Erratum to: Quantum affine Gelfand-Tsetlin bases and quantum toroidal algebra via K-theory of affine Laumon spaces (Sel. Math. New Ser. 16 (2010): 173–200)

Alexander Tsymbaliuk

Following the work of Feigin-Finkelberg-Negut-Rybnikov, we construct an action of the quantum loop algebra $\mathbf{U}_v(\mathbf{Lsl}_n)$ on the sum of localized $\widetilde{T} \times \mathbb{C}^*$ -equivariant K-groups of Laumon spaces $\mathfrak{Q}_{\underline{d}}$ (Theorem 2.12, p. 179). We also construct an action of the quantum toroidal algebra $\overset{\circ}{\mathrm{U}}_v(\widehat{\mathfrak{sl}}_n)$ on the sum of localized $\widetilde{T} \times \mathbb{C}^* \times \mathbb{C}^*$ -equivariant K-groups of the moduli space of parabolic sheaves $\mathfrak{P}_{\underline{d}}$ (affine analogues of Laumon spaces) (Theorem 4.13, p. 196).

Corrections

(0) In the definition of Laumon spaces (*loc. cit. p. 174, line -5*), the following should be added right before $\mathfrak{Q}_{\underline{d}} \subset \mathfrak{Q}_{\underline{d}}$:

"We consider the following locally closed subvariety $\mathfrak{Q}_{\underline{d}} \subset \mathfrak{Q}_{\underline{d}}$ (quasiflags based at $\infty \in \mathbb{C}$)...".

(1) In the very end of Section 2.2 (*loc. cit. p. 175, line 12*), the following should be added: "Notation: Given a collection $\underline{\tilde{d}}$ as above, we will denote by $\underline{\tilde{d}} + \delta_{i,j}$ the collection $\underline{\tilde{d}}'$, such that $\underline{\tilde{d}}'_{i,j} = \underline{\tilde{d}}_{i,j} + 1$, while $\underline{\tilde{d}}'_{p,q} = \underline{\tilde{d}}_{p,q}$ for $(p,q) \neq (i,j)$ (in all our cases it will satisfy the required conditions, though in general as defined it might not)."

Similar comment should be added in the Section 4.4 (*loc. cit. p. 193, line 16*): "Notation: Given a collection $\underline{\tilde{d}}$ as above we will denote by $\underline{\tilde{d}} + \delta_{i,j}$ the collection $\underline{\tilde{d}}'$, such that $\underline{\tilde{d}}'_{i+ns,j+ns} = \underline{\tilde{d}}_{i,j} + 1 \; (\forall s \in \mathbb{Z}), \text{ while } \underline{\tilde{d}}'_{p,q} = \underline{\tilde{d}}_{p,q} \text{ for all other } (p,q).$ "

(2) In section 2.11 series $\mathbf{b}_m(z)$ (loc. cit. p. 178–179, lines -4 – 3) and $\mathbf{b}_{mi}(z)$ (loc. cit. p. 180, lines -8 – -5) were introduced and played an important role in the construction of $\psi_i^{\pm}(z)$ operators, Theorem 2.12 (loc. cit. p. 179, lines 14–21). One should change their definition as follows. Let $\pi : \mathfrak{Q}_{\underline{d}} \times (\mathbf{C} \setminus \{\infty\}) \to \mathfrak{Q}_{\underline{d}}$ denote the standard projection. Then we set:

$$\begin{aligned} \mathbf{b}_{i}(z) &:= \Lambda_{-1/z}^{\bullet}(\pi_{*}(\underline{\mathcal{W}}_{i} \mid_{\mathbf{C} \setminus \{\infty\}})) = 1 + \sum_{j \geq 1} \Lambda^{j}(\pi_{*}(\underline{\mathcal{W}}_{i} \mid_{\mathbf{C} \setminus \{\infty\}}))(-z^{-1})^{j} : \ M_{\underline{d}} \to M_{\underline{d}}[[z^{-1}]], \\ \mathbf{b}_{mi}(z) &:= \Lambda_{-1/z}^{\bullet}(\pi_{*}(\underline{\mathcal{W}}_{mi} \mid_{\mathbf{C} \setminus \{\infty\}})) : \ M_{\underline{d}} \to M_{\underline{d}}[[z^{-1}]]. \end{aligned}$$

A. Tsymbaliuk

Similarly we define operators $\mathbf{b}_{mi}(z)$ in section 4.11 (*loc. cit. p. 195, lines 8–11*).

(3) Operators f_i and $f_{i,r}$ should be multiplied by v throughout paper. In particular:

- In formula (8) (*loc. cit. p. 176, line -5*) $f_i = -t_i^{-1} v^{d_i d_{i-1} + i} \mathbf{q}_* (L_i \otimes \mathbf{p}^*).$
- In formula (16) (*loc. cit. p. 179, line 10*) $f_{k,r} = -t_k^{-1} v^{d_k d_{k-1} + k} \mathbf{q}_* (L_k \otimes (L'_k)^{\otimes r} \otimes \mathbf{p}^*).$

In the definition of $f_i, f_{k,r}, e_{k,r}$ in the parabolic setting we should also change the powers of u and indices of line bundles L_i . In particular:

• In formula (38) (*loc. cit. p. 194, line 11*) $f_i = -t_i^{-1} u^{-\delta_{i,n}} v^{d_i - d_{i-1} + i} \mathbf{q}_* (L_{i-n} \otimes \mathbf{p}^*).$

• In formula (47) (*loc. cit. p. 195, line -1*) $f_{k,r}$ is given by $f_{k,r} = -t_k^{-1}u^{-\delta_{i,n}}v^{d_k-d_{k-1}+k}\mathbf{q}_*(L_{k-n}\otimes (L'_{k-n})^{\otimes r}\otimes \mathbf{p}^*).$ • In formula (46) (*loc. cit. p. 195, line -2*) $e_{k,r} = t_{k+1}^{-1}v^{d_{k+1}-d_k+1-k}\mathbf{p}_*((L'_{k-n})^{\otimes r}\otimes \mathbf{q}^*).$

(4) In the proof of relation (23) (loc. cit. p. 187, line -4) there is a typo in the definition of r_k and p_k . It should be corrected in the following way:

 $p_k := s_{i-1,k} = t_k^2 v^{-2d_{i-1,k}}, \ r_k := s_{i+1,k} = t_k^2 v^{-2d_{i+1,k}}.$

(5) Also in the proof of (23) (loc. cit. pp. 187-189), all formulas (p. 187, line -2; p. 188, line 3; p. 188, line -5; p. 189, line 3) for $\varphi_{i,a}^+$ and $\varphi_{i,a+1}^+$ should be multiplied by an additional common factor, which doesn't affect the equality:

$$-t_{i+1}^{-1}t_i^{-1}v^{-1}(v^2-1)^{-1}v^{d_{i+1}-d_{i-1}}.$$

- (6) In the description of fixed points in formula (30) (loc. cit. p. 191, lines -2 -1): all the inclusions \subset and $\stackrel{\sim}{\subset}$ should be reversed.
- (7) Formula for the ideal J_{λ} from Section 4.1 (*loc. cit. p. 191, line -7*) should read as follows: $J_{\lambda} = \mathbb{C}[y, z] \cdot (\mathbb{C}y^0 z^{\lambda_0} \oplus \mathbb{C}y^1 z^{\lambda_1} \oplus \cdots).$

(8) In the definition of operators \mathfrak{k}_i (loc. cit. Section 4.8, p. 194, line 9) and generating series $\psi_i^{\pm}(z)$ (loc. cit. Section 4.11, p. 195, lines 16-17) the power of u should be corrected in the following way:

• Formula (36) (*loc. cit. p. 194, line 9*) should read as $\mathbf{t}_i = t_{i+1}^{-1} t_i u^{-\delta_{i,n}} v^{-2d_i+d_{i-1}+d_{i+1}-1}$. • Formula (42) (*loc. cit. p. 195, lines 16–17*) should define $\psi_i^{\pm}(z)$ as: $\frac{t_i}{t_{i+1}} u^{-\delta_{i,n}} v^{d_{i+1}-2d_i+d_{i-1}-1} \left(\mathbf{b}_{m,i-n}(zv^{-i-2})^{-1} \mathbf{b}_{m,i-n}(zv^{-i})^{-1} \mathbf{b}_{m,i-n-1}(zv^{-i}) \mathbf{b}_{m,i-n+1}(zv^{-i-2}) \right)^{\pm}$.

(9) In the renormalization of vectors in (50) (loc. cit. p. 198, line 8) as well as in the formulas for $e_{i,r\langle \tilde{d}', \tilde{d} \rangle}$, $f_{i,r\langle \tilde{d}', \tilde{d} \rangle}$ (loc. cit. p. 198, lines -2 - -1) the following change is required:

all products of the form $\prod_{w} w$ should be corrected to $\prod_{w} (1-w)$.

(10) In the definition of $p_{i,j}$ from Proposition 4.15 (loc. cit. p. 197, line 2) the formula should read as follows:

$$p_{i,j} := t_j^2 \pmod{n} v^{-2d_{ij}} u^{-2\lfloor \frac{-j+n}{n} \rfloor} = t_j^2 \pmod{n} v^{-2d_{ij}} u^{2\lceil \frac{j-n}{n} \rceil}.$$

(11) In the proof of the main Theorem 4.13 (loc. cit. p. 197, lines 17–23), the following argument should be added in the beginning:

"For any $k \in \mathbb{Z}$ we define $x_k^{\pm}(z), \psi_k^{\pm}(z)$ by the same formulas (42–47) with $\delta_{k,n}$ being changed to $\delta_k \pmod{n}, 0$.

First, because of the above remark and our computational proof of Theorem 2.12, relations (9-14) still hold. Indeed, relations (12-14) are verified along the same lines with just $p_{i,i}$ instead of $s_{i,j}$. Similarly with (9–10). The only nontrivial equality is $\psi_{i,0}^+ - \psi_{i,0}^- = \chi_{i,0}$, where $\chi_{i,0}$ is defined in the same way with p_{ij} 's instead of s_{ij} 's. However, it is a statement of Theorem 4.9.¹ The relation (11) follows."

Formulas for $\hat{\psi}_n^{\pm}(z)$, $\hat{x}_n^{\pm}(z)$ (*loc. cit. p. 197, lines 19–21*) therein should read as follows: $\hat{\psi}_n^{\pm}(z) = \psi_0^{\pm}(z)$, $\hat{x}_n^{+}(z) = v^{-n} x_0^{+}(z)$, $\hat{x}_n^{-}(z) = v^n u^2 x_0^{-}(z)$.

(12) Some verifications should be added to the proof of Theorem 4.19 (p. 199, line 14):

"Both verifications are straightforward and we will sketch only those for $e_{i,r}$ operators. Under the above specialization, for $j = nj_0 + j_1$ ($j_0 \in \mathbb{Z}, 1 \le j_1 \le n$), we get

$$p_{i,j} = v^{2\widetilde{\mu}_{j_1} - 2j_1 + 2 - 2d_{i,j} - 2j_0(K+n)} = v^{2(\widetilde{\mu}_j - j - d_{i,j} + 1)}.$$

(i) We need to show $\tilde{\mu}_j - j - d_{i,j} \neq \tilde{\mu}_k - k - d_{i,k} - 1$, $\forall k \leq i$, for $\underline{\widetilde{d}} \in D(\mu)$ such that $\underline{\widetilde{d}} - \delta_i^j \in D$. \circ If $j \leq k \leq i$, then $d_{i,j} - \tilde{\mu}_j \leq d_{i+k-j,k} - \tilde{\mu}_k \leq d_{i,k} - \tilde{\mu}_k$ and j < k+1, implying the result. \circ If $k < j \leq i$, then $d_{i,k} - \tilde{\mu}_k \leq d_{i+j-k,j} - \tilde{\mu}_j \leq d_{i,j} - \tilde{\mu}_j$ and $k+1 \leq j$. This implies $d_{i,k} - \tilde{\mu}_k + k + 1 \leq d_{i,j} - \tilde{\mu}_j + j$. However, if the equality happens above, then we have j = k+1and $d_{i+j-k,j} = d_{i,j}$, that is $d_{i+1,j} = d_{i,j}$. But this contradicts our assumption $\underline{\widetilde{d}} - \delta_i^j \in D$. (ii) We need to prove an existence of $k \leq i-1$ satisfying $\tilde{\mu}_j - j - d_{i,j} = \tilde{\mu}_k - k - d_{i-1,k} - 1$ for

(ii) We need to prove an existence of $k \leq i-1$ satisfying $\mu_j - j - d_{i,j} = \mu_k - k - d_{i-1,k} - 1$ for $\underline{\widetilde{d}} \in D(\mu)$, such that $\underline{\widetilde{d}} - \delta_i^j \in D \setminus D(\mu)$.

Recalling the definition of $D(\mu)$, the latter condition on $\underline{\widetilde{d}}$ guarantees $d_{i-l,j-l} - \widetilde{\mu}_{j-l} = d_{i,j} - \widetilde{\mu}_j$ for some $l \ge 1$ and so $d_{i-1,j-1} - \widetilde{\mu}_{j-1} = d_{i,j} - \widetilde{\mu}_j$. Thus, picking k := j - 1 works."

(13) The following references have been published since then (*loc. cit. p. 199, lines -4 - -1*):
B. Feigin, M. Finkelberg, I. Frenkel, L. Rybnikov, *Gelfand-Tsetlin algebras and cohomology rings of Laumon spaces*, Sel. Math. New Ser. **17** (2011), 337–361.

• B. Feigin, M. Finkelberg, A. Negut, L. Rybnikov, Yangians and cohomology rings of Laumon spaces, Sel. Math. New Ser. 17 (2011), 573–607.

Alexander Tsymbaliuk

Department of Mathematics, MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA e-mail: sasha_ts@mit.edu

¹ Actually, it reduces to the equality from the proof of Proposition 2.21, reference #2 of *loc. cit.*. The point why $u^{-\delta_{i,n}}$ appears now is that $\prod_{j \le i+1} p_{i+1,j} \prod_{j \le i} p_{i,j}^{-1} = t_{i+1}^2 u^{2\lceil \frac{i+1-n}{n} \rceil} v^{2d_i-2d_{i+1}}$, while for $s_{i,j}$ we had the same equality without $u^{2\lceil \frac{i+1-n}{n} \rceil}$.