Cluster Superalgebras from Triangulated Surfaces

Nick Ovenhouse
(joint with Gregg Musiker and Sylvester Zhang)
ArXiv: 2102.09143, 2110.06497, and 2208.13664

Yale University

September, 2022
UConn Algebra Seminar
Ptolemy’s Theorem

Take a quadrilateral inscribed in a circle, with lengths labelled as in the picture.

Then $xy = ac + bd$.

Ovenhouse (Yale)
Cluster Superalgebras
Sep 22
Ptolemy’s Theorem

Take a quadrilateral inscribed in a circle, with lengths labelled as in the picture.

Then

\[xy = ac + bd. \]
Ptolemy’s Theorem

Take a quadrilateral inscribed in a circle, with lengths labelled as in the picture.

Then \(xy = ac + bd \).
Triangulated Polygons

Fix a triangulation. We can express any x_{ij} in terms of x's from the triangulation.

Example:

$x_{25} = x_{15}x_{23} + x_{12}x_{35}x_{13}$

$x_{13} = x_{14}x_{15}x_{23} + x_{12}x_{15}x_{34} + x_{12}x_{13}x_{45}$
For a polygon (inscribed in a circle), let

\[x_{ij} = \text{length of diagonal } (i, j) \]
Triangulated Polygons

For a polygon (inscribed in a circle), let

\[x_{ij} = \text{length of diagonal } (i, j) \]

Fix a triangulation.

\[x_{13} = x_{14} x_{15} x_{23} + x_{12} x_{15} x_{34} + x_{12} x_{13} x_{45} x_{14} \]
For a polygon (inscribed in a circle), let

\[x_{ij} = \text{length of diagonal } (i, j) \]

Fix a triangulation.
We can express any \(x_{ij} \) in terms of \(x \)'s
from the triangulation.
Triangulated Polygons

For a polygon (inscribed in a circle), let

\[x_{ij} = \text{length of diagonal } (i, j) \]

Fix a triangulation.
We can express any \(x_{ij} \) in terms of \(x \)'s from the triangulation.

Example:

\[x_{25} = \frac{x_{15}x_{23} + x_{12}x_{35}}{x_{13}} \]
Triangulated Polygons

For a polygon (inscribed in a circle), let

\[x_{ij} = \text{length of diagonal } (i, j) \]

Fix a triangulation. We can express any \(x_{ij} \) in terms of \(x \)'s from the triangulation.

Example:

\[
x_{25} = \frac{x_{15}x_{23} + x_{12}x_{35}}{x_{13}}
\]

\[
= x_{15}x_{23} + x_{12} \left(\frac{x_{15}x_{34} + x_{13}x_{45}}{x_{14}} \right)
\]

\[
= \frac{x_{13}}{x_{13}}
\]
Triangulated Polygons

For a polygon (inscribed in a circle), let

\[x_{ij} = \text{length of diagonal } (i, j) \]

Fix a triangulation. We can express any \(x_{ij} \) in terms of \(x \)'s from the triangulation.

Example:

\[
\begin{align*}
x_{25} &= \frac{x_{15}x_{23} + x_{12}x_{35}}{x_{13}} \\
&= \frac{x_{15}x_{23} + x_{12} \left(\frac{x_{15}x_{34} + x_{13}x_{45}}{x_{14}} \right)}{x_{13}} \\
&= \frac{x_{14}x_{15}x_{23} + x_{12}x_{15}x_{34} + x_{12}x_{13}x_{45}}{x_{13}x_{14}}
\end{align*}
\]
Main Question

Question: How to predict what these expressions will look like after several iterations?

Answer: They are generating functions of "dimer covers" of certain graphs.
Question: How to predict what these expressions will look like after several iterations?
Question: How to predict what these expressions will look like after several iterations?

Answer: They are generating functions of “dimer covers” of certain graphs.
A "dimer cover" (or "perfect matching") of a graph Γ is a subset of edges so that every vertex is incident to one edge.

Examples:

If the edges have weights, then the "weight" of a dimer cover is the product of the edge weights.
A “dimer cover” (or “perfect matching”) of a graph Γ is a subset of edges so that every vertex is incident to one edge.
A “dimer cover” (or “perfect matching”) of a graph Γ is a subset of edges so that every vertex is incident to one edge.

Examples:
A “dimer cover” (or “perfect matching”) of a graph Γ is a subset of edges so that every vertex is incident to one edge.

Examples:

$$\begin{array}{c}
\begin{array}{cccc}
& b & c & \\
\hline
a & & g & d \\
\hline
f & e & & \\
\end{array}
\end{array}$$

weight $= ace$

If the edges have weights, then the “weight” of a dimer cover is the product of the edge weights.
Snake Graphs

A "snake graph" is a planar graph built out of square tiles, where each tile is attached to the previous on either the right or top side.

Examples:

\[W(G) = RR \]
\[W(G) = URRU \]
\[W(G) = RURUR \]

To each snake graph \(G \), we can associate a word \(W(G) \) in the alphabet \{R, U\} (for "right" and "up").
A “snake graph” is a planar graph built out of square tiles, where each tile is attached to the previous on either the right or top side.
A “snake graph” is a planar graph built out of square tiles, where each tile is attached to the previous on either the right or top side.

Examples:

![Snake Graph Examples](image-url)
Snake Graphs

A “snake graph” is a planar graph built out of square tiles, where each tile is attached to the previous on either the right or top side.

Examples:

\[W(G) = RR \]

\[W(G) = URRU \]

\[W(G) = RURUR \]

To each snake graph \(G \), we can associate a word \(W(G) \) in the alphabet \{R, U\} (for “right” and “up”).
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is not in the triangulation, we will construct a snake graph G_{γ}. Assume γ crosses all interior edges of the triangulation (and all triangles).

Traverse γ
For each triangle (except first and last), look at its boundary side
For 2nd triangle, if right, label R, if left, label U
If same side, opposite letter R
If opposite side, same letter W

$(G_{\gamma}) = RRUU$

Ovenhouse (Yale)
Cluster Superalgebras
Sep 22 7 / 32
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is *not* in the triangulation, we will construct a snake graph G_{γ}. Assume γ crosses all interior edges of the triangulation (and all triangles).
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is *not* in the triangulation, we will construct a snake graph G_γ. Assume γ crosses all interior edges of the triangulation (and all triangles).

- Traverse γ
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is \textit{not} in the triangulation, we will construct a snake graph G_γ. Assume γ crosses all interior edges of the triangulation (and all triangles).

- Traverse γ
- For each triangle (except first and last), look at its boundary side
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is \textit{not} in the triangulation, we will construct a snake graph G_{γ}. Assume γ crosses all interior edges of the triangulation (and all triangles).

- Traverse γ
- For each triangle (except first and last), look at its boundary side
- For 2nd triangle, if right, label R, if left, label U
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is \textit{not} in the triangulation, we will construct a snake graph G_γ. Assume γ crosses all interior edges of the triangulation (and all triangles).

- Traverse γ
- For each triangle (except first and last), look at its boundary side
- For 2nd triangle, if right, label R, if left, label U
- If same side, opposite letter
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is \textit{not} in the triangulation, we will construct a snake graph G_γ. Assume γ crosses all interior edges of the triangulation (and all triangles).

- Traverse γ
- For each triangle (except first and last), look at its boundary side
 - For 2nd triangle, if right, label R, if left, label U
- If same side, opposite letter
- If opposite side, same letter
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is \textit{not} in the triangulation, we will construct a snake graph G_γ. Assume γ crosses all interior edges of the triangulation (and all triangles).

- Traverse γ
- For each triangle (except first and last), look at its boundary side
- For 2nd triangle, if right, label R, if left, label U
- If same side, opposite letter
- If opposite side, same letter
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is *not* in the triangulation, we will construct a snake graph G_{γ}. Assume γ crosses all interior edges of the triangulation (and all triangles).

- Traverse γ
- For each triangle (except first and last), look at its boundary side
- For 2nd triangle, if right, label R, if left, label U
- If same side, opposite letter
- If opposite side, same letter
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is \textit{not} in the triangulation, we will construct a snake graph G_γ. Assume γ crosses all interior edges of the triangulation (and all triangles).

- Traverse γ
- For each triangle (except first and last), look at its boundary side
- For 2nd triangle, if right, label R, if left, label U
- If same side, opposite letter
- If opposite side, same letter

\[W(G_\gamma) = \text{RRUU} \]
Snake Graph from a Triangulation

Given a triangulated polygon, and a diagonal γ which is not in the triangulation, we will construct a snake graph G_γ. Assume γ crosses all interior edges of the triangulation (and all triangles).

- Traverse γ
- For each triangle (except first and last), look at its boundary side
- For 2nd triangle, if right, label R, if left, label U
- If same side, opposite letter
- If opposite side, same letter

$$W(G_\gamma) = RRUU$$
Snake Graph from a Triangulation

To label the snake graph, odd tiles match polygon labels, even tiles have opposite orientation.
Snake Graph from a Triangulation

To label the snake graph, odd tiles match polygon labels, even tiles have opposite orientation.
Snake Graph from a Triangulation

To label the snake graph, odd tiles match polygon labels, even tiles have opposite orientation.
Snake Graph from a Triangulation

To label the snake graph, odd tiles match polygon labels, even tiles have opposite orientation.
Snake Graph from a Triangulation

To label the snake graph, odd tiles match polygon labels, even tiles have opposite orientation.
Snake Graph from a Triangulation

To label the snake graph, odd tiles match polygon labels, even tiles have opposite orientation.
To label the snake graph, odd tiles match polygon labels, even tiles have opposite orientation.
Snake Graph from a Triangulation

To label the snake graph, odd tiles match polygon labels, even tiles have opposite orientation.
The Laurent Formula

Theorem \[\text{[Musiker, Schiffler]}\]

\[x_\gamma = \frac{1}{\text{cross}(\gamma)} \sum_{M \in \mathcal{D}(G_\gamma)} \text{wt}(M) \]

where \(\text{cross}(\gamma)\) is the product of all edges of the triangulation which \(\gamma\) crosses.

Corollary
Each \(x_\gamma\) is a Laurent polynomial in the lengths of the diagonals from any fixed triangulation.

The Laurent Formula

Theorem [Musiker, Schiffler]¹

\[x_\gamma = \frac{1}{\text{cross}(\gamma)} \sum_{M \in D(G_\gamma)} \text{wt}(M) \]

where \(\text{cross}(\gamma)\) is the product of all edges of the triangulation which \(\gamma\) crosses.

¹Gregg Musiker and Ralf Schiffler. “Cluster expansion formulas and perfect matchings”. In: Journal of Algebraic Combinatorics 32.2 (2010), pp. 187–209
The Laurent Formula

Theorem [Musiker, Schiffler]\(^1\)

\[x_\gamma = \frac{1}{\text{cross}(\gamma)} \sum_{M \in D(G_\gamma)} \text{wt}(M) \]

where \(\text{cross}(\gamma)\) is the product of all edges of the triangulation which \(\gamma\) crosses.

Corollary

Each \(x_\gamma\) is a Laurent polynomial in the lengths of the diagonals from any fixed triangulation.

\(^1\)Gregg Musiker and Ralf Schiffler. “Cluster expansion formulas and perfect matchings”. In: *Journal of Algebraic Combinatorics* 32.2 (2010), pp. 187–209
Example

\[x_{25} = \frac{1}{x_{13}x_{14}} \left(x_{14}x_{23}x_{15} + x_{12}x_{34}x_{15} + x_{12}x_{13}x_{45} \right) \]
A "super algebra" is a \mathbb{Z}_2-graded algebra, i.e. $A = A_0 \oplus A_1$, (the "even" and "odd" parts) and $A_i A_j \subseteq A_{i+j}$. A super algebra is called "commutative" (or "super commutative") if for all $a, b \in A_0$ and $x, y \in A_1$:

$$ab = ba,\ ax = xa,\ xy = -yx$$

The basic example of a commutative super algebra is the one generated by $x_1, \ldots, x_n, \theta_1, \ldots, \theta_m$, subject to the relations $x_i x_j = x_j x_i$, $x_i \theta_j = \theta_j x_i$, $\theta_i \theta_j = -\theta_j \theta_i$ in particular, $\theta_2^2 = 0$.

Ovenhouse (Yale)
Cluster Superalgebras
Sep 22
A “super algebra” is a \mathbb{Z}_2-graded algebra.

i.e. $A = A_0 \oplus A_1$, (the “even” and “odd” parts) and

$$A_i A_j \subseteq A_{i+j}$$
A “super algebra” is a \mathbb{Z}_2-graded algebra.

i.e. $A = A_0 \oplus A_1$, (the “even” and “odd” parts) and

$$A_i A_j \subseteq A_{i+j}$$

A super algebra is called “commutative” (or “super commutative”) if for all $a, b \in A_0$ and $x, y \in A_1$:

$$ab = ba, \quad ax = xa, \quad xy = -yx$$
A “super algebra” is a \mathbb{Z}_2-graded algebra.
i.e. $A = A_0 \oplus A_1$, (the “even” and “odd” parts) and

$$A_i A_j \subseteq A_{i+j}$$

A super algebra is called “commutative” (or “super commutative”) if for all $a, b \in A_0$ and $x, y \in A_1$:

$$ab = ba, \quad ax = xa, \quad xy = -yx$$

The basic example of a commutative super algebra is the one generated by $x_1, \ldots, x_n, \theta_1, \ldots, \theta_m$, subject to the relations

$$x_i x_j = x_j x_i, \quad x_i \theta_j = \theta_j x_i, \quad \theta_i \theta_j = -\theta_j \theta_i$$
A “super algebra” is a \mathbb{Z}_2-graded algebra.

i.e. $A = A_0 \oplus A_1$, (the “even” and “odd” parts) and

$$A_i A_j \subseteq A_{i+j}$$

A super algebra is called “commutative” (or “super commutative”) if for all $a, b \in A_0$ and $x, y \in A_1$:

$$ab = ba, \quad ax = xa, \quad xy = -yx$$

The basic example of a commutative super algebra is the one generated by $x_1, \ldots, x_n, \theta_1, \ldots, \theta_m$, subject to the relations

$$x_i x_j = x_j x_i, \quad x_i \theta_j = \theta_j x_i, \quad \theta_i \theta_j = -\theta_j \theta_i$$

in particular, $\theta_i^2 = 0$
Given an n-gon, choose:

- a triangulation T
- an orientation of each edge in T (We will not draw boundary orientations)

Consider the commutative super algebra with one even generator x_{ij} for each diagonal in T, and one odd generator θ_{ijk} for each triangle in T.

The example above would have 7 even generators and 3 odd generators.
Given an \(n \)-gon, choose:

![Diagram of a pentagon with vertices labeled 1, 2, 3, 4, 5.]
Given an n-gon, choose:

- a triangulation T
Given an \(n \)-gon, choose:

- a triangulation \(T \)
- an orientation of each edge in \(T \)
 (We will not draw boundary orientations)
Super Algebra from a Triangulation

Given an n-gon, choose:

- a triangulation T
- an orientation of each edge in T

 (We will not draw boundary orientations)

Consider the commutative super algebra with one even generator x_{ij} for each diagonal in T, and one odd generator θ_{ijk} for each triangle in T.
Super Algebra from a Triangulation

Given an \(n \)-gon, choose:

- a triangulation \(T \)
- an orientation of each edge in \(T \)
 (We will not draw boundary orientations)

Consider the commutative super algebra with one even generator \(x_{ij} \) for each diagonal in \(T \), and one odd generator \(\theta_{ijk} \) for each triangle in \(T \).

The example above would have 7 even generators and 3 odd generators.
The Super Ptolemy Relation

Given two adjacent triangles, we can \(\sqrt{f_{\text{lip}}} \) the diagonal:

\[
\begin{array}{cccc}
 a & b & c & d \\
 e & f & & \\
\end{array}
\]

\(\theta \quad \sigma \)

\[
\begin{array}{cccc}
 a & b & c & d \\
 & & & f \\
\end{array}
\]

\(\theta' \quad \sigma' \)

We define the new variables via the relations

1. \(ef = ac + bd + \sqrt{abcd} \)

2. \(\theta' = \sqrt{bd} \theta + \sqrt{ac} \sigma \)

3. \(\sqrt{ac} + \sqrt{bd} \sigma = \sqrt{bd} \sigma - \sqrt{ac} \theta \)

The Super Ptolemy Relation

Given two adjacent triangles, we can “flip” the diagonal:

\[
\begin{align*}
\text{original:} & & \\ a & \quad b & \quad c & \quad d & \text{ (orientation reversed)} \\
\theta & \quad \sigma & \quad & \quad e & \\
d & \quad & \quad & \quad & \sigma' \\
\text{new:} & & \\ a & \quad f & \quad b & \quad & \\
\theta' & \quad & \quad & \quad \sigma' & \\
d & \quad & \quad & \quad & \c
\end{align*}
\]

We define the new variables via the relations

\[ef = ac + bd + \sqrt{abcd} \]

\[\theta, \sigma = \sqrt{bd} \]

\[\theta', \sigma' = \sqrt{bd} - \sqrt{ac} \]
The Super Ptolemy Relation

Given two adjacent triangles, we can “flip” the diagonal:

We define the new variables via the relations:

\[ef = ac + bd + \sqrt{abcd} \hat{\sigma} \theta \]
\[\theta' = \sqrt{bd} \theta + \sqrt{ac} \sigma \]
\[\sigma' = \sqrt{bd} \sigma - \sqrt{ac} \theta \]

The Super Ptolemy Relation

Given two adjacent triangles, we can “flip” the diagonal:

\[a \quad \theta \quad b \]
\[e \quad \sigma \quad f \]
\[d \quad c \]

\[\quad \rightarrow \quad \]

\[a \quad f \quad b \]
\[\theta' \quad \sigma' \quad \]
\[d \quad c \]

(orientation reversed)

We define the new variables via the relations\(^1\):

\[ef = ac + bd + \sqrt{abcd} \sigma \theta \]

The Super Ptolemy Relation

Given two adjacent triangles, we can "flip" the diagonal:

We define the new variables via the relations:\(^1\):

\[
ef = ac + bd + \sqrt{abcd} \sigma \theta
\]

\[
\theta' = \frac{\sqrt{bd} \theta + \sqrt{ac} \sigma}{\sqrt{ac + bd}}
\]

\[
\sigma' = \frac{\sqrt{bd} \sigma - \sqrt{ac} \theta}{\sqrt{ac + bd}}
\]

Another Set of Variables

Consider a triangle with vertices i, j, k, and associated variables x_{ij}, x_{ik}, x_{jk}, θ:

\[i \quad j \quad k \quad \theta \]

To each vertex of the triangle, define:

- An even variable $h_{ij} = x_{jk} x_{ik} x_{ij}$
- An odd variable $\theta(i) = \sqrt{h_{ij}}$
- An odd variable $\theta(i) = \theta \sqrt{h_{ij}} = \sqrt{x_{jk} x_{ik} x_{ij}}$
Another Set of Variables

Consider a triangle with vertices i, j, k, and associated variables $x_{ij}, x_{ik}, x_{jk}, \theta$:

$$
\begin{align*}
\text{An even variable } & h_{ijk} := x_{jk} x_{ij} x_{ik} \\
\text{An odd variable } & \theta(i) := \sqrt{h_{ijk}} \\
\text{An odd variable } & \theta = \sqrt{x_{ij} x_{ik} x_{jk}}
\end{align*}
$$
Another Set of Variables

Consider a triangle with vertices i, j, k, and associated variables $x_{ij}, x_{ik}, x_{jk}, \theta$:

To each vertex of the triangle, define:

An even variable $h_{ikj} := x_{jk} x_{ij} x_{ik}$

An odd variable $\theta(i) := \sqrt{h_{ikj}} \theta = \sqrt{x_{ij} x_{ik} x_{jk}} \theta$
Another Set of Variables

Consider a triangle with vertices i, j, k, and associated variables $x_{ij}, x_{ik}, x_{jk}, \theta$:

To each vertex of the triangle, define:

- An even variable $h_{jk}^i := \frac{x_{jk}}{x_{ij}x_{ik}}$
Another Set of Variables

Consider a triangle with vertices i, j, k, and associated variables $x_{ij}, x_{ik}, x_{jk}, \theta$:

To each vertex of the triangle, define:

- An even variable $h^i_{jk} := \frac{x_{jk}}{x_{ij}x_{ik}}$
- An odd variable $\theta^{(i)} := \sqrt{h^i_{jk}} \theta = \sqrt{\frac{x_{jk}}{x_{ij}x_{ik}}} \theta$
Another Set of Variables

Consider a triangle with vertices i, j, k, and associated variables $x_{ij}, x_{ik}, x_{jk}, \theta$:

To each vertex of the triangle, define:

- An even variable $h^i_{jk} := \frac{x_{jk}}{x_{ij}x_{ik}}$
- An odd variable $\theta^{(i)} := \sqrt{h^i_{jk}} \theta = \sqrt{\frac{x_{jk}}{x_{ij}x_{ik}}} \theta$
- An odd variable $\theta^{(i)} := \frac{\theta}{\sqrt{h^i_{jk}}} = \sqrt{\frac{x_{ij}x_{ik}}{x_{jk}}} \theta$
Using these new variables, the super Ptolemy relation looks like:

\[f = \frac{ac + bd}{e} + \sigma(j)\theta(\ell) \]

\[\varphi^{(i)} = \sigma^{(i)} + \theta^{(i)} \]

\[\psi^{(k)} = \sigma^{(k)} - \theta^{(k)} \]
The Main Question

Starting with a fixed triangulation, we can reach any diagonal by a sequence of flips. Using the super Ptolemy relation, we will get some algebraic expression attached to this diagonal.

Question: Can we explicitly describe these algebraic expressions?

Answer: Yes! They are generating functions for "double dimer covers" of the snake graph.
The Main Question

Starting with a fixed triangulation, we can reach any diagonal by a sequence of flips. Using the super Ptolemy relation, we will get some algebraic expression attached to this diagonal.

Question:
Can we explicitly describe these algebraic expressions?
Answer:
Yes! They are generating functions for “double dimer covers” of the snake graph.
Starting with a fixed triangulation, we can reach any diagonal by a sequence of flips. Using the super Ptolemy relation, we will get some algebraic expression attached to this diagonal.

Question: Can we explicitly describe these algebraic expressions?
The Main Question

Starting with a fixed triangulation, we can reach any diagonal by a sequence of flips. Using the super Ptolemy relation, we will get some algebraic expression attached to this diagonal.

Question: Can we explicitly describe these algebraic expressions?

Answer: Yes! They are generating functions for “double dimer covers” of the snake graph.
A double dimer cover of a graph is the union of two dimer covers. It is composed of cycles and doubled edges.

Examples:
- Ovenhouse (Yale)
- Cluster Superalgebras
A *double dimer cover* of a graph is the union of two dimer covers. It is composed of cycles and doubled edges.
A double dimer cover of a graph is the union of two dimer covers. It is composed of cycles and doubled edges.

Examples:
Double Dimer Covers on Snake Graphs

Every square face in a snake graph represents two triangles in the triangulation. We will label the faces with the odd variables of those triangles.

\[
\theta_1 \quad \theta_2 \quad \theta_3 \quad \theta_4 \quad \theta_5 \quad \theta_6
\]

The weight of a double dimer cover \(M \) is

\[
\text{wt}(M) = \prod_{\text{edges } e \in M} \sqrt{e} \cdot \prod_{\text{cycles } \theta_i \theta_j}
\]

where \(\theta_i, \theta_j \) are the labels in the bottom-left and top-right of the cycle.
Every square face in a snake graph represents two triangles in the triangulation. We will label the faces with the odd variables of those triangles.
Double Dimer Covers on Snake Graphs

Every square face in a snake graph represents two triangles in the triangulation. We will label the faces with the odd variables of those triangles.

The weight of a double dimer cover M is

$$\text{wt}(M) = \left(\prod_{e \in M} \sqrt{e} \right) \cdot \left(\prod_{\text{cycles}} \theta_i \theta_j \right)$$

where θ_i, θ_j are the labels in the bottom-left and top-right of the cycle.
Every square face in a snake graph represents two triangles in the triangulation. We will label the faces with the odd variables of those triangles.

The weight of a double dimer cover M is

$$wt(M) = \left(\prod_{e \in M} \sqrt{e} \right) \cdot \left(\prod_{\text{cycles}} \theta_i \theta_j \right)$$

where θ_i, θ_j are the labels in the bottom-left and top-right of the cycle.
Laurent Formula

Theorem

Given a fixed triangulation \mathcal{T}, the even variable x_γ corresponding to a diagonal which is not in \mathcal{T} is given by

$$x_\gamma = \sum_{\text{double dimers } M \in \text{DD}(G_\gamma)} \text{wt}(M)$$

Moreover, there is an ordering of the θ's which makes all terms positive.

Corollary ("Laurent Phenomenon")

Each x_γ is a Laurent polynomial in the \sqrt{x}_{ij}'s and θ_{ijk}'s.

Theorem [Musiker, O., Zhang]¹

Given a fixed triangulation T, the even variable x_γ corresponding to a diagonal which is *not* in T is given by

$$x_\gamma = \frac{1}{\text{cross}(\gamma)} \sum_{\text{double dimers } M \in DD(G_\gamma)} \text{wt}(M)$$

Moreover, there is an ordering of the θ’s which makes all terms positive.

Laurent Formula

Theorem [Musiker, O., Zhang]¹

Given a fixed triangulation T, the even variable x_γ corresponding to a diagonal which is *not* in T is given by

$$x_\gamma = \frac{1}{\text{cross}(\gamma)} \sum_{\text{double dimers } M \in DD(G_\gamma)} \text{wt}(M)$$

Moreover, there is an ordering of the θ’s which makes all terms positive.

Corollary ("Laurent Phenomenon")

Each x_γ is a Laurent polynomial in the $\sqrt{x_{ij}}$’s and θ_{ijk}’s.

Example

\[x_{14} \quad x_{45} \]
\[\theta_1 \quad \theta_2 \quad \theta_3 \]
\[x_{12} \]
\[\theta_1 \quad \theta_2 \quad \theta_3 \]
\[x_{23} \quad x_{13} \quad x_{15} \]
\[
x_{25} = \frac{1}{x_{13}x_{14}} \left(x_{14}x_{23}x_{15} + x_{12}x_{34}x_{15} + x_{12}x_{13}x_{45} \\
+ x_{15}\sqrt{x_{12}x_{14}x_{23}x_{34}} \theta_1 \theta_2 + x_{12}\sqrt{x_{13}x_{15}x_{34}x_{45}} \theta_2 \theta_3 \\
+ \sqrt{x_{12}x_{13}x_{14}x_{15}x_{23}x_{45}} \theta_1 \theta_3 \right)
\]
Fibonacci Numbers

Let G_m be the snake graph which is a horizontal row of m boxes:

The number of dimer covers of G_m are the Fibonacci numbers.

<table>
<thead>
<tr>
<th>$D(G_1)$</th>
<th>$D(G_2)$</th>
<th>$D(G_3)$</th>
<th>$D(G_4)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>5</td>
<td>8</td>
</tr>
</tbody>
</table>
Let G_m be the snake graph which is a horizontal row of m boxes:
Fibonacci Numbers

Let G_m be the snake graph which is a horizontal row of m boxes:

\[\begin{array}{cccc}
\end{array} \]

The number of dimer covers of G_m are the Fibonacci numbers.
Fibonacci Numbers

Let G_m be the snake graph which is a horizontal row of m boxes:

The number of dimer covers of G_m are the Fibonacci numbers.

$|D(G_1)| = 2$

$|D(G_2)| = 3$

$|D(G_3)| = 5$

$|D(G_4)| = 8$
Geometric Interpretation

Rather than just polygons, we can triangulate any surface with boundary. For instance, a cylinder/annulus:

An arc connecting the two marked points corresponds to the snake graph G_m.

\[
\begin{array}{c}
\text{Diagram}
\end{array}
\]
Geometric Interpretation

Rather than just polygons, we can triangulate any surface with boundary. For instance, a cylinder/annulus:

An arc connecting the two marked points corresponds to the snake graph G_m.

For the super version, add two odd variables (σ and θ) corresponding to the two triangles.
Consider the exterior algebra (over \mathbb{R}) with two generators σ and θ, and label the corners of faces of G_m with σ and θ:

Note: For double dimer covers, a cycle of odd length has weight $\sigma \theta$. A cycle of even length has weight $\sigma^2 = 0$ or $\theta^2 = 0$. A double dimer with two (or more) cycles has weight 0.
Consider the exterior algebra (over \mathbb{R}) with two generators σ and θ, and label the corners of faces of G_m with σ and θ:
Consider the exterior algebra (over \mathbb{R}) with two generators σ and θ, and label the corners of faces of G_m with σ and θ:
Consider the exterior algebra (over \(\mathbb{R} \)) with two generators \(\sigma \) and \(\theta \), and label the corners of faces of \(G_m \) with \(\sigma \) and \(\theta \):

\[
\begin{array}{cccc}
\theta & \sigma & \theta & \sigma \\
\sigma & \theta & \sigma & \theta \\
\end{array}
\]

Note: For double dimer covers,
- A cycle of odd length has weight \(\sigma \theta \).
Consider the exterior algebra (over \mathbb{R}) with two generators σ and θ, and label the corners of faces of G_m with σ and θ:

\[
\begin{array}{cccccc}
\sigma & \theta & \sigma & \theta & \sigma & \theta \\
\theta & \sigma & \theta & \sigma & \theta & \sigma \\
\end{array}
\]

Note: For double dimer covers,
- A cycle of odd length has weight $\sigma \theta$.
- A cycle of even length has weight $\sigma^2 = 0$ or $\theta^2 = 0$.

Consider the exterior algebra (over \mathbb{R}) with two generators σ and θ, and label the corners of faces of G_m with σ and θ:

![Diagram of labels on corners of faces]

Note: For double dimer covers,

- A cycle of odd length has weight $\sigma \theta$.
- A cycle of even length has weight $\sigma^2 = 0$ or $\theta^2 = 0$.
- A double dimer with two (or more) cycles has weight 0.
So the double dimer generating function is of the form
\[
\sum_{M \in \text{DD}} (G_m) \cdot \text{wt}(M) = x^m + y^m \sigma \theta
\]
where \(x^m\) is the number of double dimer covers using only doubled edges (these are the Fibonacci numbers)
\(y^m\) is the number of double dimer covers which have one cycle of odd length
Let \(\varepsilon := \sigma \theta\). Then we can think of this as an element of the ring of "dual numbers"
\(D := \mathbb{R}[\varepsilon]/(\varepsilon^2)\)
So the double dimer generating function is of the form

\[\sum_{M \in DD(G_m)} wt(M) = x_m + y_m \sigma \theta \]

where
So the double dimer generating function is of the form

\[\sum_{M \in DD(G_m)} wt(M) = x_m + y_m \sigma \theta \]

where

- \(x_m \) is the number of double dimer covers using only doubled edges (these are the Fibonacci numbers)
So the double dimer generating function is of the form

\[\sum_{M \in DD(G_m)} \text{wt}(M) = x_m + y_m \sigma \theta \]

where

- \(x_m \) is the number of double dimer covers using only doubled edges (these are the Fibonacci numbers)
- \(y_m \) is the number of double dimer covers which have one cycle of odd length
So the double dimer generating function is of the form

\[\sum_{M \in DD(G_m)} \text{wt}(M) = x_m + y_m \sigma \theta \]

where

- \(x_m \) is the number of double dimer covers using only doubled edges (these are the Fibonacci numbers)
- \(y_m \) is the number of double dimer covers which have one cycle of odd length
So the double dimer generating function is of the form

$$\sum_{M \in \text{DD}(G_m)} \text{wt}(M) = x_m + y_m \sigma \theta$$

where

- x_m is the number of double dimer covers using only doubled edges (these are the Fibonacci numbers)
- y_m is the number of double dimer covers which have one cycle of odd length

Let $\varepsilon := \sigma \theta$. Then we can think of this as an element of the ring of "dual numbers"

$$\mathbb{D} := \mathbb{R}[\varepsilon]/(\varepsilon^2)$$
Dual Fibonacci Numbers

Define $F_0 = 1$, $F_1 = 1$, and for $n > 1$ $F_n :=$ $\sum_{M \in \mathcal{D}(G_n - 1)} \text{wt}(M) = x^{n-1} + y^{n-1} \varepsilon$

The first few terms are:

- $F_2 = 2 + \varepsilon$
- $F_3 = 3 + 2\varepsilon$
- $F_4 = 5 + 6\varepsilon$
- $F_5 = 8 + 12\varepsilon$
- $F_6 = 13 + 26\varepsilon$
- $F_7 = 21 + 50\varepsilon$
- $F_8 = 34 + 97\varepsilon$
Dual Fibonacci Numbers

Define $F_0 = 1$, $F_1 = 1$, and for $n > 1$

$$F_n := \sum_{M \in DD(G_{n-1})} \text{wt}(M) = x_{n-1} + y_{n-1} \varepsilon$$

The first few terms are

- $F_2 = 2 + \varepsilon$
- $F_3 = 3 + 2\varepsilon$
- $F_4 = 5 + 6\varepsilon$
- $F_5 = 8 + 12\varepsilon$
- $F_6 = 13 + 26\varepsilon$
- $F_7 = 21 + 50\varepsilon$
- $F_8 = 34 + 97\varepsilon$
Dual Fibonacci Numbers

Define $F_0 = 1$, $F_1 = 1$, and for $n > 1$

$$F_n := \sum_{M \in DD(G_{n-1})} \text{wt}(M) = x_{n-1} + y_{n-1} \varepsilon$$

The first few terms are

$$F_2 = 2 + \varepsilon$$
$$F_3 = 3 + 2\varepsilon$$
$$F_4 = 5 + 6\varepsilon$$
$$F_5 = 8 + 12\varepsilon$$
$$F_6 = 13 + 26\varepsilon$$
$$F_7 = 21 + 50\varepsilon$$
$$F_8 = 34 + 97\varepsilon$$
The dual Fibonacci numbers satisfy the recurrence:

\[F_n = \begin{cases}
(1 + \varepsilon)F_{n-1} + F_{n-2} & \text{if } n \text{ is even} \\
(1 + \varepsilon)F_{n-1} + F_{n-2} - \varepsilon & \text{if } n \text{ is odd}
\end{cases} \]
Recurrences

The dual Fibonacci numbers satisfy the recurrence:

\[
F_n = \begin{cases}
(1 + \varepsilon)F_{n-1} + F_{n-2} & \text{if } n \text{ is even} \\
(1 + \varepsilon)F_{n-1} + F_{n-2} - \varepsilon & \text{if } n \text{ is odd}
\end{cases}
\]

The Fibonacci numbers also satisfy:

\[
f_n = 3f_{n-2} - f_{n-4}
\]

The dual Fibonacci numbers satisfy

\[
F_n = \begin{cases}
(3 + 2\varepsilon)F_{n-2} - F_{n-4} - \varepsilon & \text{if } n \text{ is even} \\
(3 + 2\varepsilon)F_{n-2} - F_{n-4} & \text{if } n \text{ is odd}
\end{cases}
\]
Generating Function

The generating function for the Fibonacci numbers is

\[f(x) = \sum_{n=0}^{\infty} f_n x^n = 1 - x - x^2 \]

The corresponding generating function for dual Fibonacci numbers is

\[F(x) = \sum_{n=0}^{\infty} F_n x^n = 1 - x - x^2 + x^2(1 - x^2)(1 - x - x^2)^2 \]

In other words,

\[x^2(1 - x^2)(1 - x - x^2)^2 = \sum_{n=0}^{\infty} y_n x^n = x^2 + 2x^3 + 6x^4 + 12x^5 + 26x^6 + 50x^7 + \cdots \]

where \(y_n \) is the number of double dimer covers of \(G_n \) with a single odd-length cycle.
The generating function for the Fibonacci numbers is

\[f(x) = \sum_{n=0}^{\infty} f_n x^n = \frac{1}{1 - x - x^2} \]
The generating function for the Fibonacci numbers is

\[f(x) = \sum_{n=0}^{\infty} f_n x^n = \frac{1}{1 - x - x^2} \]

The corresponding generating function for dual Fibonacci numbers is

\[F(x) = \sum_{n=0}^{\infty} F_n x^n = \frac{1}{1 - x - x^2} + \left(\frac{x^2}{(1 - x^2)(1 - x - x^2)^2} \right) \varepsilon \]
The generating function for the Fibonacci numbers is

\[f(x) = \sum_{n=0}^{\infty} f_n x^n = \frac{1}{1 - x - x^2} \]

The corresponding generating function for dual Fibonacci numbers is

\[F(x) = \sum_{n=0}^{\infty} F_n x^n = \frac{1}{1 - x - x^2} + \left(\frac{x^2}{(1 - x^2)(1 - x - x^2)^2} \right) \varepsilon \]

In other words,

\[\frac{x^2}{(1 - x^2)(1 - x - x^2)^2} = \sum_{n=0}^{\infty} y_n x^n \]

\[= x^2 + 2x^3 + 6x^4 + 12x^5 + 26x^6 + 50x^7 + \cdots \]

where \(y_n \) is the number of double dimer covers of \(G_n \) with a single odd-length cycle.
Simpler Dual Fibonacci Numbers

Define another sequence F_n by

$$F_n = \begin{cases} F_n & \text{if } n \text{ is odd} \\ F_n - \varepsilon & \text{if } n \text{ is even} \end{cases}$$

The first several terms are:

- $F_0 = 1 - \varepsilon$
- $F_1 = 1$
- $F_2 = 2$
- $F_3 = 3 + 2\varepsilon$
- $F_4 = 5 + 5\varepsilon$
- $F_5 = 8 + 12\varepsilon$
- $F_6 = 13 + 25\varepsilon$
Define another sequence \mathcal{F}_n by

$$
\mathcal{F}_n := \begin{cases}
F_n & \text{if } n \text{ is odd} \\
F_n - \varepsilon & \text{if } n \text{ is even}
\end{cases}
$$
Define another sequence F_n by

\[F_n := \begin{cases}
F_n & \text{if } n \text{ is odd} \\
F_n - \varepsilon & \text{if } n \text{ is even}
\end{cases} \]

The first several terms are:

\[\begin{align*}
F_0 &= 1 - \varepsilon \\
F_1 &= 1 \\
F_2 &= 2 \\
F_3 &= 3 + 2\varepsilon \\
F_4 &= 5 + 5\varepsilon \\
F_4 &= 8 + 12\varepsilon \\
F_5 &= 13 + 25\varepsilon
\end{align*} \]
Simpler Dual Fibonacci Numbers

This satisfies the recurrence

\[F_n = (1 + \epsilon) F_{n-1} + F_{n-2} \]

The generating function is

\[\sum_{n=0}^{\infty} F_n x^n = \frac{1}{1 - (1 + \epsilon)x - x^2} \]
This satisfies the recurrence

\[F_n = (1 + \varepsilon)F_{n-1} + F_{n-2} \]
This satisfies the recurrence

\[F_n = (1 + \varepsilon)F_{n-1} + F_{n-2} \]

The generating function is

\[
\sum_{n=0}^{\infty} F_n x^n = \frac{1 - \varepsilon}{1 - (1 + \varepsilon)x - x^2}
\]
Continued Fractions

The continued fraction expansion of the ratio of Fibonacci numbers is

\[
\frac{f_n}{f_{n-1}} = [1, 1, 1, \ldots, 1] = \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \cdots}}}
\]

Examples:

\[
\frac{3}{2} = 1 + \frac{1}{1 + \frac{1}{1}}
\]

\[
\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}
\]

\[
\frac{8}{5} = 1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1 + \frac{1}{1}}}}
\]
The continued fraction expansion of the ratio of Fibonacci numbers is

\[
\frac{f_n}{f_{n-1}} = [1, 1, \ldots, 1] = 1 + \frac{1}{1 + \frac{1}{1+\ldots}}
\]
The continued fraction expansion of the ratio of Fibonacci numbers is

\[
\frac{f_n}{f_{n-1}} = [1, 1, \ldots, 1] = 1 + \frac{1}{1 + \frac{1}{1+\ldots}}
\]

Examples:

\[
\frac{3}{2} = 1 + \frac{1}{1 + \frac{1}{1}}
\]

\[
\frac{5}{3} = 1 + \frac{1}{1 + \frac{1}{1+\frac{1}{1}}}
\]

\[
\frac{8}{5} = \frac{1}{1 + \frac{1}{1+\frac{1}{1+\frac{1}{1}}}}
\]
Continued Fractions

There is a similar statement for the F_n sequence:

$$F_n - 1 = \left[1 + \varepsilon, 1 + \varepsilon, ..., 1 + \varepsilon \right]$$

Examples:

$$3 + 2\varepsilon = (1 + \varepsilon) + \left(1 + \varepsilon \right) + \left(1 + \varepsilon \right)$$

$$5 + 5\varepsilon = (1 + \varepsilon) + \left(1 + \varepsilon \right) + \left(1 + \varepsilon \right) + \left(1 + \varepsilon \right) + \left(1 + \varepsilon \right)$$

$$8 + 12\varepsilon = (1 + \varepsilon) + \left(1 + \varepsilon \right) + \left(1 + \varepsilon \right)$$
There is a similar statement for the F_n sequence:

$$\frac{F_n}{F_{n-1}} = [1 + \varepsilon, 1 + \varepsilon, \ldots, 1 + \varepsilon]$$
Continued Fractions

There is a similar statement for the F_n sequence:

$$\frac{F_n}{F_{n-1}} = [1 + \varepsilon, 1 + \varepsilon, \ldots, 1 + \varepsilon]$$

Examples:

$$\frac{3 + 2\varepsilon}{2} = (1 + \varepsilon) + \frac{1}{(1 + \varepsilon) + \frac{1}{(1+\varepsilon)}}$$

$$\frac{5 + 5\varepsilon}{3 + 2\varepsilon} = (1 + \varepsilon) + \frac{1}{(1 + \varepsilon) + \frac{1}{(1+\varepsilon) + \frac{1}{(1+\varepsilon)}}}$$

$$\frac{8 + 12\varepsilon}{5 + 5\varepsilon} = (1 + \varepsilon) + \frac{1}{(1 + \varepsilon) + \frac{1}{(1+\varepsilon) + \frac{1}{(1+\varepsilon) + \frac{1}{(1+\varepsilon)}}}}$$
Thank You!