Spectral Geometry Spring 2016

Michael Magee

Lecture 6: Flat tori I: The spectrum.

In this lecture we discuss the Laplace-Beltrami operator on flat tori. A torus is a topological manifold homeomorphic to $(S^1)^n$ for some n. A flat torus is a torus with the structure of a Riemannian manifold (M^n, g) such that the metric is flat. The usual definition of flatness is that the curvature tensor is identically zero. This implies that at every point $p \in M$ there an neighborhood $p \in U$ and a system of coordinates x_1, \ldots, x_n on U so that the vector fields ∂_i form an orthonormal frame at every $q \in U$.

Theorem 1 (Hopf). Any complete, flat, simply connected n-dimensional manifold is isometric to \mathbb{R}^n with its Euclidean metric.

This implies that any flat torus is isometric to a quotient of \mathbf{R}^n by some group G of Euclidean isometries acting freely and properly discontinuously. We also know the deck transformation group is isomorphic to \mathbf{Z}^n and the quotient is compact. We have the decomposition $\mathrm{Isom}(\mathbf{R}^n) = \mathbf{R}^n \times O(n)$. We say an element is a translation if its projection to O(n) is 1, in other words, it corresponds to adding some vector to \mathbf{R}^n . Say G acts by translations if every element is a translation.

The following Proposition from Thurston's book [1] implies our deck transformation group G acts by translations.

Proposition 2 ([1, Proposition 4.2.4]). An abelian subgroup G of $Isom(\mathbf{R}^n)$ has a unique maximal subspace on which G acts by translations. If G is discrete and cocompact then this space is \mathbf{R}^n .

We can therefore identify the fundamental group of M^n with a discrete subgroup

$$\Lambda \subset \mathbf{R}^n$$

where $\Lambda \cong \mathbf{Z}^n$ and Λ acts as translations on \mathbf{R}^n . We call such a Λ a *lattice*. So every torus arises as a quotient

$$\Lambda \backslash \mathbf{R}^n$$
.

We introduce the dual lattice

$$\Lambda' = \{ \lambda' \in \mathbf{R}^n : \langle \lambda', \lambda \rangle \in \mathbf{Z} \, \forall \lambda \in \Lambda \rangle,$$

noting that it is indeed a subgroup of \mathbf{R}^n isomorphic to \mathbf{Z}^n . The pairing $\langle \bullet, \bullet \rangle$ is the standard Euclidean inner product on \mathbf{R}^n . Let us also introduce the notation $e(\theta) = \exp(2\pi i\theta)$.

We check that each of the functions

$$f_{\lambda'}(\xi) = e(\langle \lambda', \xi \rangle) \quad \lambda' \in \Lambda'$$

is invariant under

$$\xi \mapsto \xi + \lambda$$

for all $\lambda \in \Lambda$. Hence they can be viewed as functions on $M = \Lambda \backslash \mathbb{R}^n$. Also, we can compute

$$\Delta_M f_{\lambda'}$$

by computing on \mathbf{R}^n . This is because the metric on M comes from the Λ -invariant metric on M and hence the Laplacian on M is obtained from the Λ -invariant Laplacian on \mathbf{R}^n . Therefore if $\lambda' = (\lambda'_1, \ldots, \lambda'_n)$ and $\xi = (\xi_1, \ldots, \xi_n)$ are coordinates on \mathbf{R}^n then

$$\Delta_M f_{\lambda} = \sum_{j=1}^n -\partial_j^2 f_{\lambda'} = \sum_{j=1}^n -\partial_j^2 \exp(2\pi i \sum_{k=1}^n \lambda'_k \xi_k) = -\sum_{j=1}^n -(2\pi)^2 (\lambda'_j)^2 f_{\lambda'}$$
$$= 4\pi^2 \|\lambda'\|^2 f_{\lambda'}.$$

So every $f_{\lambda'}$ is an eigenfunction of the Laplacian on M with eigenvalue $4\pi^2 \|\lambda'\|^2$. They are also orthogonal to one another. If $\|\lambda'\| \neq \|\lambda\|$ this follows from our spectral theorem for compact M. Otherwise one can check it by hand by changing coordinates to the basis given by generators of Λ .

Now we need to make sure we have found all the eigenfunctions. It is enough to show the $f_{\lambda'}$ are dense in L^2 , since the set of eigenfunctions we have found can be completed to a full set of orthogonal eigenfunctions. A new eigenfunction appears, we would not be able to approximate it with the $f_{\lambda'}$ in L^2 .

We'll use the complex version of the Stone-Weierstrass Theorem:

Theorem 3 (Stone-Weierstrass). If A is an complex unital *-subalgebra of complex valued continuous functions on a compact Hausdorff space K that separates the points of K then A is dense in the complex valued continuous functions with respect to the sup norm.

In the current setting, being dense in the sup norm implies being dense in L^2 . Note that the complex unital *-algebra generated by the $f_{\lambda'}$ is just the complex linear span of the $f_{\lambda'}$. This is because $\overline{f_{\lambda'}} = f_{-\lambda'}$ and $f_{\lambda'_1} f_{\lambda'_2} = f_{\lambda'_1 + \lambda'_2}$. The algebra is unital because it contains $1 = f_0$.

Now we check the $f_{\lambda'}$ separate points. By change of basis we can assume $\Lambda = \mathbf{Z}^n$. Then we can reduce to the case n=1 by noting any two distinct points differ at some coordinate, without loss of generality the first, and considering $\lambda' = (1,0,0,\ldots,0)$. If $f_{\lambda'}(x) = e(x_1) = e(y_1) = f_{\lambda'}(y)$ then $e((x_1 - y_1)) = 1$ so $x_1 - y_1 \equiv 0 \mod 1$, a contradiction.

We have now proved

Theorem 4. The eigenvalues of Δ on $L^2(\mathbf{R}/\Lambda)$ are precisely the values $4\pi^2 \|\lambda'\|^2$ where $\lambda' \in \Lambda'$. The $f_{\lambda'}$ are linearly independent and span the eigenspace over \mathbf{C} . Therefore the dimension M_{μ} of the eigenspace for the eigenvalue μ is the size of the set

$$\{\lambda' \in \Lambda' : 4\pi^2 \|\lambda'\|^2 = \mu\}.$$

Example 5. For the Gaussian integers $(\Lambda = \mathbf{Z} \oplus \mathbf{Z})$ M_{μ} is quite an irregular quantity. Indeed it is zero for any μ such that $\mu/4\pi^2$ contains a prime factor $\equiv 3 \mod 4$ with odd multiplicity. Otherwise it is 4 times a multiplicative function of $\mu/4\pi^2$ whose values on p^n with $p \equiv 1 \mod 4$ are n+1 and whose values on p^{2m} with $p \equiv 3 \mod 4$ are 1. Therefore it is bounded by the divisor function, so for any $\epsilon > 0$ we have

$$M_{\mu} \ll_{\epsilon} \mu^{\epsilon}$$

where \ll_{ϵ} is Vinogradov notation indicating the implied constants depend on ϵ . In detail, it means there are constants $C_1(\epsilon)$ and $C_2(\epsilon)$ such that when $\mu \geq C_1(\epsilon)$, $M_{\mu} \leq C_2(\epsilon)\mu^{\epsilon}$.

References

 $\left[1\right]$ William Thurston - Three dimensional Geometry and Topology.