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Snake Graphs

A snake graph is a planar graph, built out of square tiles, where each is attached to
either to the right or top edge of the previous.

Examples:

W (G) = RR

W (G) = URRU W (G) = RURUR

A snake graph G is naturally described by a word W (G) in the alphabet {R,U}
(“right” and “up”).
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Duality
Let x 7→ x be the involution on the set {R,U}.
If W = w1w2 · · ·wn is a word, define the dual word W ∗ to be

W ∗ = w1w2w3w4 · · ·w2k−1w2k · · ·

For a continued fraction [a1, . . . , an] = a1 +
1

a2 +
1

. . . +
1
an

, we associate a snake

graph G = G[a1, . . . , an], defined so that W (G)∗ = Ra1−1U a2Ra3U a4 · · · Ran−1U an−1.

Example: 103
30 = [3, 2, 3, 4]

W ∗ = RRUURRRUUU
W = URRUURUURU
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Dimer Cover Enumeration Theorem

Theorem [Çanakçı, Shiffler]
If r

s = [a1, a2, . . . , an], then the number of dimer covers of G[a1, . . . , an] is r , and the
number of dimer covers of G[a2, . . . , an] is s.

Example: 5
2 = [2, 2]

G[2, 2] :

G[2] :
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Higher Dimer Covers

For a graph G, an m-dimer cover is a multiset of edges so that each vertex is incident
to m edges.

When m = 1, this is an ordinary dimer cover (perfect matching)
When m = 2, this is called double dimer cover

Examples:

m = 2 m = 3

Question: How many m-dimer covers on a snake graph G[a1, . . . , an]?
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Why Count m-Dimer Covers?

Cluster algebras coming from triangulated surfaces are algebras of functions on the
decorated Teichmüller space.

In 2019, Penner and Zeitlin defined a supermanifold generalizing the decorated
Teichmüller space, by adding anti-commuting variables corresponding to triangles.
They described the action of a flip of a triangulation.

Theorem [Musiker, O, Zhang 2021-2022]
The super cluster variables satisfy the Laurent phenomenon, and the terms in these
Laurent polynomials are indexed by double dimer covers of snake graphs.
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Matrices for Continued Fractions

For a positive integer a ∈ Z, define the matrix

Λ(a) :=
(
a 1
1 0

)
For a finite continued fraction

[a1, a2, . . . , an] = a1 +
1

a2 +
1

. . . +
1
an

if [a1, . . . , an] = r
s , and [a1, . . . , an−1] =

r′
s′ , then

Λ(a1)Λ(a2) · · ·Λ(an) =
(
r r ′

s s′

)
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Bigger Matrices

For a ∈ N, define the (m+ 1)× (m+ 1) matrix

Λ(a) =



(( a
m

)) ((
a

m−1

))
· · ·

(( a
2

))
a 1((

a
m−1

)) ((
a

m−2

))
· · · a 1 0

...
...

... ... ...
...(( a

2

))
a 1 0 · · · 0

a 1 0 · · · · · · 0
1 0 0 · · · · · · 0


where

(( n
k

))
=

(n+k−1
k

)
.

Theorem[Musiker, O, Schiffler, Zhang]
Let M = Λ(a1)Λ(a2) · · ·Λ(an). Then the upper-left entry of M is the number of
m-dimer covers of G[a1, . . . , an].
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Higher Continued Fractions

For x = [a1, . . . , an], let M = Λ(a1) · · ·Λ(an).

Define ri,m(x) :=
Mm+1−i,1
Mm+1,1

.
In other words,

1
Mm+1,1

M =


rm,m(x) ∗ · · · ∗
rm−1,m(x) ∗ · · · ∗

...
. . . · · ·

...
r1,m(x) ∗ · · · ∗

1 ∗ · · · ∗
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Recursive Definition

Base Cases: Define r0,m([a1, . . . , an]) = 1 and ri,m([a1]) =
(( a

i

))
.

Otherwise: ri,m([a1, . . . , an]) =
i∑

k=0

((a1
k

)) rm−i+k,m([a2, . . . , an])
rm,m([a2, . . . , an])

For m = 1, we have the usual recurrence for continued fractions:

r1([a1, . . . , an]) = a1 +
1

r1([a2, . . . , an])

For m = 2, this is

r1,2([a1, . . . , an]) = a1 +
r1,2([a2, . . . , an])
r2,2([a2, . . . , an])

r2,2([a1, . . . , an]) =
((a1

2

))
+ a1

r1,2([a2, . . . , an])
r2,2([a2, . . . , an])

+
1

r2,2([a2, . . . , an])
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Alternate Statement of Theorem

Theorem [Musiker, O, Schiffler, Zhang]
Let x = [a1, . . . , an]. Then

rm,m(x) =
# of m-dimer covers of G[a1, . . . , an]
# of m-dimer covers of G[a2, . . . , an]
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Example (m = 2)

5
2 = [2, 2], Λ(2)Λ(2) =

14 8 3
8 5 2
3 2 1

, r2,2(5/2) = 14/3
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Extension to Real Numbers

Theorem [Musiker, O, Schiffler, Zhang]
Let x = [a1, a2, . . . ] be an irrational number, and let xn = [a1, . . . , an] be its
continuants. For fixed i and m, the sequence ri,m(xn) converges.

Theorem [Musiker, O, Schiffler, Zhang]
If x is a quadratic irrational (i.e. its continued fraction is eventually periodic), then
ri,m(x) is an algebraic number of degree (at most) m+ 1.
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An Example

Let Gn be the straight snake graph with n− 1 squares.
The number of dimer covers of Gn are the Fibonacci numbers, and
limn→∞

fn
fn−1

= φ = 1+
√
5

2 .

Let ρm be the length of the longest diagonal in a regular (2m+ 3)-gon with side
length 1. Then

rm,m(φ) = lim
n→∞

# of m-dimer covers of Gn

# of m-dimer covers of Gn−1
= ρm

For m = 2, the number of double-dimer covers of Gn are 3, 6, 14, 31, . . . , and the
consecutive ratios converge to ρ2 = 4 cos2(π/7)− 1 ≈ 2.247, whose minimal
polynomial is x3 − 2x2 − x + 1.
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Relation to Plane Partitions

There is a bijection between the set Ωm(G) of m-dimer covers on a snake graph G,
and reverse plane partitions on the dual snake graph G∗, with all parts at most m.

Stanley gave formulas for generating functions of reverse plane partitions.

Using Stanley’s formulas, and considering G∗ as a poset (and L(G∗) the set of linear
extensions), we have:

∑
m≥0

|Ωm(G)| xm =
1

(1− x)N
∑

σ∈L(G∗)

xdes(σ)
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A More Refined q-Version

The set Ωm(G) has a natural partial order extending the one for ordinary dimer
covers.

Replacing |Ωm(G)| in the previous expression with the rank polynomial of Ωm(G),
we get:

∑
m≥0

∑
D∈Ωm(G)

q|D|xm =
1

(x; q)N

∑
σ∈L(G∗)

qmaj(σ)xdes(σ)

where (x; q)N = (1− x)(1− qx)(1− q2x) · · · (1− qN−1x).
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Example

For straight snake graphs, there is only one linear extension, and so:

∑
m≥0

∑
D∈Ωm(G)

q|D|xm =
1

(x; q)N

By the “q-binomial theorem”, this means∑
D∈Ωm(G)

q|D| =
(
N +m− 1

m

)
q
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Thank You!
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