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g-Integers




The classical “g-integer n” is the polynomial

Mg=1+q+¢+ - +q""
q
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The classical “g-integer n” is the polynomial

Mg=1+q+¢+ - +q""
q

From this, we have the “g-factorial”

[n]g! = [1]4[2]4[3]4 - -~ [nq
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The classical “g-integer n” is the polynomial

Mg=1+q+¢+ - +q""
q

From this, we have the “g-factorial”

[n]g! = [1]4[2]4[3]4 - -~ [nq

and the “g-binomial coefficients”
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Properties of g-Analogues
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Properties of g-Analogues

Most g-analogues (including these) usually satisfy two properties:
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Properties of g-Analogues

Most g-analogues (including these) usually satisfy two properties:

e If f(n) counts some set A,, then the g-analogue of f(n) is a generating function
for some statistic on A,,.
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Properties of g-Analogues

Most g-analogues (including these) usually satisfy two properties:

e If f(n) counts some set A,, then the g-analogue of f(n) is a generating function
for some statistic on A,,.

o The g-analogue of f(n) counts the size of some algebraic variety over I,
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g-Factorials
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For the g-factorial, we have:
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For the g-factorial, we have:

= 3 ¢

o€ES,
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For the g-factorial, we have:

= 3 ¢

o€ES,

and

[nlg! = [FI(n)]
where Fl(n) is the set of complete flags in (F,)".
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g-Binomial Coefflicients
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g-Binomial Coefflicients

For the g-binomial coefficients, we have:

(Z)q — Y g

159

where ) is the partition whose Young
diagram is a k X (n — k) rectangle.

(), =1+aq+2¢ +2¢ +2¢" + ¢ + ¢
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g-Binomial Coefflicients

For the g-binomial coefficients, we have:

(Z)q — Y g

159

H
: |

where ) is the partition whose Young
diagram is a k X (n — k) rectangle.

M-
/ N\
B0

Also, if P, i is the set of north-east lattice

paths:
i S g
= q

pePn,k

/
AN

.

(), =1+aq+2¢ +2¢ +2¢" + ¢ + ¢
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g-Binomial Coefflicients

Also, for the g-binomial coefficients, we have

(1), =lontn

where Gry(n) is the Grassmann variety of k-dimensional subspaces of (IF,)".
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g-Rationals
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We have g-integers [n],.
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We have g-integers [n],.

What about [x], for x € Q?
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We have g-integers [n],.
What about [x], for x € Q?

Naive Idea: define [ﬂq = [

[lq
[slg
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We have g-integers [n],.

What about [x], for x € Q?

Naive Idea: define [f} = [
S-q [slq

But this is not interesting!
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g-Rationals
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Given a rational number ¢ > 1, there is a unique continued fraction expansion of

the form
r 1
- i=a +
s

az+
a3+
ay+ ———
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Given a rational number ¢ > 1, there is a unique continued fraction expansion of
the form

r 1
*5:6114—
S

az+

a3+
ag+———

fe ro_
This is denoted £ = [ay, a3, . . ., azm].
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Given a rational number ¢ > 1, there is a unique continued fraction expansion of
the form

r 1
*5:6114—
S

az+

a+——
ag+ ———

This is denoted £ = [ay, a3, . . ., azm].

Example:

10
7 = [la 27 27 1]
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g-Rationals

Definition [Morier-Genoud, Ovsienko]’

Let £ > 1 be a rational number with £ > 1. If £ = [ay, @y, . . ., azp), then define the

“g-rational number” [ ] . by

1Sophie Morier-Genoud and Valentin Ovsienko. “g-Continued Fractions”. In: Forum of Mathematics,
Sigma. Vol. 8. Cambridge University Press. 2020
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g-Rationals

Definition [Morier-Genoud, Ovsienko]’

Let £ > 1 be a rational number with £ > 1. If £ = [ay, @y, . . ., azp), then define the
“g-rational number” [ ] . by
r q“
|:7:| - [al]q + —az
S-q q
[az]q*1 I qa3
[613]q + q7a4
[a4]q71 + qflm—x
or
[azm]q—l

1Sophie Morier-Genoud and Valentin Ovsienko. “g-Continued Fractions”. In: Forum of Mathematics,
Sigma. Vol. 8. Cambridge University Press. 2020
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Another Method of Computation
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Another Method of Computation

The group PSL,(Z) acts transitively on Q U {oc} by

a b _ax+b
c d x_cx+d
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Another Method of Computation

The group PSL,(Z) acts transitively on Q U {oc} by

a b _ax+b
c d x_cx+d

One possible generating set is
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Another Method of Computation

The group PSL,(Z) acts transitively on Q U {oc} by

a b x_ax+b
c d T oox+d

One possible generating set is

1 1 1 0
A(O 1> and B<1 1>

Example: We can send 1 to 2 by AB*A%:

A B 3
1—=3= 7=

Ovenhouse (UMN)
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Another Method of Computation
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Another Method of Computation

Define g-versions of the matrices A and B:

qg 1 q 0
Aq:<0 1) and Bq:<q 1)

Any M € PSLy(Z) can be written in terms of A and B, so we can define a
corresponding M,.
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Another Method of Computation

Define g-versions of the matrices A and B:

qg 1 q 0
Aq:(o 1) and Bq:<q 1)

Any M € PSLy(Z) can be written in terms of A and B, so we can define a
corresponding M,.

Theorem [Morier-Genoud, Leclere]!

The PSL,(Z) action commutes with g-deformation. That is, if x € Q, then

[M'x]q =M, - [x]q

1Ludivine Leclere and Sophie Morier-Genoud. “q-Deformations in the modular group and of the real
quadratic irrational numbers”. In: Advances in Applied Mathematics 130 (2021), p. 102223
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Another Method of Computation
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Another Method of Computation

10

Example: We saw that AB*A? - 1 = %. This means we can compute [7

2 A2
AGBLAL - 1.

]an
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Another Method of Computation

Example: We saw that AB*A? - 1 =

%. This means we can compute [10] as
2 A2
AgB Ay - 1.

7lq

Note that

qx
Ay x = 1 d B -x=
¢ X =gx+ an g X 1
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Another Method of Computation

Example: We saw that AB?A% -1 = %. This means we can compute [%] 438
2 22
AgBLAL - 1.

Note that
Aj-x=¢qgx+1 and B, -x= i
q q g+ 1
Then we get
A B? 2 3 4 A, 1 262 + 363 + 20* 5
1 -5 14q+q¢ —5 ¢tqa+gq Ao 14+q+2¢ +3¢ +29 +¢q
1+q+2¢+2¢ +¢ 1+q+2¢+2¢ + ¢
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Questions

We want to address the questions from before:




We want to address the questions from before:

If [£], = 54, then:
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We want to address the questions from before:

If [£], = 54, then:

(a) What are the combinatorial interpretations of R and S?
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We want to address the questions from before:

If [£], = 54, then:

(a) What are the combinatorial interpretations of R and S?

(b) What are the geometric interpretations of R and S?
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Snake Graphs

A snake graph is a graph made of square tiles, each either above or to the right of the
previous.
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Snake Graphs

A snake graph is a graph made of square tiles, each either above or to the right of the
previous.

Each snake graph G has a word W(G), in the alphabet {U, R}, specifying when it
goes up or right.
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Snake Graphs

A snake graph is a graph made of square tiles, each either above or to the right of the
previous.

W(G) = RR W(G) = URUR W(G) = RURR

Each snake graph G has a word W(G), in the alphabet {U, R}, specifying when it
goes up or right.
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Snake Graphs and Continued Fractions
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Snake Graphs and Continued Fractions

To each continued fraction £ = [ay, ..., am), associate a snake graph G(r/s) whose
word is
W(r/s) = R" "\ U“RSUY . .. Roon—1 %~
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Snake Graphs and Continued Fractions

To each continued fraction £ = [ay, ..., am), associate a snake graph G(r/s) whose
word is
W(r/s) = R" "\ U“RSUY . .. Roon—1 %~

W(G) = RR W(G) = URUR W(G) = RURR
G=G(4/1) G = G(13/8) G = G(11/4)
4/1=3,1] 13/8 =[1,1,1,1,1,1] 11/4 = [2,1,2,1]
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Snake Graphs and Continued Fractions
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Snake Graphs and Continued Fractions

Let P(r/s) be the set of north-east lattice paths on the snake graph G(r/s), going
from the bottom-left corner to the top-right corner.
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Snake Graphs and Continued Fractions

Let P(r/s) be the set of north-east lattice paths on the snake graph G(r/s), going
from the bottom-left corner to the top-right corner.

Theorem [Propp’ | Schiffler, Canakgi?]

Let £ = [ay, Gy, .. ., aypm), and % = [ag, as, . . ., Qo).

1James Propp. “The combinatorics of frieze patterns and Markoff numbers”. In: arXiv preprint
math/0511633 (2005)

%{lke Canakgi and Ralf Schiffler. “Cluster algebras and continued fractions”. In: Compositio
mathematica 154.3 (2018), pp. 565-593
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Snake Graphs and Continued Fractions

Let P(r/s) be the set of north-east lattice paths on the snake graph G(r/s), going
from the bottom-left corner to the top-right corner.

Theorem [Propp’ | Schiffler, Canakgi?]

Let £ = [ay, Gy, .. ., aypm), and % = [ag, as, . . ., Qo).

(@) |P(r/s)| =T

1James Propp. “The combinatorics of frieze patterns and Markoff numbers”. In: arXiv preprint
math/0511633 (2005)

lke Canakei and Ralf Schiffler. “Cluster algebras and continued fractions”. In: Compositio
mathematica 154.3 (2018), pp. 565-593
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Snake Graphs and Continued Fractions

Let P(r/s) be the set of north-east lattice paths on the snake graph G(r/s), going
from the bottom-left corner to the top-right corner.

Theorem [Propp’ | Schiffler, Canakgi?]

Let £ = [ay, Gy, .. ., aypm), and % = [ag, as, . . ., Qo).

(@) |P(r/s)| =T
(b) [P(r'/s)| = s

1James Propp. “The combinatorics of frieze patterns and Markoff numbers”. In: arXiv preprint
math/0511633 (2005)

ke Canakgi and Ralf Schiffler. “Cluster algebras and continued fractions”. In: Compositio
mathematica 154.3 (2018), pp. 565-593
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Combinatorial Interpretation of g-Rationals
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Combinatorial Interpretation of g-Rationals

The combinatorial interpretation of the g-rationals is given by a “g-analogue” of the
previous theorem.
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Combinatorial Interpretation of g-Rationals

The combinatorial interpretation of the g-rationals is given by a “g-analogue” of the
previous theorem.

Define the weight of a lattice path p € P(r/s) as the number of boxes above the path.

1Sophie Morier-Genoud and Valentin Ovsienko. “g-Continued Fractions”. In: Forum of Mathematics,
Sigma. Vol. 8. Cambridge University Press. 2020
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Combinatorial Interpretation of g-Rationals

The combinatorial interpretation of the g-rationals is given by a “g-analogue” of the
previous theorem.

Define the weight of a lattice path p € P(r/s) as the number of boxes above the path.

Define G to be G reflected over the line y = x, and P(r/s) := P(G(r/s)). This
corresponds to replacing R +— U everywhere in W(G).

1Sophie Morier-Genoud and Valentin Ovsienko. “g-Continued Fractions”. In: Forum of Mathematics,
Sigma. Vol. 8. Cambridge University Press. 2020
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Combinatorial Interpretation of g-Rationals

The combinatorial interpretation of the g-rationals is given by a “g-analogue” of the
previous theorem.

Define the weight of a lattice path p € P(r/s) as the number of boxes above the path.
Define G to be G reflected over the line y = x, and P(r/s) := P(G(r/s)). This

corresponds to replacing R +— U everywhere in W(G).
Theorem [Morier-Genoud, Ovsienko']

If [E]q = %, then

1Sophie Morier-Genoud and Valentin Ovsienko. “g-Continued Fractions”. In: Forum of Mathematics,
Sigma. Vol. 8. Cambridge University Press. 2020
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Combinatorial Interpretation of g-Rationals

The combinatorial interpretation of the g-rationals is given by a “g-analogue” of the

previous theorem.

Define the weight of a lattice path p € P(r/s) as the number of boxes above the path.

Define G to be G reflected over the line y = x, and P(r/s) := P(G(r/s)). This
corresponds to replacing R +— U everywhere in W(G).

Theorem [Morier-Genoud, Ovsienko']

If [E]q = %, then

(@ Y q"®=R(qg)

PEP(r/s)

1Sophie Morier-Genoud and Valentin Ovsienko. “g-Continued Fractions”. In: Forum of Mathematics,

Sigma. Vol. 8. Cambridge University Press. 2020
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Combinatorial Interpretation of g-Rationals

The combinatorial interpretation of the g-rationals is given by a “g-analogue” of the
previous theorem.

Define the weight of a lattice path p € P(r/s) as the number of boxes above the path.
Define G to be G reflected over the line y = x, and P(r/s) := P(G(r/s)). This

corresponds to replacing R +— U everywhere in W(G).
Theorem [Morier-Genoud, Ovsienko']

If [E]q = %, then

(@ Y q"®=R(qg)

PEP(r/s)

(b)Y g =35(g)

pEP(r'/s')

1Sophie Morier-Genoud and Valentin Ovsienko. “g-Continued Fractions”. In: Forum of Mathematics,
Sigma. Vol. 8. Cambridge University Press. 2020
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Combinatorial Interpretation of g-Rationals
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Combinatorial Interpretation of g-Rationals

0] - 1+g+2¢°+3¢°+24* +¢°
71q I+g+2¢°+2¢°+¢'

Example: We previously computed [
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Combinatorial Interpretation of g-Rationals

0] - 1+g+2¢°+3¢°+24* +¢°
71q I+g+2¢°+2¢°+¢'

Example: We previously computed [

o+

= =
= B
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Connection with Cluster Algebras

Given a rational number £, one can associate a triangulated polygon. Reading
W(r/s), put a “downward” triangle for “R” and an “upward” triangle for “U”, and
finnally put one extra triangle at the beginning and end.
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Connection with Cluster Algebras

Given a rational number £, one can associate a triangulated polygon. Reading
W(r/s), put a “downward” triangle for “R” and an “upward” triangle for “U”, and
finnally put one extra triangle at the beginning and end.

Example: 3! = [1,2,2,1] has word W(10/7) = UURR.

U U
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Connection with Cluster Algebras

Given a rational number £, one can associate a triangulated polygon. Reading
W(r/s), put a “downward” triangle for “R” and an “upward” triangle for “U”, and
finnally put one extra triangle at the beginning and end.

Example: 3! = [1,2,2,1] has word W(10/7) = UURR.

U U
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Connection with Cluster Algebras

Given a rational number £, one can associate a triangulated polygon. Reading
W(r/s), put a “downward” triangle for “R” and an “upward” triangle for “U”, and
finnally put one extra triangle at the beginning and end.

Example: 3! = [1,2,2,1] has word W(10/7) = UURR.

U U

This defines a cluster algebra and an initial cluster.

Ovenhouse (UMN)
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Connection with Cluster Algebras

Given a rational number £, one can associate a triangulated polygon. Reading
W(r/s), put a “downward” triangle for “R” and an “upward” triangle for “U”, and
finnally put one extra triangle at the beginning and end.

Example: 3! = [1,2,2,1] has word W(10/7) = UURR.

U U

This defines a cluster algebra and an initial cluster.

The “longest” arc corresponds to some cluster variable.
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Connection with Cluster Algebras
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Connection with Cluster Algebras

The F-polynomial of this cluster variable can be described in terms of the snake
graph G(r/s):
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Connection with Cluster Algebras

The F-polynomial of this cluster variable can be described in terms of the snake
graph G(r/s):

F(yi,o,¥5) =1+ 3+ 325+ ¥3)a

i + 1)2Ys + Ve YsYa + Y345
+ V1Y2Y3Ys + Vo V3VaYs

0 : T Y1)2Y3YaYs
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Connection with Cluster Algebras

The F-polynomial of this cluster variable can be described in terms of the snake
graph G(r/s):

F(yi,.. %) =1+ y3+ )5+ y3ys
T + V1)2)3 + Y23Ya + V31 Vs
+ 01Y2V3Ys + Y2 V31 Ys

3 34 3]4]5]
= 2 + Y1)2Y3Y1Y5
. R(CI):F(CI;%WI)
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Schubert Cells

For a partition A which fits into a k X (n — k) rectangle, the “open Schubert cell”

Q% C Grg(n) is the set of all subspaces represented by matrices whose echelon form
is “shaped like \”.
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Schubert Cells

For a partition A which fits into a k X (n — k) rectangle, the “open Schubert cell”

Q% C Grg(n) is the set of all subspaces represented by matrices whose echelon form
is “shaped like \”.

Example: \ = (3,2,2,1) fits in a 4 x 3 rectangle (2 C Gry(7))
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Schubert Cells

For a partition A which fits into a k X (n — k) rectangle, the “open Schubert cell”

Q% C Grg(n) is the set of all subspaces represented by matrices whose echelon form
is “shaped like \”.

Example: \ = (3,2,2,1) fits in a 4 x 3 rectangle (2 C Gry(7))
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Schubert Cells

For a partition A which fits into a k X (n — k) rectangle, the “open Schubert cell”

Q% C Grg(n) is the set of all subspaces represented by matrices whose echelon form
is “shaped like \”.

Example: \ = (3,2,2,1) fits in a 4 x 3 rectangle (2 C Gry(7))

vert. steps = {1,3,4,6}
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Schubert Cells

For a partition A which fits into a k X (n — k) rectangle, the “open Schubert cell”

Q% C Grg(n) is the set of all subspaces represented by matrices whose echelon form
is “shaped like \”.

Example: \ = (3,2,2,1) fits in a 4 x 3 rectangle (2 C Gry(7))

2 |! 1 % 0 0 % 0 *
3o 00 1 0 % 0 =
543 000 1 % 0 *
P 00000 1 *

vert. steps = {1,3,4,6}

Id in columns 1,3,4,6
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Schubert Cells

For a partition A which fits into a k X (n — k) rectangle, the “open Schubert cell”

Q% C Grg(n) is the set of all subspaces represented by matrices whose echelon form
is “shaped like \”.

Example: \ = (3,2,2,1) fits in a 4 x 3 rectangle (2 C Gry(7))

1
2 1/« 0 0
3 00 10 _
| 0 0 0 *’s shaped like A
4 1
5 |
[ 0 0 0 O
7 ¢ l

vert. steps = {1,3,4,6}

Id in columns 1,3,4,6
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Cell Decomposition of Gry(n)
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Cell Decomposition of Gry(n)

From this description, it is easy to see that dim Q5 = |}|.
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Cell Decomposition of Gry(n)

From this description, it is easy to see that dim Q5 = |}|.

In particular, over Fy, we have |Q3| = ¢1*l.
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Cell Decomposition of Gry(n)

From this description, it is easy to see that dim Q5 = |}|.
In particular, over Fy, we have |Q3| = ¢1*l.

It is well-known that Gri(n) is the disjoint union of all open Schubert cells.
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Cell Decomposition of Gry(n)

From this description, it is easy to see that dim Q5 = |}|.
In particular, over Fy, we have |Q3| = ¢1*l.
It is well-known that Gri(n) is the disjoint union of all open Schubert cells.

This explains the equality between the combinatorial and geometric expressions for
the g-binomial coefficients (}) E

|Gri(n Ifz:lQ I*z:q'AI
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Snake Graphs and Young Diagrams
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Snake Graphs and Young Diagrams

It is easy to see that every snake graph is a skew Young diagram (a difference of two
Young diagrams p1 < ).
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Snake Graphs and Young Diagrams

It is easy to see that every snake graph is a skew Young diagram (a difference of two
Young diagrams p1 < ).

Example: A\ = (5,4,2) and u = (3,1);
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Snake Graphs and Young Diagrams

It is easy to see that every snake graph is a skew Young diagram (a difference of two
Young diagrams p1 < ).

Example: A\ = (5,4,2) and u = (3,1);

For a snake graph G, let A(G) and 11(G) be these partitions.
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Snake Graphs and Young Diagrams

It is easy to see that every snake graph is a skew Young diagram (a difference of two
Young diagrams p1 < ).

Example: A\ = (5,4,2) and u = (3,1);

For a snake graph G, let A(G) and 11(G) be these partitions.

If G = G(r/s), then write \(r/s) and u(r/s).
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Geometric Interpretation of g-Rationals
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Geometric Interpretation of g-Rationals

Theorem [O]*

Let £ = [ay, ..., aym), and let A = A(r/s) and pu = pu(r/s).

INicholas Ovenhouse. “g-Rationals and Finite Schubert Varieties”. In: arXiv preprint arXiv:2111.07912
(2021)
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Geometric Interpretation of g-Rationals

Theorem [O]*

Let £ = [ay, ..., aym), and let A = A(r/s) and pu = pu(r/s).
Also define

2m m
n= E a; and k= E a;
i=1 i=1

INicholas Ovenhouse. “g-Rationals and Finite Schubert Varieties”. In: arXiv preprint arXiv:2111.07912
(2021)
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Geometric Interpretation of g-Rationals

Theorem [O]*
Let £ = [ay, ..., aym), and let A = A(r/s) and pu = pu(r/s).

Also define ,
n:Zai and k:Zaz,-
i=1 i=1

Then the numerator R(q) of [£] , counts the number of points in a union of
Schubert cells in Grg(n):

¢ Rig=| U &

p<v<A

INicholas Ovenhouse. “g-Rationals and Finite Schubert Varieties”. In: arXiv preprint arXiv:2111.07912
(2021)
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Example




Let £ =2 =[2,2].

1+2g+¢°+¢°
1+q :

The g-rational is [%] 0=
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Let £ =2 =2,2].

1+2g+¢°+¢°
1+q :

The g-rational is [%] .

A= (2’2)7 = (1)

Then q- R(q) = q(1 +2q9+ ¢* + ¢°) = q+ 2¢* + ¢ + ¢* counts the number of
2-dimensional subspaces of (F,)* of the forms:

0 1 x 0 1 *x % 0 0 1 0 =x
o000 1/ \oo o 1) \o o 1 %/’
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Thank You!




