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Ptolemy’s Theorem

Take a quadrilateral inscribed in a circle,
with lengths labelled as in the picture.

Then xy = ac + bd.
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Triangulated Polygons

For a polygon (inscribed in a circle), let

xij = length of diagonal (i, j)

Fix a triangulation.
We can express any xij in terms of x’s
from the triangulation.
Example:

x25 =
x15x23 + x12x35

x13

=
x15x23 + x12

(
x15x34+x13x45

x14

)
x13

=
x14x15x23 + x12x15x34 + x12x13x45

x13x14

1

2

3 4

5
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Main Question

Question: How to predict what these expressions will look like after several
iterations?

Answer: They are generating functions of “dimer covers” of certain graphs.
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Dimer Covers

A “dimer cover” (or “perfect matching”) of a graph Γ is a subset of edges so that every
vertex is incident to one edge.

Examples:

a

b c

d

ef

g

weight = ace

If the edges have weights, then the “weight” of a dimer cover is the product of the
edge weights.
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Snake Graphs

A “snake graph” is a planar graph built out of square tiles, where each tile is attached
to the previous on either the right or top side.

Examples:

W (G) = RR

W (G) = URRU W (G) = RURUR

To each snake graph G, we can associate a word W (G) in the alphabet {R,U} (for
“right” and “up”).
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Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is not in the triangulation, we
will construct a snake graph Gγ . Assume γ crosses all interior edges of the
triangulation (and all triangles).

Traverse γ
For each triangle (except �rst and
last), look at its boundary side
For 2nd triangle, if right, label R, if
left, label U
If same side, opposite letter
If opposite side, same letter

RR

U U

W (Gγ) = RRUU
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Snake Graph from a Triangulation

To label the snake graph, odd tiles match polygon labels, even tiles have opposite
orientation.

x4

x3

x2

x1 x8

x7

x6

x5

y1

y2

y3

y4

y5

x1

x8

x7

y2

y1

y3

x2

y2

y4

x3

y3

x6

y5

x5
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The Laurent Formula

Theorem [Musiker, Schi�er]1

xγ =
1

cross(γ)

∑
M∈D(Gγ)

wt(M)

where cross(γ) is the product of all edges of the triangulation which γ crosses.

Corollary
Each xγ is a Laurent polynomial in the lengths of the diagonals from any �xed
triangulation.

1Gregg Musiker and Ralf Schi�er. “Cluster expansion formulas and perfect matchings”. In: Journal of
Algebraic Combinatorics 32.2 (2010), pp. 187–209
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Example

1

2

3 4

5

x23

x12

x14

x34

x13

x15

x45

x25 =
1

x13x14

(
x14x23x15 + x12x34x15 + x12x13x45

)
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Super Algebras

A “super algebra” is a Z2-graded algebra.

i.e. A = A0 ⊕ A1, (the “even” and “odd” parts) and

AiAj ⊆ Ai+j

A super algebra is called “commutative” (or “super commutative”) if for all a, b ∈ A0
and x, y ∈ A1:

ab = ba, ax = xa, xy = −yx

The basic example of a commutative super algebra is the one generated by
x1, . . . , xn, θ1, . . . , θm, subject to the relations

xixj = xjxi, xiθj = θjxi, θiθj = −θjθi

in particular, θ2
i = 0
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Super Algebra from a Triangulation

Given an n-gon, choose:

a triangulation T

an orientation of each edge in T
(We will not draw boundary orientations)

1

2

3 4

5

Consider the commutative super algebra with one even generator xij for each
diagonal in T , and one odd generator θijk for each triangle in T .

The example above would have 7 even generators and 3 odd generators.
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The Super Ptolemy Relation

Given two adjacent triangles, we can “�ip” the diagonal:

a b

cd

e
θ

σ

a b

cd

f (orientation reversed)

θ′ σ′

We de�ne the new variables via the relations1:

ef = ac + bd +
√
abcd σθ

θ′ =

√
bd θ +

√
ac σ√

ac + bd

σ′ =

√
bd σ −

√
ac θ√

ac + bd
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Another Set of Variables

Consider a triangle with vertices i, j, k,
and associated variables xij, xik, xjk, θ:

i

j k

θ

xikxij

xjk

To each vertex of the triangle, de�ne:

An even variable hijk :=
xjk
xijxik

An odd variable θ(i) :=
√
hijk θ =

√
xjk
xijxik

θ

An odd variable θ(i) := θ√
hijk

=
√

xijxik
xjk

θ
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Alternate Super Ptolemy Relation

i

j

k

`

a b

cd

e
θ

σ

i

j

k

`

a b

cd

f

ϕ ψ

Using these new variables, the super Ptolemy relation looks like:

f =
ac + bd

e
+ σ(j)θ(`)

ϕ(i) = σ(i) + θ(i)

ψ(k) = σ(k) − θ(k)

Ovenhouse (Yale) Cluster Superalgebras Sep 22 15 / 32



The Main Question

Starting with a �xed triangulation, we can reach any diagonal by a sequence of �ips.
Using the super Ptolemy relation, we will get some algebraic expression attached to
this diagonal.

Question: Can we explicitly describe these algebraic expressions?

Answer: Yes! They are generating functions for “double dimer covers” of the snake
graph.
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Double Dimer Covers

A double dimer cover of a graph is the union of two dimer covers. It is composed of
cycles and doubled edges.

Examples:
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Double Dimer Covers on Snake Graphs

Every square face in a snake graph represents two triangles in the triangulation. We
will label the faces with the odd variables of those triangles.

θ1

θ2

θ2

θ3

θ3

θ4

θ4

θ5

θ5

θ6

x

y

za

b c

d

ef

weight = xyz
√
abcdef θ1θ3

The weight of a double dimer cover M is

wt(M) =

∏
edges
e∈M

√
e

 ·
∏

cycles

θiθj


where θi, θj are the labels in the bottom-left and top-right of the cycle.
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Laurent Formula

Theorem[Musiker, O., Zhang]1

Given a �xed triangulation T , the even variable xγ corresponding to a diagonal
which is not in T is given by

xγ =
1

cross(γ)

∑
double dimers
M∈DD(Gγ)

wt(M)

Moreover, there is an ordering of the θ’s which makes all terms positive.

Corollary (“Laurent Phenomenon”)
Each xγ is a Laurent polynomial in the √xij ’s and θijk’s.

1Ovenhouse Musiker and Zhang. “An Expansion Formula for Decorated Super-Teichmüller Spaces”.
In: arXiv preprint arXiv:2102.09143 (2021)
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Example

1

2

3 4

5
θ1 θ2 θ3

x23

x12

x14

x34

x13

x15

x45

θ1

θ2

θ2

θ3

x25 =
1

x13x14

(
x14x23x15 + x12x34x15 + x12x13x45

+ x15
√
x12x14x23x34 θ1θ2 + x12

√
x13x15x34x45 θ2θ3

+
√
x12x13x14x15x23x45 θ1θ3

)

Ovenhouse (Yale) Cluster Superalgebras Sep 22 20 / 32



Example

1

2

3 4

5
θ1 θ2 θ3

x23

x12

x14

x34

x13

x15

x45

θ1

θ2

θ2

θ3

x25 =
1

x13x14

(
x14x23x15 + x12x34x15 + x12x13x45

+ x15
√
x12x14x23x34 θ1θ2 + x12

√
x13x15x34x45 θ2θ3

+
√
x12x13x14x15x23x45 θ1θ3

)

Ovenhouse (Yale) Cluster Superalgebras Sep 22 20 / 32



Example

1

2

3 4

5
θ1 θ2 θ3

x23

x12

x14

x34

x13

x15

x45

θ1

θ2

θ2

θ3

x25 =
1

x13x14

(
x14x23x15 + x12x34x15 + x12x13x45

+ x15
√
x12x14x23x34 θ1θ2 + x12

√
x13x15x34x45 θ2θ3

+
√
x12x13x14x15x23x45 θ1θ3

)
Ovenhouse (Yale) Cluster Superalgebras Sep 22 20 / 32



Fibonacci Numbers

Let Gm be the snake graph which is a horizontal row of m boxes:

The number of dimer covers of Gm are the Fibonacci numbers.

|D(G1)| = 2

|D(G2)| = 3

|D(G3)| = 5

|D(G4)| = 8

Ovenhouse (Yale) Cluster Superalgebras Sep 22 21 / 32



Fibonacci Numbers

Let Gm be the snake graph which is a horizontal row of m boxes:

The number of dimer covers of Gm are the Fibonacci numbers.

|D(G1)| = 2

|D(G2)| = 3

|D(G3)| = 5

|D(G4)| = 8

Ovenhouse (Yale) Cluster Superalgebras Sep 22 21 / 32



Fibonacci Numbers

Let Gm be the snake graph which is a horizontal row of m boxes:

The number of dimer covers of Gm are the Fibonacci numbers.

|D(G1)| = 2

|D(G2)| = 3

|D(G3)| = 5

|D(G4)| = 8

Ovenhouse (Yale) Cluster Superalgebras Sep 22 21 / 32



Fibonacci Numbers

Let Gm be the snake graph which is a horizontal row of m boxes:

The number of dimer covers of Gm are the Fibonacci numbers.

|D(G1)| = 2

|D(G2)| = 3

|D(G3)| = 5

|D(G4)| = 8

Ovenhouse (Yale) Cluster Superalgebras Sep 22 21 / 32



Geometric Interpretation

Rather than just polygons, we can triangulate any surface with boundary. For
instance, a cylinder/annulus:

σ
θ

An arc connecting the two marked points corresponds to the snake graph Gm.

For the super version, add two odd variables (σ and θ) corresponding to the two
triangles.
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The Super Version

Consider the exterior algebra (over R) with two generators σ and θ, and label the
corners of faces of Gm with σ and θ:

σ θ

θ σ

σ θ

θ σ

σ θ

θ σ

Note: For double dimer covers,

A cycle of odd length has weight σθ.
A cycle of even length has weight σ2 = 0 or θ2 = 0.
A double dimer with two (or more) cycles has weight 0.
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The Super Version

So the double dimer generating function is of the form∑
M∈DD(Gm)

wt(M) = xm + ym σθ

where

xm is the number of double dimer covers using only doubled edges
(these are the Fibonacci numbers)
ym is the number of double dimer covers which have one cycle of odd length

Let ε := σθ. Then we can think of this as an element of the ring of “dual numbers”

D := R[ε]/(ε2)
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Dual Fibonacci Numbers

De�ne F0 = 1, F1 = 1, and for n > 1

Fn :=
∑

M∈DD(Gn−1)

wt(M) = xn−1 + yn−1ε

The �rst few terms are

F2 = 2 + ε

F3 = 3 + 2ε
F4 = 5 + 6ε
F5 = 8 + 12ε
F6 = 13 + 26ε
F7 = 21 + 50ε
F8 = 34 + 97ε
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Recurrences

The dual Fibonacci numbers satisfy the recurrence:

Fn =

{
(1 + ε)Fn−1 + Fn−2 if n is even

(1 + ε)Fn−1 + Fn−2 − ε if n is odd

The Fibonacci numbers also satisfy:

fn = 3fn−2 − fn−4

The dual Fibonacci numbers satisfy

Fn =

{
(3 + 2ε)Fn−2 − Fn−4 − ε if n is even

(3 + 2ε)Fn−2 − Fn−4 if n is odd
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Generating Function

The generating function for the Fibonacci numbers is

f (x) =

∞∑
n=0

fnxn =
1

1− x − x2

The corresponding generating function for dual Fibonacci numbers is

F(x) =
∞∑
n=0

Fnxn =
1

1− x − x2 +

(
x2

(1− x2)(1− x − x2)2

)
ε

In other words,

x2

(1− x2)(1− x − x2)2 =
∞∑
n=0

ynxn

= x2 + 2x3 + 6x4 + 12x5 + 26x6 + 50x7 + · · ·

where yn is the number of double dimer covers of Gn with a single odd-length cycle.
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Simpler Dual Fibonacci Numbers

De�ne another sequence Fn by

Fn :=

{
Fn if n is odd

Fn − ε if n is even

The �rst several terms are:

F0 = 1− ε
F1 = 1
F2 = 2
F3 = 3 + 2ε
F4 = 5 + 5ε
F4 = 8 + 12ε
F5 = 13 + 25ε
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Simpler Dual Fibonacci Numbers

This satis�es the recurrence

Fn = (1 + ε)Fn−1 + Fn−2

The generating function is

∞∑
n=0

Fnxn =
1− ε

1− (1 + ε)x − x2
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Continued Fractions

The continued fraction expansion of the ratio of Fibonacci numbers is

fn
fn−1

= [1, 1, . . . , 1] = 1 +
1

1 + 1
1+···

Examples:
3
2

= 1 +
1

1 + 1
1

5
3

= 1 +
1

1 + 1
1+ 1

1

8
5

=
1

1 + 1
1+ 1

1+ 1
1
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Continued Fractions

There is a similar statement for the Fn sequence:

Fn

Fn−1
= [1 + ε, 1 + ε, . . . , 1 + ε]

Examples:
3 + 2ε

2
= (1 + ε) +

1
(1 + ε) + 1

(1+ε)

5 + 5ε
3 + 2ε

= (1 + ε) +
1

(1 + ε) + 1
(1+ε)+ 1

(1+ε)

8 + 12ε
5 + 5ε

= (1 + ε) +
1

(1 + ε) + 1
(1+ε)+ 1

(1+ε)+ 1
(1+ε)
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Thank You!
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