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q-Integers

The classical “q-integer n” is the polynomial

[n]q = 1 + q + q2 + · · ·+ qn−1

From this, we have the “q-factorial”

[n]q! = [1]q[2]q[3]q · · · [n]q

and the “q-binomial coe�cients”(
n
k

)
q

=
[n]q!

[k]q![n− k]q!
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Properties of q-Analogues

Most q-analogues (including these) usually satisfy two properties:

If f (n) counts some set An, then the q-analogue of f (n) is a generating function
for some statistic on An.

The q-analogue of f (n) counts the size of some algebraic variety over Fq.
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q-Factorials

For the q-factorial, we have:

[n]q! =
∑
σ∈Sn

qdes(σ)

and

[n]q! = |Fl(n)|

where Fl(n) is the set of complete �ags in (Fq)
n.
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q-Binomial Coe�cients

For the q-binomial coe�cients, we have:

(
n
k

)
q

=
∑
µ≤λ

q|µ|

where λ is the partition whose Young
diagram is a k × (n− k) rectangle.

Also, if Pn,k is the set of north-east lattice
paths: (

n
k

)
q

=
∑
p∈Pn,k

q|p|

(5
2
)
q = 1 + q + 2q2 + 2q3 + 2q4 + q5 + q6
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q-Binomial Coe�cients

Also, for the q-binomial coe�cients, we have(
n
k

)
q

= |Grk(n)|

where Grk(n) is the Grassmann variety of k-dimensional subspaces of (Fq)
n.
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q-Rationals

We have q-integers [n]q.

What about [x]q for x ∈ Q?

Naive Idea: de�ne
[ r
s

]
q :=

[r]q
[s]q

But this is not interesting!
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q-Rationals

Given a rational number r
s > 1, there is a unique continued fraction expansion of

the form
r
s

:= a1 +
1

a2 +
1

a3 +
1

a4 +
1

. . . +
1
a2m

This is denoted r
s = [a1, a2, . . . , a2m].

Example:
10
7

= [1, 2, 2, 1]
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q-Rationals

De�nition [Morier-Genoud, Ovsienko]1

Let r
s > 1 be a rational number with r

s > 1. If r
s = [a1, a2, . . . , a2m], then de�ne the

“q-rational number”
[ r
s

]
q by

[ r
s

]
q

:= [a1]q +
qa1

[a2]q−1 +
q−a2

[a3]q +
qa3

[a4]q−1 +
q−a4

. . . +
qa2m−1

[a2m]q−1

1Sophie Morier-Genoud and Valentin Ovsienko. “q-Continued Fractions”. In: Forum of Mathematics,
Sigma. Vol. 8. Cambridge University Press. 2020
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Another Method of Computation

The group PSL2(Z) acts transitively on Q ∪ {∞} by(
a b
c d

)
· x =

ax + b
cx + d

One possible generating set is

A =

(
1 1
0 1

)
and B =

(
1 0
1 1

)

Example: We can send 1 to 10
7 by AB2A2:

1 A2

−−→ 3 B−→ 3
4

B−→ 3
7

A−−→ 10
7
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Another Method of Computation

De�ne q-versions of the matrices A and B:

Aq =

(
q 1
0 1

)
and Bq =

(
q 0
q 1

)
Any M ∈ PSL2(Z) can be written in terms of A and B, so we can de�ne a
corresponding Mq.

Theorem [Morier-Genoud, Leclere]1

The PSL2(Z) action commutes with q-deformation. That is, if x ∈ Q, then

[M · x]q = Mq · [x]q

1Ludivine Leclere and Sophie Morier-Genoud. “q-Deformations in the modular group and of the real
quadratic irrational numbers”. In: Advances in Applied Mathematics 130 (2021), p. 102223
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Another Method of Computation

Example: We saw that AB2A2 · 1 = 10
7 . This means we can compute

[ 10
7

]
q as

AqB2
qA

2
q · 1.

Note that
Aq · x = qx + 1 and Bq · x =

qx
qx + 1

Then we get

1
A2
q−−→ 1 + q + q2 B2

q−−→ q2 + q3 + q4

1 + q + 2q2 + 2q3 + q4

Aq−−→ 1 + q + 2q2 + 3q3 + 2q4 + q5

1 + q + 2q2 + 2q3 + q4
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Questions

We want to address the questions from before:

If
[ r
s

]
q = R(q)

S(q) , then:

(a) What are the combinatorial interpretations ofR and S?

(b) What are the geometric interpretations ofR and S?
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Snake Graphs

A snake graph is a graph made of square tiles, each either above or to the right of the
previous.

W (G) = RR W (G) = URUR W (G) = RURR

Each snake graph G has a word W (G), in the alphabet {U , R}, specifying when it
goes up or right.
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Snake Graphs and Continued Fractions

To each continued fraction r
s = [a1, . . . , a2m], associate a snake graph G(r/s) whose

word is
W (r/s) = Ra1−1U a2Ra3U a4 · · · Ra2m−1U a2m−1

W (G) = RR

G = G(4/1)

4/1 = [3, 1]

W (G) = URUR

G = G(13/8)

13/8 = [1, 1, 1, 1, 1, 1]

W (G) = RURR

G = G(11/4)

11/4 = [2, 1, 2, 1]
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Snake Graphs and Continued Fractions

Let P(r/s) be the set of north-east lattice paths on the snake graph G(r/s), going
from the bottom-left corner to the top-right corner.

Theorem [Propp1 | Schi�er, Çanakçi2]
Let r

s = [a1, a2, . . . , a2m], and r′
s′ = [a2, a3, . . . , a2m].

(a) |P(r/s)| = r

(b) |P(r ′/s′)| = s

1James Propp. “The combinatorics of frieze patterns and Marko� numbers”. In: arXiv preprint
math/0511633 (2005)

2İlke Çanakçı and Ralf Schi�er. “Cluster algebras and continued fractions”. In: Compositio
mathematica 154.3 (2018), pp. 565–593
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Combinatorial Interpretation of q-Rationals

The combinatorial interpretation of the q-rationals is given by a “q-analogue” of the
previous theorem.
De�ne the weight of a lattice path p ∈ P(r/s) as the number of boxes above the path.
De�ne Ĝ to be G re�ected over the line y = x, and P̂(r/s) := P(Ĝ(r/s)). This
corresponds to replacing R←→ U everywhere in W (G).

Theorem [Morier-Genoud, Ovsienko1]
If
[ r
s

]
q = R(q)

S(q) , then

(a)
∑

p∈P(r/s)

qwt(p) = R(q)

(b)
∑

p∈P̂(r′/s′)

qwt(p) = S(q)

1Sophie Morier-Genoud and Valentin Ovsienko. “q-Continued Fractions”. In: Forum of Mathematics,
Sigma. Vol. 8. Cambridge University Press. 2020
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Combinatorial Interpretation of q-Rationals

Example: We previously computed
[ 10

7

]
q = 1+q+2q2+3q3+2q4+q5

1+q+2q2+2q3+q4 .
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Connection with Cluster Algebras

Given a rational number r
s , one can associate a triangulated polygon. Reading

W (r/s), put a “downward” triangle for “R” and an “upward” triangle for “U ”, and
�nnally put one extra triangle at the beginning and end.

Example: 10
7 = [1, 2, 2, 1] has word W (10/7) = UURR.

U U

R R

=

This de�nes a cluster algebra and an initial cluster.

The “longest” arc corresponds to some cluster variable.
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Connection with Cluster Algebras

The F-polynomial of this cluster variable can be described in terms of the snake
graph G(r/s):

3

2
3 3 4

1
2
3

2
3 4 3 4 5

1
2
3 4

2
3 4 5

1
2
3 4 5

F(y1, . . . , y5) = 1 + y3 + y2y3 + y3y4

+ y1y2y3 + y2y3y4 + y3y4y5

+ y1y2y3y4 + y2y3y4y5

+ y1y2y3y4y5

R(q) = F(q, q, . . . , q)
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Schubert Cells

For a partition λ which �ts into a k × (n− k) rectangle, the “open Schubert cell”
Ω◦λ ⊂ Grk(n) is the set of all subspaces represented by matrices whose echelon form
is “shaped like λ”.

Example: λ = (3, 2, 2, 1) �ts in a 4× 3 rectangle (Ω◦λ ⊂ Gr4(7))

12

3

45

67

vert. steps = {1, 3, 4, 6}


1 ∗ 0 0 ∗ 0 ∗
0 0 1 0 ∗ 0 ∗
0 0 0 1 ∗ 0 ∗
0 0 0 0 0 1 ∗



Id in columns 1,3,4,6

∗’s shaped like λ
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Cell Decomposition of Grk(n)

From this description, it is easy to see that dim Ω◦λ = |λ|.

In particular, over Fq, we have |Ω◦λ| = q|λ|.

It is well-known that Grk(n) is the disjoint union of all open Schubert cells.

This explains the equality between the combinatorial and geometric expressions for
the q-binomial coe�cients

(n
k

)
q:

|Grk(n)| =
∑
λ

|Ω◦λ| =
∑
λ

q|λ|
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Snake Graphs and Young Diagrams

It is easy to see that every snake graph is a skew Young diagram (a di�erence of two
Young diagrams µ < λ).

Example: λ = (5, 4, 2) and µ = (3, 1);

For a snake graph G, let λ(G) and µ(G) be these partitions.

If G = G(r/s), then write λ(r/s) and µ(r/s).
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Geometric Interpretation of q-Rationals

Theorem [O]1

Let r
s = [a1, . . . , a2m], and let λ = λ(r/s) and µ = µ(r/s).

Also de�ne

n =
2m∑
i=1

ai and k =
m∑
i=1

a2i

Then the numeratorR(q) of
[ r
s

]
q counts the number of points in a union of

Schubert cells in Grk(n):

q|µ| · R(q) =

∣∣∣∣∣∣
⋃

µ≤ν≤λ

Ω◦ν

∣∣∣∣∣∣

1Nicholas Ovenhouse. “q-Rationals and Finite Schubert Varieties”. In: arXiv preprint arXiv:2111.07912
(2021)

Ovenhouse (UMN) q-Rationals Dec 2021 24 / 26



Geometric Interpretation of q-Rationals

Theorem [O]1

Let r
s = [a1, . . . , a2m], and let λ = λ(r/s) and µ = µ(r/s).

Also de�ne

n =
2m∑
i=1

ai and k =
m∑
i=1

a2i

Then the numeratorR(q) of
[ r
s

]
q counts the number of points in a union of

Schubert cells in Grk(n):

q|µ| · R(q) =

∣∣∣∣∣∣
⋃

µ≤ν≤λ

Ω◦ν

∣∣∣∣∣∣

1Nicholas Ovenhouse. “q-Rationals and Finite Schubert Varieties”. In: arXiv preprint arXiv:2111.07912
(2021)

Ovenhouse (UMN) q-Rationals Dec 2021 24 / 26



Geometric Interpretation of q-Rationals

Theorem [O]1

Let r
s = [a1, . . . , a2m], and let λ = λ(r/s) and µ = µ(r/s).

Also de�ne

n =

2m∑
i=1

ai and k =

m∑
i=1

a2i

Then the numeratorR(q) of
[ r
s

]
q counts the number of points in a union of

Schubert cells in Grk(n):

q|µ| · R(q) =

∣∣∣∣∣∣
⋃

µ≤ν≤λ

Ω◦ν

∣∣∣∣∣∣

1Nicholas Ovenhouse. “q-Rationals and Finite Schubert Varieties”. In: arXiv preprint arXiv:2111.07912
(2021)

Ovenhouse (UMN) q-Rationals Dec 2021 24 / 26



Geometric Interpretation of q-Rationals

Theorem [O]1

Let r
s = [a1, . . . , a2m], and let λ = λ(r/s) and µ = µ(r/s).

Also de�ne

n =

2m∑
i=1

ai and k =

m∑
i=1

a2i

Then the numeratorR(q) of
[ r
s

]
q counts the number of points in a union of

Schubert cells in Grk(n):

q|µ| · R(q) =

∣∣∣∣∣∣
⋃

µ≤ν≤λ

Ω◦ν

∣∣∣∣∣∣

1Nicholas Ovenhouse. “q-Rationals and Finite Schubert Varieties”. In: arXiv preprint arXiv:2111.07912
(2021)

Ovenhouse (UMN) q-Rationals Dec 2021 24 / 26



Example

Let r
s = 5

2 = [2, 2].

The q-rational is
[ 5

2

]
q = 1+2q+q2+q3

1+q .

λ = (2, 2), µ = (1)

Then q · R(q) = q(1 + 2q + q2 + q3) = q + 2q2 + q3 + q4 counts the number of
2-dimensional subspaces of (Fq)

4 of the forms:(
0 1 ∗ 0
0 0 0 1

)
,

(
1 ∗ ∗ 0
0 0 0 1

)
,

(
0 1 0 ∗
0 0 1 ∗

)
,

(
1 ∗ 0 ∗
0 0 1 ∗

)
,

(
1 0 ∗ ∗
0 1 ∗ ∗

)
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Thank You!
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