q-Rationals and Finite Schubert Varieties

Nick Ovenhouse

University of Minnesota

December, 2021 Paris Algebra Seminar

q-Integers

The classical "q-integer n" is the polynomial

$$[n]_q=1+q+q^2+\cdots+q^{n-1}$$

The classical "q-integer n" is the polynomial

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}$$

From this, we have the "q-factorial"

$$[n]_q! = [1]_q[2]_q[3]_q \cdots [n]_q$$

The classical "q-integer n" is the polynomial

$$[n]_q = 1 + q + q^2 + \dots + q^{n-1}$$

From this, we have the "q-factorial"

$$[n]_q! = [1]_q[2]_q[3]_q \cdots [n]_q$$

and the "q-binomial coefficients"

$$\binom{n}{k}_{q} = \frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}$$

Properties of *q*-Analogues

Most *q*-analogues (including these) usually satisfy two properties:

Most *q*-analogues (including these) usually satisfy two properties:

• If f(n) counts some set A_n , then the *q*-analogue of f(n) is a generating function for some statistic on A_n .

Most *q*-analogues (including these) usually satisfy two properties:

• If f(n) counts some set A_n , then the *q*-analogue of f(n) is a generating function for some statistic on A_n .

• The *q*-analogue of f(n) counts the size of some algebraic variety over \mathbb{F}_q .

q-Factorials

q-Factorials

For the *q*-factorial, we have:

q-Factorials

For the *q*-factorial, we have:

$$[n]_q! = \sum_{\sigma \in S_n} q^{\operatorname{des}(\sigma)}$$

For the q-factorial, we have:

$$[n]_q! = \sum_{\sigma \in S_n} q^{\operatorname{des}(\sigma)}$$

and

. . .

$$[n]_q! = |Fl(n)|$$

where $Fl(n)$ is the set of complete flags in $(\mathbb{F}_q)^n$.

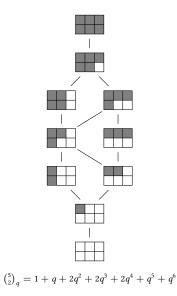
q-Binomial Coefficients

q-Binomial Coefficients

For the *q*-binomial coefficients, we have:

$$\binom{n}{k}_q = \sum_{\mu \leq \lambda} q^{|\mu|}$$

where λ is the partition whose Young diagram is a $k \times (n - k)$ rectangle.



q-Binomial Coefficients

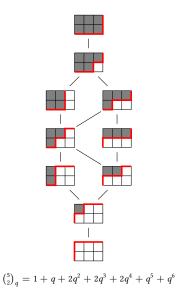
For the *q*-binomial coefficients, we have:

$$\binom{n}{k}_q = \sum_{\mu \leq \lambda} q^{|\mu|}$$

where λ is the partition whose Young diagram is a $k \times (n - k)$ rectangle.

Also, if $P_{n,k}$ is the set of north-east lattice paths:

$$\binom{n}{k}_q = \sum_{p \in P_{n,k}} q^{|p|}$$



Also, for the q-binomial coefficients, we have

$$\binom{n}{k}_q = |\operatorname{Gr}_k(n)|$$

where $\operatorname{Gr}_k(n)$ is the Grassmann variety of *k*-dimensional subspaces of $(\mathbb{F}_q)^n$.

What about $[x]_q$ for $x \in \mathbb{Q}$?

What about $[x]_q$ for $x \in \mathbb{Q}$?

Naive Idea: define $\left[\frac{r}{s}\right]_q := \frac{[r]_q}{[s]_q}$

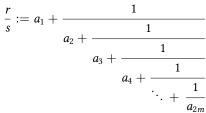
What about $[x]_q$ for $x \in \mathbb{Q}$?

Naive Idea: define $\left[\frac{r}{s}\right]_q := \frac{[r]_q}{[s]_q}$

But this is not interesting!

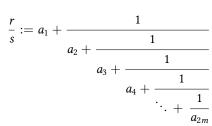
q-Rationals

Given a rational number $\frac{r}{s} > 1$, there is a unique continued fraction expansion of the form



q-Rationals

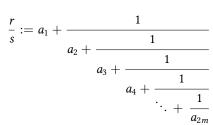
Given a rational number $\frac{r}{s} > 1$, there is a unique continued fraction expansion of the form



This is denoted $\frac{r}{s} = [a_1, a_2, \ldots, a_{2m}].$

q-Rationals

Given a rational number $\frac{r}{s} > 1$, there is a unique continued fraction expansion of the form



This is denoted $\frac{r}{s} = [a_1, a_2, \ldots, a_{2m}].$

Example:

$$\frac{10}{7} = [1, 2, 2, 1]$$

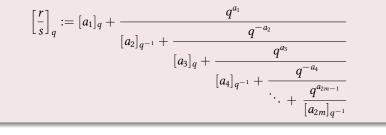
Definition [Morier-Genoud, Ovsienko]¹

Let $\frac{r}{s} > 1$ be a rational number with $\frac{r}{s} > 1$. If $\frac{r}{s} = [a_1, a_2, \dots, a_{2m}]$, then define the "*q*-rational number" $\left[\frac{r}{s}\right]_a$ by

¹Sophie Morier-Genoud and Valentin Ovsienko. "*q*-Continued Fractions". In: *Forum of Mathematics, Sigma*. Vol. 8. Cambridge University Press. 2020

Definition [Morier-Genoud, Ovsienko]¹

Let $\frac{r}{s} > 1$ be a rational number with $\frac{r}{s} > 1$. If $\frac{r}{s} = [a_1, a_2, \dots, a_{2m}]$, then define the "*q*-rational number" $\left[\frac{r}{s}\right]_q$ by



¹Sophie Morier-Genoud and Valentin Ovsienko. "*q*-Continued Fractions". In: *Forum of Mathematics, Sigma*. Vol. 8. Cambridge University Press. 2020

The group $\text{PSL}_2(\mathbb{Z})$ acts transitively on $\mathbb{Q} \cup \{\infty\}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax+b}{cx+d}$$

The group $\text{PSL}_2(\mathbb{Z})$ acts transitively on $\mathbb{Q}\cup\{\infty\}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax+b}{cx+d}$$

One possible generating set is

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

The group $\text{PSL}_2(\mathbb{Z})$ acts transitively on $\mathbb{Q} \cup \{\infty\}$ by

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot x = \frac{ax+b}{cx+d}$$

One possible generating set is

$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$$

Example: We can send 1 to $\frac{10}{7}$ by AB^2A^2 :

$$1 \xrightarrow{A^2} 3 \xrightarrow{B} \frac{3}{4} \xrightarrow{B} \frac{3}{7} \xrightarrow{A} \frac{10}{7}$$

Define *q*-versions of the matrices *A* and *B*:

$$A_q = egin{pmatrix} q & 1 \ 0 & 1 \end{pmatrix} \quad ext{ and } \quad B_q = egin{pmatrix} q & 0 \ q & 1 \end{pmatrix}$$

Any $M \in PSL_2(\mathbb{Z})$ can be written in terms of A and B, so we can define a corresponding M_q .

Define *q*-versions of the matrices *A* and *B*:

$$A_q = egin{pmatrix} q & 1 \ 0 & 1 \end{pmatrix} \quad ext{ and } \quad B_q = egin{pmatrix} q & 0 \ q & 1 \end{pmatrix}$$

Any $M \in PSL_2(\mathbb{Z})$ can be written in terms of A and B, so we can define a corresponding M_q .

Theorem [Morier-Genoud, Leclere]¹

The $PSL_2(\mathbb{Z})$ action commutes with *q*-deformation. That is, if $x \in \mathbb{Q}$, then

$$[M \cdot x]_q = M_q \cdot [x]_q$$

¹Ludivine Leclere and Sophie Morier-Genoud. "q-Deformations in the modular group and of the real quadratic irrational numbers". In: *Advances in Applied Mathematics* 130 (2021), p. 102223

Example: We saw that $AB^2A^2 \cdot 1 = \frac{10}{7}$. This means we can compute $\begin{bmatrix} \frac{10}{7} \end{bmatrix}_q$ as $A_q B_q^2 A_q^2 \cdot 1$.

Example: We saw that $AB^2A^2 \cdot 1 = \frac{10}{7}$. This means we can compute $\left[\frac{10}{7}\right]_q$ as $A_q B_q^2 A_q^2 \cdot 1$.

Note that

$$A_q \cdot x = qx + 1$$
 and $B_q \cdot x = \frac{qx}{qx + 1}$

Example: We saw that $AB^2A^2 \cdot 1 = \frac{10}{7}$. This means we can compute $\left[\frac{10}{7}\right]_q$ as $A_q B_q^2 A_q^2 \cdot 1$.

Note that

$$A_q \cdot x = qx + 1$$
 and $B_q \cdot x = \frac{qx}{qx + 1}$

Then we get

$$1 \xrightarrow{A_q^2} 1 + q + q^2 \xrightarrow{B_q^2} \frac{q^2 + q^3 + q^4}{1 + q + 2q^2 + 2q^3 + q^4} \xrightarrow{A_q} \frac{A_q}{1 + q + 2q^2 + 3q^3 + 2q^4 + q^5}$$

If
$$\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)}$$
, then:

If
$$\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)}$$
, then:

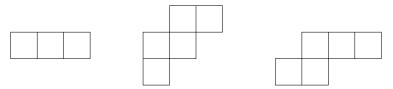
(a) What are the combinatorial interpretations of \mathcal{R} and \mathcal{S} ?

If
$$\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)}$$
, then:

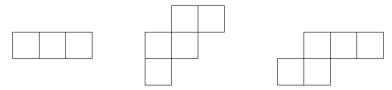
(a) What are the combinatorial interpretations of \mathcal{R} and \mathcal{S} ?

(b) What are the geometric interpretations of \mathcal{R} and \mathcal{S} ?

A *snake graph* is a graph made of square tiles, each either above or to the right of the previous.

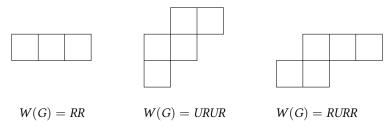


A *snake graph* is a graph made of square tiles, each either above or to the right of the previous.



Each snake graph G has a word W(G), in the alphabet $\{U, R\}$, specifying when it goes *up* or *right*.

A *snake graph* is a graph made of square tiles, each either above or to the right of the previous.



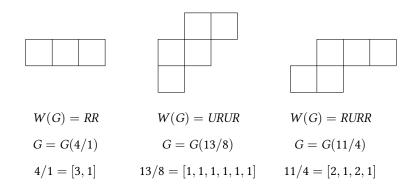
Each snake graph *G* has a word W(G), in the alphabet $\{U, R\}$, specifying when it goes *up* or *right*.

To each continued fraction $\frac{r}{s} = [a_1, \ldots, a_{2m}]$, associate a snake graph G(r/s) whose word is

$$W(r/s) = R^{a_1-1} U^{a_2} R^{a_3} U^{a_4} \cdots R^{a_{2m-1}} U^{a_{2m-1}}$$

To each continued fraction $\frac{r}{s} = [a_1, \ldots, a_{2m}]$, associate a snake graph G(r/s) whose word is

$$W(r/s) = R^{a_1-1} U^{a_2} R^{a_3} U^{a_4} \cdots R^{a_{2m-1}} U^{a_{2m-1}}$$



Let P(r/s) be the set of north-east lattice paths on the snake graph G(r/s), going from the bottom-left corner to the top-right corner.

Let P(r/s) be the set of north-east lattice paths on the snake graph G(r/s), going from the bottom-left corner to the top-right corner.

Theorem [Propp¹ | Schiffler, Çanakçi²]

Let
$$\frac{r}{s} = [a_1, a_2, \dots, a_{2m}]$$
, and $\frac{r'}{s'} = [a_2, a_3, \dots, a_{2m}]$.

²İlke Çanakçı and Ralf Schiffler. "Cluster algebras and continued fractions". In: *Compositio mathematica* 154.3 (2018), pp. 565–593

¹James Propp. "The combinatorics of frieze patterns and Markoff numbers". In: *arXiv preprint math/0511633* (2005)

Let P(r/s) be the set of north-east lattice paths on the snake graph G(r/s), going from the bottom-left corner to the top-right corner.

Theorem [Propp¹ | Schiffler, Çanakçi²]

Let
$$\frac{r}{s} = [a_1, a_2, \dots, a_{2m}]$$
, and $\frac{r'}{s'} = [a_2, a_3, \dots, a_{2m}]$.

(a)
$$|P(r/s)| = r$$

²İlke Çanakçı and Ralf Schiffler. "Cluster algebras and continued fractions". In: *Compositio mathematica* 154.3 (2018), pp. 565–593

¹James Propp. "The combinatorics of frieze patterns and Markoff numbers". In: *arXiv preprint math/0511633* (2005)

Let P(r/s) be the set of north-east lattice paths on the snake graph G(r/s), going from the bottom-left corner to the top-right corner.

Theorem [Propp¹ | Schiffler, Çanakçi²]

Let
$$\frac{r}{s} = [a_1, a_2, \dots, a_{2m}]$$
, and $\frac{r'}{s'} = [a_2, a_3, \dots, a_{2m}]$.

(a)
$$|P(r/s)| = r$$

(b) |P(r'/s')| = s

²İlke Çanakçı and Ralf Schiffler. "Cluster algebras and continued fractions". In: *Compositio mathematica* 154.3 (2018), pp. 565–593

¹James Propp. "The combinatorics of frieze patterns and Markoff numbers". In: *arXiv preprint math/0511633* (2005)

The combinatorial interpretation of the q-rationals is given by a "q-analogue" of the previous theorem.

The combinatorial interpretation of the q-rationals is given by a "q-analogue" of the previous theorem.

Define the *weight* of a lattice path $p \in P(r/s)$ as the number of boxes above the path.

¹Sophie Morier-Genoud and Valentin Ovsienko. "*q*-Continued Fractions". In: *Forum of Mathematics, Sigma*. Vol. 8. Cambridge University Press. 2020

- The combinatorial interpretation of the q-rationals is given by a "q-analogue" of the previous theorem.
- Define the *weight* of a lattice path $p \in P(r/s)$ as the number of boxes above the path.
- Define \widehat{G} to be *G* reflected over the line y = x, and $\widehat{P}(r/s) := P(\widehat{G}(r/s))$. This corresponds to replacing $R \longleftrightarrow U$ everywhere in W(G).

¹Sophie Morier-Genoud and Valentin Ovsienko. "*q*-Continued Fractions". In: *Forum of Mathematics, Sigma*. Vol. 8. Cambridge University Press. 2020

- The combinatorial interpretation of the q-rationals is given by a "q-analogue" of the previous theorem.
- Define the *weight* of a lattice path $p \in P(r/s)$ as the number of boxes above the path.
- Define \widehat{G} to be *G* reflected over the line y = x, and $\widehat{P}(r/s) := P(\widehat{G}(r/s))$. This corresponds to replacing $R \longleftrightarrow U$ everywhere in W(G).

Theorem [Morier-Genoud, Ovsienko¹]

If
$$\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)}$$
, then

¹Sophie Morier-Genoud and Valentin Ovsienko. "*q*-Continued Fractions". In: *Forum of Mathematics, Sigma*. Vol. 8. Cambridge University Press. 2020

The combinatorial interpretation of the q-rationals is given by a "q-analogue" of the previous theorem.

Define the *weight* of a lattice path $p \in P(r/s)$ as the number of boxes above the path.

Define \widehat{G} to be *G* reflected over the line y = x, and $\widehat{P}(r/s) := P(\widehat{G}(r/s))$. This corresponds to replacing $R \longleftrightarrow U$ everywhere in W(G).

Theorem [Morier-Genoud, Ovsienko¹]

If
$$\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)}$$
, then

(a)
$$\sum_{p \in P(r/s)} q^{\operatorname{wt}(p)} = \mathcal{R}(q)$$

¹Sophie Morier-Genoud and Valentin Ovsienko. "*q*-Continued Fractions". In: *Forum of Mathematics, Sigma*. Vol. 8. Cambridge University Press. 2020

The combinatorial interpretation of the q-rationals is given by a "q-analogue" of the previous theorem.

Define the *weight* of a lattice path $p \in P(r/s)$ as the number of boxes above the path.

Define \widehat{G} to be *G* reflected over the line y = x, and $\widehat{P}(r/s) := P(\widehat{G}(r/s))$. This corresponds to replacing $R \longleftrightarrow U$ everywhere in W(G).

Theorem [Morier-Genoud, Ovsienko¹]

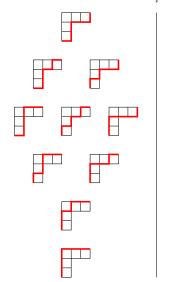
If
$$\left[\frac{r}{s}\right]_q = \frac{\mathcal{R}(q)}{\mathcal{S}(q)}$$
, then
(a) $\sum_{p \in P(r/s)} q^{\operatorname{wt}(p)} = \mathcal{R}(q)$
(b) $\sum q^{\operatorname{wt}(p)} = \mathcal{S}(q)$

¹Sophie Morier-Genoud and Valentin Ovsienko. "*q*-Continued Fractions". In: *Forum of Mathematics, Sigma*. Vol. 8. Cambridge University Press. 2020

 $p \in \widehat{P}(r'/s')$

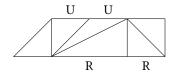
Example: We previously computed $\left[\frac{10}{7}\right]_q = \frac{1+q+2q^2+3q^3+2q^4+q^5}{1+q+2q^2+2q^3+q^4}$.

Example: We previously computed $\left[\frac{10}{7}\right]_q = \frac{1+q+2q^2+3q^3+2q^4+q^5}{1+q+2q^2+2q^3+q^4}$.

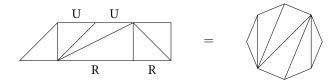


Connection with Cluster Algebras

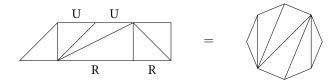
Example: $\frac{10}{7} = [1, 2, 2, 1]$ has word W(10/7) = UURR.



Example: $\frac{10}{7} = [1, 2, 2, 1]$ has word W(10/7) = UURR.

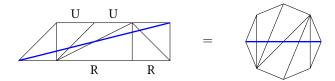


Example: $\frac{10}{7} = [1, 2, 2, 1]$ has word W(10/7) = UURR.



This defines a cluster algebra and an initial cluster.

Example: $\frac{10}{7} = [1, 2, 2, 1]$ has word W(10/7) = UURR.

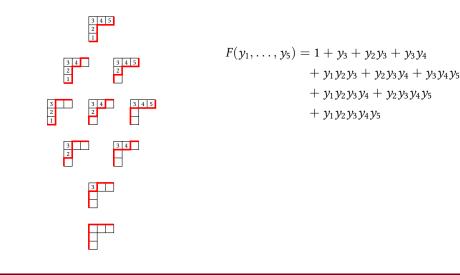


This defines a cluster algebra and an initial cluster.

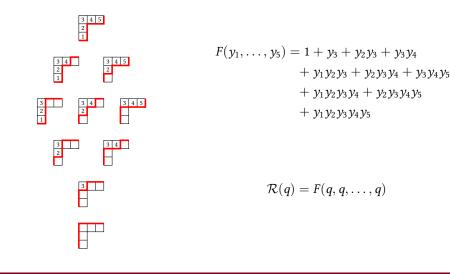
The "longest" arc corresponds to some cluster variable.

The *F*-polynomial of this cluster variable can be described in terms of the snake graph G(r/s):

The *F*-polynomial of this cluster variable can be described in terms of the snake graph G(r/s):



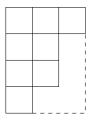
The *F*-polynomial of this cluster variable can be described in terms of the snake graph G(r/s):



For a partition λ which fits into a $k \times (n - k)$ rectangle, the "open Schubert cell" $\Omega_{\lambda}^{\circ} \subset \operatorname{Gr}_{k}(n)$ is the set of all subspaces represented by matrices whose echelon form is "shaped like λ ".

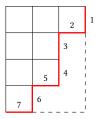
For a partition λ which fits into a $k \times (n - k)$ rectangle, the "open Schubert cell" $\Omega^{\circ}_{\lambda} \subset \operatorname{Gr}_{k}(n)$ is the set of all subspaces represented by matrices whose echelon form is "shaped like λ ".

Example: $\lambda = (3, 2, 2, 1)$ fits in a 4 × 3 rectangle ($\Omega_{\lambda}^{\circ} \subset \text{Gr}_{4}(7)$)



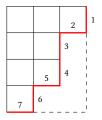
For a partition λ which fits into a $k \times (n - k)$ rectangle, the "open Schubert cell" $\Omega^{\circ}_{\lambda} \subset \operatorname{Gr}_{k}(n)$ is the set of all subspaces represented by matrices whose echelon form is "shaped like λ ".

Example: $\lambda = (3, 2, 2, 1)$ fits in a 4 × 3 rectangle ($\Omega_{\lambda}^{\circ} \subset \text{Gr}_{4}(7)$)



For a partition λ which fits into a $k \times (n - k)$ rectangle, the "open Schubert cell" $\Omega^{\circ}_{\lambda} \subset \operatorname{Gr}_{k}(n)$ is the set of all subspaces represented by matrices whose echelon form is "shaped like λ ".

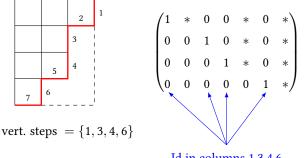
Example: $\lambda = (3, 2, 2, 1)$ fits in a 4 × 3 rectangle ($\Omega_{\lambda}^{\circ} \subset \text{Gr}_{4}(7)$)



vert. steps $= \{1, 3, 4, 6\}$

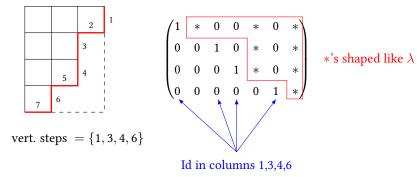
For a partition λ which fits into a $k \times (n - k)$ rectangle, the "open Schubert cell" $\Omega^{\circ}_{\lambda} \subset \operatorname{Gr}_{k}(n)$ is the set of all subspaces represented by matrices whose echelon form is "shaped like λ ".

Example: $\lambda = (3, 2, 2, 1)$ fits in a 4 × 3 rectangle ($\Omega_{\lambda}^{\circ} \subset \text{Gr}_{4}(7)$)



For a partition λ which fits into a $k \times (n - k)$ rectangle, the "open Schubert cell" $\Omega^{\circ}_{\lambda} \subset \operatorname{Gr}_{k}(n)$ is the set of all subspaces represented by matrices whose echelon form is "shaped like λ ".

Example: $\lambda = (3, 2, 2, 1)$ fits in a 4 × 3 rectangle ($\Omega_{\lambda}^{\circ} \subset \text{Gr}_{4}(7)$)



From this description, it is easy to see that dim $\Omega_{\lambda}^{\circ} = |\lambda|$.

From this description, it is easy to see that dim $\Omega_{\lambda}^{\circ} = |\lambda|$.

In particular, over \mathbb{F}_q , we have $|\Omega_{\lambda}^{\circ}| = q^{|\lambda|}$.

From this description, it is easy to see that dim $\Omega_{\lambda}^{\circ} = |\lambda|$.

In particular, over \mathbb{F}_q , we have $|\Omega_{\lambda}^{\circ}| = q^{|\lambda|}$.

It is well-known that $Gr_k(n)$ is the disjoint union of all open Schubert cells.

From this description, it is easy to see that dim $\Omega_{\lambda}^{\circ} = |\lambda|$.

In particular, over \mathbb{F}_q , we have $|\Omega_{\lambda}^{\circ}| = q^{|\lambda|}$.

It is well-known that $Gr_k(n)$ is the disjoint union of all open Schubert cells.

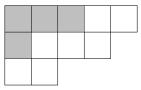
This explains the equality between the combinatorial and geometric expressions for the *q*-binomial coefficients $\binom{n}{k}_{q}$:

$$|\mathrm{Gr}_k(n)| = \sum_{\lambda} |\Omega^\circ_\lambda| = \sum_{\lambda} q^{|\lambda|}$$

It is easy to see that every snake graph is a *skew Young diagram* (a difference of two Young diagrams $\mu < \lambda$).

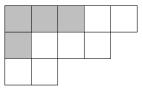
It is easy to see that every snake graph is a *skew Young diagram* (a difference of two Young diagrams $\mu < \lambda$).

Example: $\lambda = (5, 4, 2)$ and $\mu = (3, 1)$;



It is easy to see that every snake graph is a *skew Young diagram* (a difference of two Young diagrams $\mu < \lambda$).

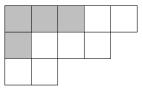
Example: $\lambda = (5, 4, 2)$ and $\mu = (3, 1)$;



For a snake graph *G*, let $\lambda(G)$ and $\mu(G)$ be these partitions.

It is easy to see that every snake graph is a *skew Young diagram* (a difference of two Young diagrams $\mu < \lambda$).

Example: $\lambda = (5, 4, 2)$ and $\mu = (3, 1)$;



For a snake graph *G*, let $\lambda(G)$ and $\mu(G)$ be these partitions.

```
If G = G(r/s), then write \lambda(r/s) and \mu(r/s).
```

Geometric Interpretation of *q*-Rationals

Theorem [O]¹

Let
$$\frac{r}{s} = [a_1, \ldots, a_{2m}]$$
, and let $\lambda = \lambda(r/s)$ and $\mu = \mu(r/s)$.

¹Nicholas Ovenhouse. "*q*-Rationals and Finite Schubert Varieties". In: *arXiv preprint arXiv:2111.07912* (2021)

Theorem [O]¹

Let
$$\frac{r}{s} = [a_1, \ldots, a_{2m}]$$
, and let $\lambda = \lambda(r/s)$ and $\mu = \mu(r/s)$.
Also define

$$n=\sum_{i=1}^{2m}a_i$$
 and $k=\sum_{i=1}^ma_{2i}$

¹Nicholas Ovenhouse. "*q*-Rationals and Finite Schubert Varieties". In: *arXiv preprint arXiv:2111.07912* (2021)

Theorem [O]¹

Let $\frac{r}{s} = [a_1, \ldots, a_{2m}]$, and let $\lambda = \lambda(r/s)$ and $\mu = \mu(r/s)$. Also define

$$n=\sum_{i=1}^{2m}a_i \hspace{0.5cm} ext{ and } \hspace{0.5cm} k=\sum_{i=1}^ma_{2i}$$

Then the numerator $\mathcal{R}(q)$ of $\left[\frac{r}{s}\right]_q$ counts the number of points in a union of Schubert cells in $\operatorname{Gr}_k(n)$:

$$q^{|\mu|}\cdot \mathcal{R}(q) = \left|\bigcup_{\mu \leq \nu \leq \lambda} \Omega_{\nu}^{\circ}\right|$$

¹Nicholas Ovenhouse. "*q*-Rationals and Finite Schubert Varieties". In: *arXiv preprint arXiv:2111.07912* (2021)

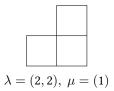
Example

Let $\frac{r}{s} = \frac{5}{2} = [2, 2].$

Example

Let $\frac{r}{s} = \frac{5}{2} = [2, 2].$

The *q*-rational is $\left[\frac{5}{2}\right]_q = \frac{1+2q+q^2+q^3}{1+q}$.



Let $\frac{r}{s} = \frac{5}{2} = [2, 2].$ The *q*-rational is $\left[\frac{5}{2}\right]_q = \frac{1+2q+q^2+q^3}{1+q}.$ $\lambda = (2, 2), \ \mu = (1)$

Then $q \cdot \mathcal{R}(q) = q(1 + 2q + q^2 + q^3) = q + 2q^2 + q^3 + q^4$ counts the number of 2-dimensional subspaces of $(\mathbb{F}_q)^4$ of the forms:

$$\begin{pmatrix} 0 & 1 & * & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & * & * & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 0 & * \\ 0 & 0 & 1 & * \end{pmatrix},$$
$$\begin{pmatrix} 1 & * & 0 & * \\ 0 & 0 & 1 & * \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \end{pmatrix}$$