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Lecture 7: Flat tori II: Weyl law, theta functions, heat trace.

Weyl law

In the case of flat tori M = ⇤\Rn there is a proof of the Weyl law by a direct counting arguments.
From our previous lecture the number of eigenvalues of � on M less than or equal to T , counted
with multiplicities is given by

M(T ) = |{µ 2 spec(�) : µ  T}| =
⇢
�

0 2 ⇤0 : k�0k  T

1/2

2⇡

�

where ⇤0 is the dual lattice. By an elementary argument (a good exercise), for any lattice ⇤0 ⇢ R

n

the number of elements with norm  R is

cnR
n

Vol(⇤0\Rn)
+ o(Rn)

where cn is the volume of the unit ball in R

n
. In this case the volume of ⇤0\Rn is Vol(⇤\Rn)�1 =

Vol(M)�1 and so we get

M(T ) =
Vol(M)cnTn/2

(2⇡)n
+ o(Tn/2).

This is Weyl’s law for flat tori.

The Poisson summation formula

Let us define the Fourier transform for f 2 L

1(R)

f̂(⇠) =

ˆ
R
f(x)e(�⇠x)dx.

Theorem 1 (Poisson Summation - [2, Theorem 4.4]). Suppose that both f , f̂ are in L

1(R) and

have bounded variation. Then

X

m2Z

f(m) =
X

n2Z

f̂(n)

and both series are absolutely convergent.

The Poisson Summation Formula has a generalization to lattices. Let ⇤ be as before. Consider
that for f a smooth function of rapid decay
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X

�2⇤

f(�) =
X

m12Z

X

m22Z

. . .

X

mn2Z

f(m1�1+m2�2+. . .+mn�n) =
X

m12Z

X

m22Z

. . .

X

mn2Z

f�J⇤(m1,m2, . . . ,mn)

where J⇤ is the invertible linear map

(x1, . . . , xn) 7! m1�1 +m2�2 + . . .+mn�n.

So we can apply the Poisson summation formula n times to get the above

=
X

k1,...,kn

\
f � J⇤(k1, . . . , kn) (1)

where •̂ is the n dimensional Euclidean Fourier transform. Now changing variables y = J⇤x in
the Fourier transform we get

\
f � J⇤(⇠) =

ˆ
Rn

e(�h⇠, xi)f(J⇤x)dx = | det J⇤|�1

ˆ
Rn

e(�h⇠, J�1
⇤ yi)f(y)dy

= | det J⇤|�1

ˆ
Rn

e(�h(J�1
⇤ )T ⇠, yi)f(y)dy

= | det J⇤|�1
f̂((J�1

⇤ )T ⇠).

Returning to (1) we get

=
X

k1,...,kn

\
f � J⇤(k1, . . . , kn) = | det J⇤|�1

X

k1,...,kn

f̂((J�1
⇤ )T (k1, . . . , kn)).

A little thought reveals the latter sum is precisely the values of f̂ over ⇤0 so we obtain

X

�2⇤

f(�) = | det J⇤|�1
X

�02⇤0

f̂(�0). (2)

Note that | det J⇤| = Vol(M). This is because the parallelotope spanned by the �i is a fundamental
domain for ⇤ acting on R

n
. The identity (2) has a range of applications.

Theta series

For any lattice ⇤ with a positive definite quadratic form q one can form the theta series

⇥(z) =
X

�2⇤

e(q(�)z/2)

that is parameterized by a complex z = x+ iy. It is uniformly absolutely convergent on compact
sets in <(y) > 0, so it yields a holomorphic function of z in the upper half plane.

We can always change basis so that q is the norm form on R

n and ⇤ ⇢ R

n
. Then the above

series is

⇥(z) =
X

�2⇤

e(k�k2z/2).

It is possible to calculate the Fourier transform of f(x) = e(kxk2z/2). To make things simpler we
assume n even and q is unimodular, which means ⇤ = ⇤0 and | det J⇤| = 1. Then
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f̂(⇠) =
1

z

n/2
e(�k⇠k2/2z).

Now using PSF

⇥(z) =
1

z

n/2
⇥

✓
�1

z

◆
.

On the other hand, if q is even (valued in 2Z) then also

⇥(z) = ⇥(z + 1).

The two Möbius transformations z 7! 1/z and z 7! z + 1 generate the whole modular group

SL2(Z).

Since ⇥ satisfies the correct cocycle condition for the generators, it is a modular form of weight
n/2. Recall a modular form of weight k is a holomorphic function on the upper half plane H that
is holomorphic at i1 and satisfies the cocyle conditions

(cz + d)�k
f

✓
az + b

cz + d

◆
= f(z) 8

✓
a b

c d

◆
2 SL2(Z).

Suppose ⇤ is even unimodular and consider the corresponding torus. Clearly the theta series
⇥(z) determines the spectrum of the Laplacian (it is easy to extract the norms and multiplicities
of ⇤ = ⇤0). We say

Definition 2. Two Riemannian manifolds are isospectral if their Laplace Beltrami operators have
the same spectrum with multiplicities.

The following observation is due to Milnor and I am following Conway’s book [1]. A result of
Witt says there are exactly two distinct unimodular even 16 dimensional lattices, namely

⇤1 = E8 � E8

and
⇤2 = D

+
16,

where D

+
n is the integer tuples with even sum added to (1/2, 1/2, 1/2, . . . , 1/2). By the way,

E8 = D

+
8 . Since these (quadratic) lattices are distinct, the resulting tori cannot be isometric -

any isometry of the tori would extend to an isometry of the universal covers that conjugated the
lattices. On the other hand, there is exactly one modular form of weight 8 for SL2(Z), it is given
by

⇥(z) = 1 + 480
X

n

�7(n)q
2n
.

Therefore these tori are isospectral, but they are not isometric. This result is due to Milnor and
was the first answer to Kac’s question ‘Can you hear the shape of a drum’. Conway’s book [1]
o↵ers more on this subject.
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The heat trace

Now let ⇤ be any lattice and consider f(x) = exp(�kxk2/4t). This is essentially the same example
as before. Now the fourier transform is f̂(x) = (4⇡t)n/2 exp(�4⇡2

tkxk2). Poisson Summation gives

X

�02⇤0

exp(�4⇡2
tk�0k2) = Vol(M)

(4⇡t)n/2

X

�2⇤

exp

✓
�k�k2

t

◆
. (3)

The left hand side is called the heat trace: it is exactly a sum over the eigenvalues µ of the
laplacian of the function exp(�tµ) and is therefore the trace of the heat operator

exp(�t�).

This is a version of the trace formula on the torus : the left hand side is an analytic sum over
eigenvalues and the right a geometric sum over the fundamental group of a function of the length
of the unique closed geodesics in the homotopy class.

One can also deduce Weyl’s law from (3) by using some Tauberian Theorem. This is an ap-
proach that extends to Riemann surfaces with noncommutative fundamental groups (e.g. compact
with genus � 2).
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