � is a
bijection of H2 onto L2 with a bounded inverse (with respect to L2 norms)

R(�) ⌘ (�I ��)�1 : L2(M) ! H2(M).

The operator R(�) is called the resolvent of the Laplacian at �. We write

spec(�) = C�R

and call it the spectrum.

Note that the projection valued measure of � is supported in R � 0. Otherwise one can find
a function  in H2(M) where h� , i is negative, but since  can be approximated in Sobolev
norm by smooth functions, this will contradict

h� , i =
ˆ

g(r ,r )Vol � 0. (1)

Note then the spectral theorem implies that the resolvent set contains C � R�0 (use the Borel
functional calculus).

Theorem 2 (Stone’s formula [1, VII.13]). Let P be the projection valued measure on R associated
to the Laplacan by the spectral theorem. The following formula relates the resolvent to P

lim
✏!0

(2⇡i)�1

ˆ b

a
[R(�+ i✏)�R(�� i✏)] d� =

1

2

⇥
P[a,b] + P(a,b)

⇤
.

The limit is taken in the strong operator topology and the integral can be interpreted as a limit of
Riemann sums in the strong operator topology.

We want to study the operator R(�1) = �(�+ 1)�1. This is a bounded self adjoint operator
from L2(M) to L2(M) with image in H2(M). The following will be useful.
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Theorem 3 (Rellich-Kondrachov embedding theorem). On a compact M of dimension n, if k > l
and k � n/p > l � n/q then the map

W k,p ! W l,q

is compact.

Assume now M is compact. Up until now we only know that R(�1) is only bounded from L2

to L2 and that it happens to map into H2. We can use our parametrix from before to improve
this statement. It is convenient to introduce the notation �(�) = (� ��) and let Q be the left
parametrix to �(1), so that

Q�(�1) = I +K

where K is a compact smoothing remainder. Now given f 2 L2 consider that

�(�1)R(�1)f = f

so

(I +K)R(�1)f = Q�(�1)R(�1)f = Qf.

Then

R(�1)f = (Q�K)f.

Since K is a bounded map to any Sobolev space and Q is a bounded map from L2 to H2 we
obtain the result.

Lemma 4. If M is compact then R(�1) is a bounded map from L2(M) to H2(M) with respect
to the Sobolev norm.

Using this Lemma along with Theorem 3 with p = q = 2 and k = 2, l = 0 gives

Proposition 5 (‘The Laplacian has compact resolvent’). If M is compact, the resolvent R(�1)
is compact from L2(M) to L2(M).

Theorem 6 (Spectral theorem for compact normal operators). If T is a compact normal operator
on a Hilbert space H then the spectrum of T (the values of � 2 C for which T �� is not invertible)
is a countable set of nonzero eigenvalues that can accumulate only at 0. If � is in the spectrum
then ker(� � T ) is a finite dimensional eigenspace. These eigenspaces form an orthogonal direct
sum decomposition for H.

Applying this to R(�1), we get that (µ�R(�1)) is invertible outside a set of real negative µi

accumulating only at zero. Therefore

Proposition 7. If M is compact, the projection valued measure P associated to the Laplace-
Beltrami operator is atomic and supported on the set of eigenvalues �i = �µ�1

i � 1. These eigen-
values �i ! 1 as i ! 1. The value P{�i} is a projection onto a finite dimensional eigenspace.
Finally, �1 = 0 and the eigenspace of 0 is one dimensional if M is connected.

Proof. Only the last statement needs checking. It follows from the energy estimate (1).

Remark 8. If M is compact, most of Proposition 7 holds for any of the other Laplacians we have
mentioned. The only (but very important) di↵erence is that 0 may or may not be in the spectrum,
and it may have a multiplicity > 1. (cf. Hodge Theorem).
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