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Lecture 6: Flat tori I: The spectrum.

In this lecture we discuss the Laplace-Beltrami operator on flat tori. A torus is a topological
manifold homeomorphic to (S1)n for some n. A flat torus is a torus with the structure of a
Riemannian manifold (Mn, g) such that the metric is flat. The usual definition of flatness is
that the curvature tensor is identically zero. This implies that at every point p 2 M there an
neighborhood p 2 U and a system of coordinates x1, . . . , xn on U so that the vector fields @i form
an orthonormal frame at every q 2 U .

Theorem 1 (Hopf). Any complete, flat, simply connected n-dimensional manifold is isometric
to R

n with its Euclidean metric.

This implies that any flat torus is isometric to a quotient of Rn by some group G of Euclidean
isometries acting freely and properly discontinuously. We also know the deck transformation
group is isomorphic to Z

n and the quotient is compact. We have the decomposition Isom(Rn) =
R

n
o O(n). We say an element is a translation if its projection to O(n) is 1, in other words,

it corresponds to adding some vector to R

n. Say G acts by translations if every element is a
translation.

The following Proposition from Thurston’s book [1] implies our deck transformation group G
acts by translations.

Proposition 2 ([1, Proposition 4.2.4]). An abelian subgroup G of Isom(Rn) has a unique maximal
subspace on which G acts by translations. If G is discrete and cocompact then this space is R

n.

We can therefore identify the fundamental group of Mn with a discrete subgroup

⇤ ⇢ R

n

where ⇤ ⇠= Z

n and ⇤ acts as translations on R

n. We call such a ⇤ a lattice. So every torus arises
as a quotient

⇤\Rn.

We introduce the dual lattice

⇤0 = {�0 2 R

n : h�0,�i 2 Z 8� 2 ⇤i,

noting that it is indeed a subgroup of Rn isomorphic to Z

n. The pairing h•, •i is the standard
Euclidean inner product on R

n. Let us also introduce the notation e(✓) = exp(2⇡i✓).
We check that each of the functions

f�0(⇠) = e(h�0, ⇠i) �0 2 ⇤0

is invariant under
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⇠ 7! ⇠ + �

for all � 2 ⇤. Hence they can be viewed as functions on M = ⇤\Rn. Also, we can compute

�Mf�0

by computing on R

n. This is because the metric on M comes from the ⇤-invariant metric on M
and hence the Laplacian on M is obtained from the ⇤-invariant Laplacian on R

n. Therefore if
�0 = (�0

1, . . . ,�
0
n) and ⇠ = (⇠1, . . . , ⇠n) are coordinates on R

n then

�Mf� =
nX

j=1

�@2
j f�0 =

nX

j=1

�@2
j exp(2⇡i

nX

k=1

�0
k⇠k) = �

nX

j=1

�(2⇡)2(�0
j)

2f�0

= 4⇡2k�0k2f�0 .

So every f�0 is an eigenfunction of the Laplacian on M with eigenvalue 4⇡2k�0k2. They are also
orthogonal to one another. If k�0k 6= k�k this follows from our spectral theorem for compact M .
Otherwise one can check it by hand by changing coordinates to the basis given by generators of
⇤.

Now we need to make sure we have found all the eigenfunctions. It is enough to show the f�0

are dense in L2, since the set of eigenfunctions we have found can be completed to a full set of
orthogonal eigenfunctions. A new eigenfunction appears, we would not be able to approximate it
with the f�0 in L2.

We’ll use the complex version of the Stone-Weierstrass Theorem:

Theorem 3 (Stone-Weierstrass). If A is an complex unital ⇤-subalgebra of complex valued con-
tinuous functions on a compact Hausdor↵ space K that separates the points of K then A is dense
in the complex valued continuous functions with respect to the sup norm.

In the current setting, being dense in the sup norm implies being dense in L2. Note that the
complex unital ⇤-algebra generated by the f�0 is just the complex linear span of the f�0 . This is
because f�0 = f��0 and f�0

1
f�0

2
= f�0

1+�0
2
. The algebra is unital because it contains 1 = f0.

Now we check the f�0 separate points. By change of basis we can assume ⇤ = Z

n. Then we
can reduce to the case n = 1 by noting any two distinct points di↵er at some coordinate, without
loss of generality the first, and considering �0 = (1, 0, 0, . . . , 0). If f�0(x) = e(x1) = e(y1) = f�0(y)
then e((x1 � y1)) = 1 so x1 � y1 ⌘ 0 mod 1, a contradiction.

We have now proved

Theorem 4. The eigenvalues of � on L2(R/⇤) are precisely the values 4⇡2k�0k2 where �0 2 ⇤0.
The f�0 are linearly independent and span the eigenspace over C. Therefore the dimension Mµ of
the eigenspace for the eigenvalue µ is the size of the set

{�0 2 ⇤0 : 4⇡2k�0k2 = µ}.

Example 5. For the Gaussian integers (⇤ = Z � Z) Mµ is quite an irregular quantity. Indeed
it is zero for any µ such that µ/4⇡2 contains a prime factor ⌘ 3 mod 4 with odd multiplicity.
Otherwise it is 4 times a multiplicative function of µ/4⇡2 whose values on pn with p ⌘ 1 mod 4
are n+1 and whose values on p2m with p ⌘ 3 mod 4 are 1. Therefore it is bounded by the divisor
function, so for any ✏ > 0 we have

Mµ ⌧✏ µ
✏
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where ⌧✏ is Vinogradov notation indicating the implied constants depend on ✏. In detail, it means
there are constants C1(✏) and C2(✏) such that when µ � C1(✏), Mµ  C2(✏)µ✏.
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