Functional Analysis (325b/525b) Problem Set 3

Michael Magee, michael.magee@yale.edu

A (+) denotes an extra hard question.

Question 1.

Let $f: (0,\infty) \to \mathbf{R}$ be a continuous function such that $\lim_{n\to\infty} f(nx) = 0$ for all x > 0. Show that $\lim_{x\to\infty} f(x) = 0$.

Question 2+.

Let $f : \mathbf{R} \to \mathbf{R}$ be smooth (infinitely differentiable). Suppose that for all x there is a k_x such that $f^{(k)}(x) = 0$ for all $k \ge k_x$. Prove that f is a polynomial.

Question 3.

Let $\phi_n: [0,1] \to (0,\infty)$ be uniformly bounded continuous functions such that

$$\int_0^1 \phi_n(x) dx \ge c$$

for some $c \ge 0$ and all n. Suppose $c_n \ge 0$ for all $n = 1, 2, 3, \ldots$ and

$$\sum_{n=1}^{\infty} c_n \phi_n(x) < \infty$$

for every $x \in [0, 1]$. Prove that

$$\sum_{n=1}^{\infty} c_n < \infty.$$

Question 4.

Let X be a normed vector space and $S \subset X$. Show that if

$$\{f(x): x \in S\}$$

is bounded for every $f \in X^*$ then S is bounded, that is, there is K > 0 such that $||x|| \le K$ for all $x \in S$.

Question 5.

Show that a metric space is compact if and only if it is totally bounded and complete.

Question 6.

Show that a subset of a complete metric space is totally bounded if and only if its closure is compact.

Question 7.

Let U be an open subset of C and let $f_1, f_2, \ldots : U \to C$ be uniformly bounded analytic functions. Prove that there is a subsequence f_{n_k} that is uniformly convergent on every compact subset of U.

Question 8.

Let G be an open subset of \mathbb{R}^2 and let $f: G \to \mathbb{R}$ be continuous. Use the Arzelà-Ascoli Theorem to prove Peano's theorem that for each point $(x_0, y_0) \in G$, at least one solution of

$$y'(x) = f(x, y)$$

passes through (x_0, y_0) .

Hint: Let V be a closed neighborhood of (x_0, y_0) and set $K = \sup\{|f(x, y)| : (x, y) \in V\}$. Choose $a < x_0 < b$ such that

$$\left\{ (x,y) : x \in [a,b], x \neq x_0, \ \frac{|y-y_0|}{|x-x_0|} < K \right\} \subset U.$$

The aim is to show that our differential equation has a solution through (x_0, y_0) defined on [a, b]. Find such a solution by considering piecewise linear approximations, say with division points $x_0 \pm k/n$, k = 1, 2, ...