Higher Dimer Covers and Continued Fractions

Nick Ovenhouse
(joint with Gregg Musiker, Ralf Schiffler, and Sylvester Zhang)

Yale University

August, 2023
Dimers: Combinatorics, Representation Theory and Physics

Snake Graphs

A snake graph is a planar graph, built out of square tiles, where each is attached to either to the right or top edge of the previous.

Examples:

$$
W(G)=R R
$$

$$
W(G)=U R R U \quad W(G)=R U R U R
$$

A snake graph G is naturally described by a word $W(G)$ in the alphabet $\{R, U\}$ ("right" and "up").

Duality

Let $x \mapsto \bar{x}$ be the involution on the set $\{R, U\}$.
If $W=w_{1} w_{2} \cdots w_{n}$ is a word, define the dual word W^{*} to be

$$
W^{*}=\bar{w}_{1} w_{2} \bar{w}_{3} w_{4} \cdots \bar{w}_{2 k-1} w_{2 k} \cdots
$$

For a continued fraction $\left[a_{1}, \ldots, a_{n}\right]=a_{1}+\frac{1}{1}$, we associate a snake

$$
a_{2}+\frac{1}{\ddots+\frac{1}{a_{n}}}
$$

graph $G=G\left[a_{1}, \ldots, a_{n}\right]$, defined so that $W(G)^{*}=R^{a_{1}-1} U^{a_{2}} R^{a_{3}} U^{a_{4}} \cdots R^{a_{n-1}} U^{a_{n}-1}$.
Example: $\frac{103}{30}=[3,2,3,4]$

$$
\begin{aligned}
W^{*} & =R R U U R R R U U U \\
W & =U R R U U R U U R U
\end{aligned}
$$

Dimer Cover Enumeration Theorem

Theorem [Çanakçı, Shiffler]

If $\frac{r}{s}=\left[a_{1}, a_{2}, \ldots, a_{n}\right]$, then the number of dimer covers of $G\left[a_{1}, \ldots, a_{n}\right]$ is r, and the number of dimer covers of $G\left[a_{2}, \ldots, a_{n}\right]$ is s.

Example: $\frac{5}{2}=[2,2]$
$G[2,2]:$

$$
G[2]: \quad \square \quad \square
$$

Higher Dimer Covers

For a graph G, an m-dimer cover is a multiset of edges so that each vertex is incident to m edges.

- When $m=1$, this is an ordinary dimer cover (perfect matching)
- When $m=2$, this is called double dimer cover

Examples:

$$
m=2
$$

$$
m=3
$$

Question: How many m-dimer covers on a snake graph $G\left[a_{1}, \ldots, a_{n}\right]$?

Why Count m-Dimer Covers?

Cluster algebras coming from triangulated surfaces are algebras of functions on the decorated Teichmüller space.

In 2019, Penner and Zeitlin defined a supermanifold generalizing the decorated Teichmüller space, by adding anti-commuting variables corresponding to triangles. They described the action of a flip of a triangulation.

Theorem [Musiker, O, Zhang 2021-2022]

The super cluster variables satisfy the Laurent phenomenon, and the terms in these Laurent polynomials are indexed by double dimer covers of snake graphs.

Matrices for Continued Fractions

For a positive integer $a \in \mathbb{Z}$, define the matrix

$$
\Lambda(a):=\left(\begin{array}{ll}
a & 1 \\
1 & 0
\end{array}\right)
$$

For a finite continued fraction

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right]=a_{1}+\frac{1}{a_{2}+\frac{1}{\ddots+\frac{1}{a_{n}}}}
$$

if $\left[a_{1}, \ldots, a_{n}\right]=\frac{r}{s}$, and $\left[a_{1}, \ldots, a_{n-1}\right]=\frac{r^{\prime}}{s^{\prime}}$, then

$$
\Lambda\left(a_{1}\right) \Lambda\left(a_{2}\right) \cdots \Lambda\left(a_{n}\right)=\left(\begin{array}{ll}
r & r^{\prime} \\
s & s^{\prime}
\end{array}\right)
$$

Bigger Matrices

For $a \in \mathbb{N}$, define the $(m+1) \times(m+1)$ matrix

$$
\Lambda(a)=\left(\begin{array}{cccccc}
\left(\binom{a}{m}\right. \\
\left(\binom{a}{a-1}\right) & \left(\left(\begin{array}{c}
a \\
m-1 \\
a \\
m-2
\end{array}\right)\right) & \cdots & \left(\binom{a}{2}\right. & a & 1 \\
\vdots & \vdots & a & 1 & 0 \\
\binom{a}{2} & a & 1 & . & . . & \vdots \\
a & 1 & 0 & \cdots & \cdots & 0 \\
1 & 0 & 0 & \cdots & \cdots & 0
\end{array}\right)
$$

where $\binom{n}{k}=\binom{n+k-1}{k}$.

Theorem[Musiker, O, Schiffler, Zhang]

Let $M=\Lambda\left(a_{1}\right) \Lambda\left(a_{2}\right) \cdots \Lambda\left(a_{n}\right)$. Then the upper-left entry of M is the number of m-dimer covers of $G\left[a_{1}, \ldots, a_{n}\right]$.

Higher Continued Fractions

For $x=\left[a_{1}, \ldots, a_{n}\right]$, let $M=\Lambda\left(a_{1}\right) \cdots \Lambda\left(a_{n}\right)$.

Define $r_{i, m}(x):=\frac{M_{m+1-i, 1}}{M_{m+1,1}}$.
In other words,

$$
\frac{1}{M_{m+1,1}} M=\left(\begin{array}{cccc}
r_{m, m}(x) & * & \cdots & * \\
r_{m-1, m}(x) & * & \cdots & * \\
\vdots & \ddots & \cdots & \vdots \\
r_{1, m}(x) & * & \cdots & * \\
1 & * & \cdots & *
\end{array}\right)
$$

Recursive Definition

Base Cases: Define $r_{0, m}\left(\left[a_{1}, \ldots, a_{n}\right]\right)=1$ and $r_{i, m}\left(\left[a_{1}\right]\right)=\left(\binom{a}{i}\right.$.
Otherwise: $r_{i, m}\left(\left[a_{1}, \ldots, a_{n}\right]\right)=\sum_{k=0}^{i}\left(\binom{a_{1}}{k}\right) \frac{r_{m-i+k, m}\left(\left[a_{2}, \ldots, a_{n}\right]\right)}{r_{m, m}\left(\left[a_{2}, \ldots, a_{n}\right]\right)}$
For $m=1$, we have the usual recurrence for continued fractions:

$$
r_{1}\left(\left[a_{1}, \ldots, a_{n}\right]\right)=a_{1}+\frac{1}{r_{1}\left(\left[a_{2}, \ldots, a_{n}\right]\right)}
$$

For $m=2$, this is

$$
\begin{aligned}
& r_{1,2}\left(\left[a_{1}, \ldots, a_{n}\right]\right)=a_{1}+\frac{r_{1,2}\left(\left[a_{2}, \ldots, a_{n}\right]\right)}{r_{2,2}\left(\left[a_{2}, \ldots, a_{n}\right]\right)} \\
& r_{2,2}\left(\left[a_{1}, \ldots, a_{n}\right]\right)=\left(\binom{a_{1}}{2}\right)+a_{1} \frac{r_{1,2}\left(\left[a_{2}, \ldots, a_{n}\right]\right)}{r_{2,2}\left(\left[a_{2}, \ldots, a_{n}\right]\right)}+\frac{1}{r_{2,2}\left(\left[a_{2}, \ldots, a_{n}\right]\right)}
\end{aligned}
$$

Alternate Statement of Theorem

Theorem [Musiker, O, Schiffler, Zhang]

Let $x=\left[a_{1}, \ldots, a_{n}\right]$. Then

$$
r_{m, m}(x)=\frac{\# \text { of } m \text {-dimer covers of } G\left[a_{1}, \ldots, a_{n}\right]}{\# \text { of } m \text {-dimer covers of } G\left[a_{2}, \ldots, a_{n}\right]}
$$

Example $(m=2)$

$\frac{5}{2}=[2,2]$,

$$
\Lambda(2) \Lambda(2)=\left(\begin{array}{ccc}
14 & 8 & 3 \\
8 & 5 & 2 \\
3 & 2 & 1
\end{array}\right)
$$

$$
r_{2,2}(5 / 2)=14 / 3
$$

Extension to Real Numbers

Theorem [Musiker, O, Schiffler, Zhang]

Let $x=\left[a_{1}, a_{2}, \ldots\right]$ be an irrational number, and let $x_{n}=\left[a_{1}, \ldots, a_{n}\right]$ be its continuants. For fixed i and m, the sequence $r_{i, m}\left(x_{n}\right)$ converges.

Theorem [Musiker, O, Schiffler, Zhang]

If x is a quadratic irrational (i.e. its continued fraction is eventually periodic), then $r_{i, m}(x)$ is an algebraic number of degree (at most) $m+1$.

An Example

Let G_{n} be the straight snake graph with $n-1$ squares.
The number of dimer covers of G_{n} are the Fibonacci numbers, and $\lim _{n \rightarrow \infty} \frac{f_{n}}{f_{n-1}}=\varphi=\frac{1+\sqrt{5}}{2}$.

Let ρ_{m} be the length of the longest diagonal in a regular $(2 m+3)$-gon with side length 1 . Then

$$
r_{m, m}(\varphi)=\lim _{n \rightarrow \infty} \frac{\text { \# of } m \text {-dimer covers of } G_{n}}{\# \text { of } m \text {-dimer covers of } G_{n-1}}=\rho_{m}
$$

For $m=2$, the number of double-dimer covers of G_{n} are $3,6,14,31, \ldots$, and the consecutive ratios converge to $\rho_{2}=4 \cos ^{2}(\pi / 7)-1 \approx 2.247$, whose minimal polynomial is $x^{3}-2 x^{2}-x+1$.

Relation to Plane Partitions

There is a bijection between the set $\Omega_{m}(G)$ of m-dimer covers on a snake graph G, and reverse plane partitions on the dual snake graph G^{*}, with all parts at most m.

Stanley gave formulas for generating functions of reverse plane partitions.

Using Stanley's formulas, and considering G^{*} as a poset (and $\mathcal{L}\left(G^{*}\right)$ the set of linear extensions), we have:

$$
\sum_{m \geq 0}\left|\Omega_{m}(G)\right| x^{m}=\frac{1}{(1-x)^{N}} \sum_{\sigma \in \mathcal{L}\left(G^{*}\right)} x^{\operatorname{des}(\sigma)}
$$

A More Refined q-Version

The set $\Omega_{m}(G)$ has a natural partial order extending the one for ordinary dimer covers.

Replacing $\left|\Omega_{m}(G)\right|$ in the previous expression with the rank polynomial of $\Omega_{m}(G)$, we get:

$$
\sum_{m \geq 0} \sum_{D \in \Omega_{m}(G)} q^{|D|} x^{m}=\frac{1}{(x ; q)_{N}} \sum_{\sigma \in \mathcal{L}\left(G^{*}\right)} q^{\operatorname{maj}(\sigma)} x^{\operatorname{des}(\sigma)}
$$

where $(x ; q)_{N}=(1-x)(1-q x)\left(1-q^{2} x\right) \cdots\left(1-q^{N-1} x\right)$.

Example

For straight snake graphs, there is only one linear extension, and so:

$$
\sum_{m \geq 0} \sum_{D \in \Omega_{m}(G)} q^{|D|} x^{m}=\frac{1}{(x ; q)_{N}}
$$

By the " q-binomial theorem", this means

$$
\sum_{D \in \Omega_{m}(G)} q^{|D|}=\binom{N+m-1}{m}_{q}
$$

Thank You!

