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We propose a natural generalization of the construction of the quantum difference Toda
lattice [6, 22] associated with a simple Lie algebra g. Our construction depends on two
orientations of the Dynkin diagram of g and some other data (which we refer to as a pair
of Sevostyanov triples). In types A and C, we provide an alternative construction via
Lax matrix formalism, cf. [15]. We also show that the generating function of the pairing
of Whittaker vectors in the Verma modules is an eigenfunction of the corresponding
modified quantum difference Toda system and derive fermionic formulas for the former
in spirit of [7]. We give a geometric interpretation of all Whittaker vectors in type A via
line bundles on the Laumon moduli spaces and obtain an edge-weight path model for

them, generalizing the construction of [4].

1 Introduction

In a recent work [10] of M. Finkelberg and the 2nd author, a family of 3"~! commutative
subalgebras in the algebra of difference operators on (C*)"*! was constructed, gener-

alizing the type A quantum difference Toda lattice of [6, 22]. In this paper, we show how
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2 R. Gonin and A. Tsymbaliuk

the construction of [22] for an arbitrary semisimple Lie algebra g can be generalized to
produce 3™@-1 integrable systems, thus answering a question of P. Etingof. In types A
and C, we identify these systems with the ones obtained via the Lax matrix formalism.
We also discuss some generalizations of the basic results on the quantum difference
Toda system to the current setting.

The importance of our generalization of g-Toda systems of [6, 22] is two-
fold. First of all, as emphasized in [10] (historically this goes back at least to [20])
already, the quasi-classical limit of this construction (known as the relativistic open
Toda system) crucially depends on a choice of a pair of Coxeter elements in the Weyl
group of G (simply connected algebraic group associated with g). One of our main
results, Theorem 3.1, gives an upper bound on the number of different integrable
systems we obtain this way in the quantum case. Another motivation arises from
the geometric representation theory, where Whittaker vectors (closely related to the
Toda systems due to Theorem 4.9) often have natural geometric interpretations that
unveil additional symmetry. We illustrate this in Section 5, where the universal Verma
module over U, (sl,) is realized as the equivariant K-theory of Laumon spaces due
to [3] (see Theorem 5.3); one of the Whittaker vectors is realized as a sum of the
structure sheaves (see (5.5) and Proposition 5.14(a)), while an extra symmetry noticed
in Proposition 5.14(b) gives rise to a family of Whittaker vectors (see Theorem 5.5 and

Proposition 5.17).
This paper is organized as follows:

e In Section 2, we construct the modified quantum difference Toda systems
depending on a pair of Sevostyanov triples (following [21, 22]) and general-

izing the g-Toda systems of [6, 22].

e In Section 3, we explain how to compute explicitly the corresponding
hamiltonians using [13]. We write down the formulas for the hamiltonians
corresponding to the 1st fundamental representation in the classical types
and G,. In the latter case of G,, our formula seems to be new even in the

simplest set-up of the standard g-Toda system of [6]; see (3.33).

One of the key results of this section is that there are at most 37™%(®-1
different modified quantum difference Toda systems; see Theorem 3.1. For
the classical types and G,, see Theorem 3.2, whose proof is more elementary
and relies on Propositions 3.11, 3.14, 3.17, 3.20, and 3.38. We also show
that these are maximal commutative subalgebras, determined by their 1st

hamiltonians; see Theorem 3.3.
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Modified Quantum difference Toda Systems 3

We also prove that in type A these integrable systems exactly match
those of [10, 11(ii, iii)]l; see Theorem 3.24. This generalizes the Lax matrix
realization of the type A g-Toda system, due to [15]. In Theorem 3.31, we also
provide a similar Lax matrix realization of the type C modified quantum
difference Toda systems. Noticing that the periodic counterparts of these
two constructions in the classical case (i.e., for k = 0 in the notations
of loc.cit.) match up with the hamiltonians of the affine g-Toda lattice
of [6], see formulas (3.22, 3.29, 3.30, 3.31, 3.34), we propose a periodic
analogue of the modified quantum difference Toda systems in types A4, C;
see Propositions 3.26 and 3.33 and Remarks 3.28(b,c) and 3.35(b).

e In Section 4, we study the Shapovalov pairing between a pair of Whittaker
vectors (determined by Sevostyanov triples) in Verma modules. We obtain
fermionic formulas for those in spirit of [7]; see Theorems 4.6 and 4.7. We
also prove that their generating function is naturally an eigenfunction of the
corresponding modified quantum difference Toda system; see Theorem 4.9.

e In Section 5, we provide a geometric interpretation of all type A Whittaker

vectors and their Shapovalov pairing via the geometry of the Laumon moduli
spaces, generalizing [3]; see Theorems 5.5 and 5.11.
Following a suggestion of B. Feigin, we relate this family of Whittaker
vectors to an eigen-property of the (geometrically) simplest one (5.5) with
respect to the action of the quantum loop algebra U, (Ls(,,) (via the evaluation
homomorphism); see Propositions 5.14 and 5.17 and Corollary 5.16. This
viewpoint also provides an edge-weight path model for a general type A
Whittaker vector, generalizing the path model of [4] for a particular choice
of a Sevostyanov triple; see Propositions 5.19 and 5.21.

e In Appendices, we prove Proposition 3.11 and Theorems 3.1, 3.2, 3.3,
and 3.24.

2 Sevostyanov Triples and Whittaker Functions
2.1 Quantum groups

We fix the notations as follows. Let G be a simply connected complex algebraic group
with a semisimple Lie algebra g. We denote by H C B a pair of a Cartan torus and
a Borel subgroup. The Cartan subalgebra ) C g is defined as the Lie algebra of H,

A denotes the set of roots of (g,h), and A, C A denotes the set of positive roots

6102 Ae\ 20 Uo 18sn [00yog meT AjISIaAIun s A AQ 0FSS8YS/EQ0ZUI/UIWI/EE0L 0L /I0P/10B1Sqe-8]014B-80UBAPE/UIWI/WOD dNO"dlWapeoe)/:sd)y WoJ) papeojumoq



4 R. Gonin and A. Tsymbaliuk

corresponding to B. Let n = rk(g) be the rank of g, «;,...,, be the simple positive
roots, and w,, ..., ®, be the fundamental weights. Let P := ?ZIZa)i be the weight lattice,
Q := @}, Za; be the root lattice, and set P, := @} |Z.qw;, Q, = @ 7. oa;. We write
B=>yifp—yeQ,. Wefixa nondegenerate invariant bilinear form (-,): h x h - C
and identify h* with b via (-,-). We set d; (“‘ ) The choice of (-,-) is such that d, =1
for short roots «;, in particular, d; € {1 2,3} for any i. We also define w; := w;/d; so that
(@, 0)) = &, and p := 3 0 = 5 ZyeA+V € P. Let (a;);;_; be the corresponding

2 e define b = dia;; = (a;,0), so that (b

(or,07)

l]’

Cartan matrix with a;; = i1 18

symmetric.

Choose N € Z_, so that (P,P) C ﬁZ. The quantum group (of adjoint type in
the terminology of [16]) U,(g) is the unital associative C(v!/Ny-algebra generated by
(E;, F;, K M}“ €P  with the following defining relations:

1<i<n

KK, =K, .. Kg=1,

-1 () -1 — () K _K_
K BRG! = V0B, KRR = v 0, (B Bl = by o
1-aj; —a 1-a;; —a
.. 1—a;i—r .. 1—qii—r . .
2 v S AL ST R e AL I
vi r=0 Vi
where K; :=K,,, v; := v, ], =2 ‘;’1 , [ =110, - - [, [’;‘] %

vV—
Set L; := K,. Since P =
C(v'/Ny-algebra generated by {Ei,Fi,Lfd}?:l with the corresponding defining relations.

@ ,Zw;, we will alternatively view U,(g) as the

In particular,

n
-1 _ _Sij -1 _ %y _ aji
LEL ™ =v,"E;, LFL " =v, "Fj, K; = HLJ. )

2.2 Sevostyanov triples

Let Dyn(g) be the graph obtained from the Dynkin diagram of g by replacing all multiple

edges by simple ones, for example, Dyn(sp,,) = Dyn(so,, ;) = Dyn(sl,, ;) = A,. Given

an orientation Or of Dyn(g), define the associated matrix € = (el])l o1 via
O, ifaijzoori:j,
€ =11, ifa; <0 and the edge is oriented i — j in Or,

—1, if a;; <0 and the edge is oriented i < jin Or.

6102 Ae\ 20 Uo 18sn [00yog meT AjISIaAIun s A AQ 0FSS8YS/EQ0ZUI/UIWI/EE0L 0L /I0P/10B1Sqe-8]014B-80UBAPE/UIWI/WOD dNO"dlWapeoe)/:sd)y WoJ) papeojumoq



Modified Quantum difference Toda Systems 5

Definition 2.3. A Sevostyanov triple is a collection of the following data:
(a) an orientation Or of Dyn(g),

iij=1
(c) acollection ¢ = (¢, e (C(v/Ny<)m.

We refer to this Sevostyanov triple by (¢, n, ¢).

(b) an integer matrixn = (n satisfying d;n;; — d;n;; = €;;b;; for any i, j,

n

Fix a pair of integer matrices n* = (n;)ij:1 and collections ¢t = (Cijc)?:1 €

+ -n;
(CwYNy*)". Set e; := E; - szlL;"’, fi = Tlp= Lpn"’ - F;, and let U}, (), U,_(g) be the
C(v'/Ny-subalgebras of U,(g) generated by {e;}?' | and {f;}? ,, respectively.

The following simple, but very important, observation is essentially due to [21].

Lemma 2.4. (a) The assignment e; — C;r (1 < i < n) extends to an algebra
homomorphism x*: Uf,(g) — C(v'/N) if and only if there exists an orientation Or*
of Dyn(g) with an associated matrix e*, such that (¢*,n™, ¢") is a Sevostyanov triple.

(b) The assignment f; — ¢; (1 < i < n) extends to an algebra homomorphism
XU (9) > C(v'/Ny if and only if there exists an orientation Or~ of Dyn(g) with an

associated matrix €, such that (¢7,n™,c™) is a Sevostyanov triple.

Proof. (a) As the “if” part is proved in [21, Theorem 4], let us now prove the “only if” part

following similar arguments. Due to the triangular decomposition of U, (g), the algebra

Ut : db n bi 1-aj " r(djn;;—din;{) 1—a; l—aj-r _ r _ 0
¥, (g) is generated by {e;}; subject to X.._’(-1)"v [ ]Viei eel =

for i # j. Hence, there is a character x*: U}, (g) — C(v'/Ny with x*(e;) # 0 if and only

o nt—dint ) .. . .

if Zizg”(—l)rvr(dfnif' d‘nﬁ)[l_ralf]v = 0 for any i # j. If a; = O, then we immediately
get djn;;. - din;.lr. = 0. If a;; = —1, then we recover djn;;. - din;.g € {+d;} = {£b;} and
€; € {£1}. Finally, if a; < -1, then a; = -1 and we can apply the previous case.
(b) Analogous. |

2.5. Whittaker functions

From now on, we fix a pair of Sevostyanov triples (e*,n*, c*), which give rise to
the subalgebras Uri(g) of U,(g) and the corresponding characters xE: Uri(g) -
C(v'/N) of Lemma 2.4. We consider the quantum function algebra O,(G) spanned
by the matrix coefficients of integrable U, (g)-modules (with the highest weights in
P,). Let D,(G) denote the corresponding Heisenberg double [19, Section 3]. It acts
on O,(G). It is equipped with a homomorphism u,: U,(g) ® U,(g) — D,(G). Let
O,(BwyB) stand for the quantized coordinate ring of the big Bruhat cell [11, 8.2] (a
localization of O,(G)). The action of D,(G) on O,(G) extends to the action on O,(BwB).
In particular, U, (9 ® U;l (9) C U,(g) ® U,(g) acts on O, (BwyB). According to [11,
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6 R. Gonin and A. Tsymbaliuk

(3.22), Theorem 4.7, Proposition 8.3], there are subalgebras Sf of O,(BwyB) (we note
that 0,(G), O, (Bw,B), S} are denoted by R,[G], R,[Bw,B],S,,

wop'’
that O,(BwyB) ~ S; ® O,(H) ® S; (as vector spaces) and SE ~ UZ(g), where U (g), U (g)
are the subalgebras of U, (g) generated by {F;} , and {E;}" ,, respectively. Hence, there

i=1 =1’

respectively, in [11]) such

is an (vector space) isomorphism
0, (Bw,B) = U, (9) ® O,(H) ® U}, (9), (2.1)

under which the above actions of U, (g), U:+ (g) on O,(BwyB) are via the left and the
right multiplications. Let Uﬁi ()" denote the completions of Uﬁi (g) with respect to the
natural gradings with deg(e;) = 1 and deg(f;) = 1. In view of the identification (2.1), we
define the completion of O, (BwB) via O,(BwyB)" ~ U- (0" ®0,H)Q U;:r (g)". Hence,

- + S
the subspace of semi-invariants ((’)V(BWOB)A)Un‘(g)®Un+ (@)™ ®x

projects isomorphically
onto O,(H) under the restriction projection O,(BwyB)" — O, (H). We denote this

projection by ¢ — ¢,
- + -2yt
Definition 2.6. A Whittaker function is an element of ((’)V(BWOB)’\)Un*(g>®Un+(g>’X ox,

Remark 2.7. Following [6], we could alternatively work with the dual quantum formal
group A;(g) = Uy(g)*, defined as the space of linear functions on Uj(g). Here the
quantum group Uy (g) is defined over C[[h]] with v replaced by e”. In this set-up, a
Whittaker function is an element ¢ € Ay(g) such that ¢(x"xx") = x~ (& )xT(xHe(x)
for any x* e Urjfi (9),x € Uy(g). Let us point out that this differs from the notion of

Whittaker functions as defined in loc.cit.

We note that the character lattice X*(H) = P and the pairing (Q,P) C Z, hence,
we have the natural embedding of Q into the cocharacter lattice X, (H). Thus, for every
A € Q we can define the difference operators T, acting on O,(H) via (T,f)(x) = f(x -
v*). Moreover, since v®") < C(v'/N), the difference operators T, are also well-defined
for A € P. Let 75V(H) be the algebra generated by {eA,TuM,u € P}, and DV(Had) be its
subalgebra generated by {e*, T,I» € Q,n € P}. The following is completely analogous to
[6, Proposition 3.2].

Lemma 2.8. (a) For any Y e U,(g), there exists a unique difference operator Dy, =
Dy (e*,n%, ¢*) e D, (H) such that (Y¢),, = Dy(¢,,) for any Whittaker function ¢.
(b) Dy is an element of D, (H2Y) c D, (H).

(c) If Y, and Y, are central elements of U, (g), then Dy, y, = Dy Dy, .

Recall the element ® € (U,(g) ® U,(g))" of the completion of the vector space
U,(g9) ® U,(g) as defined in [16, 4.1.1]. Loosely speaking, the universal R-matrix is given
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Modified Quantum difference Toda Systems 7

by R = ©° . R?, where R® = vT and T € h ® b stand for the canonical element. Let
y: U,(g) — End(V) be a finite-dimensional representation, {Wk}g:1 be a weight basis
of V, and u; € P be the weight of w;. First, we note that though ®, ®°P are defined as
infinite sums, their images (id®my)(0©), 1d®@x)(O°P) € U, (g) ®End (V) are well-defined.
Second, the image (id®7TV)(RO) = (id®7rV)((R0)°p) € U,(g) ® End(V) is also well-defined
via (id ® 7)(R®) = Y} K, ® Ey; with E;;, e End(V) given by E; ;(wy) = & pwy
(this does not depend on the choice of a weight basis {w}}). Hence, working over C(v/Ny
(rather than in the formal setting C[[]] as in [6, 22]), the elements (id ® 7y,)(R) and
(id ® 7)) (RP) are still well-defined.

Due to [5, 18], the center of U,(g) is spanned by elements C, corresponding to

finite-dimensional U, (g)-representations V via the formula
Cy = try(id ® mp) (ROPR(I ® sz)) . (2.2)

We define Dy, Dy, € D, (H?Y) via Dy, := D, and D, := e”De". Consider the fundamental

n
i=1

{D;}%, and therefore {D;}!* | are families of pairwise commuting elements of D, (H ady

representations {V;}" , of U,(g) and set D, := ]N)VL,,DL- := Dy,. According to Lemma 2.8,

Definition 2.9. A modified quantum difference Toda system is the commutative
subalgebra 7 = T (¢*, n%, ¢*) of D, (H2) generated by {D;}" ,.

Due to Theorem 3.3(c) below, D, € 7T for any finite-dimensional U,(g)-

representation V.

Remark 2.10. This construction is a g-deformed version of the Kazhdan-Kostant
approach to the classical Toda system. In case the two Sevostyanov triples coincide,
we recover the original construction of [22]. Let us point out right away that we do not
know how to generalize an alternative approach of [6] to obtain our modified quantum

difference Toda systems.

3 1st Hamiltonians, Classification, and Lax Realization in Types A,C
The main result of this section is the following.

Theorem 3.1. There are at most 3"~! different modified quantum difference Toda

systems, up to algebra automorphisms of D, (H29).

The proof of this result is presented in Appendix D and crucially relies on
Theorem 4.7.
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8 R. Gonin and A. Tsymbaliuk

We also provide a more straightforward proof for the classical types
A,,B,,C,, D, as well as the exceptional type G,. To state the result, we label the simple
roots {o;}? . as in [2, Chapter VI, Section 4] (here n = 2 for the type G,). Given a

i=1

pair of Sevostyanov triples (e¢*,n*,c®), we define € = (e € € {—1,0,1}""! via
. -
€ —€ . . .

ntnon-zn o if f=n —1intype D,

Gi = + —
€iit1 " Ciiv1

2 ’

n—1r---

otherwise.

Theorem 3.2. 1If g is of type 4,,,B,,,C,,,D,, or G,, then up to algebra automorphisms
of DV(Had), the modified quantum difference Toda system 7 (e*,n*,c*) depends only

one.

We present the proof of this result in Appendix B. The key ingredient in our
proof is that the 1st hamiltonian D, depends only on € € {—1,0,1}""! up to an algebra
automorphism of DV(Had), which is established case-by-case in Propositions 3.11, 3.14,
3.17,3.20, and 3.38. Following an elegant argument of P. Etingof, we show in Appendix B
that the other hamiltonians D; match as well under the same automorphism.

Let D; (H®Y) be the subalgebra of D, (H2%), generated by {e“"i,Tﬂ}’fngn. It
follows from the construction that D; € Dj (H2Y), so that 7 c Dj (H*%). Applying
ideas similar to those from the proof of Theorem 3.2, we get another important

result.

Theorem 3.3. Consider a modified quantum difference Toda system 7 = 7 (¢, n*, ¢%).
(a) The difference operators {D;}? | C T(e*,n*, ¢*) are algebraically independent.
(b) The centralizer of D; in D3 (H2) coincides with 7 (eE, nE, cT).

(c) We have DV(ei, nt, c*) e T(e*,n*, ¢t) for any finite-dimensional U,(g)-module V.
The proof of Theorem 3.3 is presented in Appendix C.

3.4 R-matrix and convex orderings

Our computations are based on the explicit formula for the universal R-matrix R, due
to [13]. First, let us recall the construction of Cartan-Weyl root elements {E,,F,}, cx,,

which is crucially based on the notion of a convex ordering on A, .

Definition 3.5. An ordering < on the set of positive roots A is called convex (we note
that such orderings are called normal in [13, 23]) if for any three roots «, 8,y € A, such

that y = o + B, we have eithera <y < Borg <y < a.

Fix a convex ordering < on A, . For a simple root o; (1 < i < n), set E, :=E;,F, =

"o

F;. To construct the remaining root vectors, we apply the following inductive algorithm.
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Modified Quantum difference Toda Systems 9

Leta,B,y € A, besuchthaty =a+f,« < 8, and there areno o £ o’ < g’ £ B satisfying
y =o' + B’. Suppose that E, F, Eg Fy have been already constructed. Then we define

E,:=E,E; —v“PEE,, F, :=F;F,—v “PF,F,

K,—K;! ; 1N
p— for certain constants a(y) € C(v'/"),

According to [13], we have [Ey,Fy] = a(y)

where v, := v7?)/2 (note that a(o;) = 1 and v,, = v;). For y € A, define

Y~ V;l
Ry = eXpV;l T)/)Ey ®Fy '

where exp, (x) := 372 &1, (1= (1), - (), (), := 4=5. The following is due to [13].

Theorem 3.6. ([13]). Fix a convex ordering < on A . Then O = [] R, where the

YEAL
order in the product coincides with the ordering <.

The explicit computations of D; below are based on the special choice of convex
orderings. We choose two convex orderings <, on A, in such a way that ei:; =-1>=
o; <4 o; (as shown in [23], any ordering on simple positive roots can be extended to a
convex ordering on A ). This choice is motivated by Proposition 3.7 below. To state the

result, define
= tr,(id @ 7y) (HRgf .®»® -T]R,,-R*-(1® sz)) , (3.1)

where the 1st and the 2nd products are over all simple positive roots ordered according
to <_ and <, respectively, whereas (id ® nV)(RO) =({d® nV)((RO)OP) are understood as
before. We define Dy, := ]N)C/V.

Proposition 3.7. We have D, = D,.

Proof. Fory = > myy € A, (m; € Z), define e,,f, € U,(g) viae, == E, -

Y
me_ LM and f, = [0, L™ . F,, so that e, = = f; as defined in Secti
ik=1Ly " and f, = [l Ly -F,, so that e, = e;,f, = f; as defined in Section

2.2. The proof of Proposition 3.7 is based on the following properties of these elements

{ey,fy}yEA+ established in [22, Propositions 2.2.4 and 2.2.5].

Lemma 3.8. (a)Fory e A,,wehavee, ¢ U (9) and f, € U_(g).

(b) If y € A, is not a simple root, then x*(e,) = 0 and x~(f,) = 0.

We recall the proof of this Lemma to make our exposition self-contained.
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10 R. Gonin and A. Tsymbaliuk

Proof. (a) The proof is by induction used in the above definition of the root vectors
Ey,Fy. The claim is trivial when y is a simple root. For the remaining cases, let «, 8,y €
A, be as above and assume that we have already established the inclusions €y ep €
U, (9) and f,,, fy € U, _(g). Let us write o = XL} mya;, f = D7) mja;. Then

+
E, = ( = X lee1 M @k b) o €5 ECHOR Y lmlnlk(wka)e e ) H Lk(ml m)nlk
i,k=1

n
(mi+m)n, n N (k) —(a, n N (wk,
= H Lk ! k. (VZl,k=1 Lo nlk(wk ﬁ)fﬂfol -V (@ ﬁ)—"_ZL,k:l mznlk(wk a)fafﬂ) ,
i,k=1
so that

n .nt _\n 'nt
e, =v" 2 k=1 mlnik(wk’ﬁ)eaeﬂ — @B =2 minik(“’k"”)eﬂea (3.2)

and
fy _ Vzl?szl minﬁc(wk,ﬂ)fﬂfa _ V—(oz,ﬂ)-i—Z{szl mgni_k(wk,a)fafﬁ_ (3.3)

Thus, e, € U, +(g) and f,, € U;_(g), which completes our inductive step. Part (a) follows.
(b) Due to the formulas (3.2, 3.3), it suffices to prove X+(ey) =0 and g (fy) =0
fory =a+ B witha =¢;, 8 =aj.

In the former case, we get

—dint b;i—d;nt —d;nt
e,=v Tiee —v' iee=v Tile,el
since djnJr dlnfl = e+b = —b;; as a; <, o;. Hence, x*(e,) = v~ 4y [x*(e) xtepl=o.

In the latter case, we get
fy _ Vdjni_ff;'fi _ V_bij+dinf_if,~f}- _ Vdjni_j [f}',fi],
since djni; - dinj_i = ei;bij = —bij as o; <_ o, Thus, x~(f,) = Vdfni_f[x_(fj), x~(fl=0. N
Tracing back the definition of ]5V, Lemma 3.8 implies that Ry,Rgp give trivial

contributions to ]3V unless y € A is a simple root, cf. [6, Lemma 5.2] and [7, Proposition
3.6]. Hence, the equality D, = Dy,. [

3.9. Explicit formulas and classification in type A,

Recall explicit formulas for the action of U, (sl,,) on its 1st fundamental representation

V,. The space V; has a basis {wy,...,w,}, in which the action is given by the following
formulas:
_i —
Ej (W) =8 ;1 Wiy, Fy(w) = 8wy, Li(wy) =v7n +8]<’W K(W)—Va 51+1W]

J=
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Modified Quantum difference Toda Systems 11

forany 1 <i<n,1<j<n. Letw,,..., o, bethe weights of w, ..., w,, respectively, so

that (w;, w;) = §;; — 1/n. Recall that the simple roots are given by o; = w; —m;,; (1 <i <

n — 1), while p = Z}‘zl n+12—2j w;. According to Proposition 3.7, to compute D, explicitly,

we should

e evaluate C’V1
e replace E;, F; by e;, f; and Lp, moving the latter to the middle part,
e apply x* as in [6] to obtain the difference operator D; = ]_)Vl'

e conjugate by e”.

Note that the operators {E7, F] }{; <n_1 act trivially on V,. Hence, applying formula (3.1),
we can replace R, by R, =1+ (v — v 1)E; ® F;. Let us now compute all the nonzero

terms contributing to Cj,
1

e Picking 1 out of each R, R, we recover > ', v* 1% Ko,

e Picking nontrivial terms only at Rg}),Rai, the result does not depend on Or*
(hence, the orderings <,) and the total contribution is
Z?z_ll (v — v hH2yntl-2  ER EK, . Rewriting in terms of e; f; and L,

Dit+1 ~ +
—1\2 ~~n-1 v 2i+(nF—n3) n—1 +Nip MNip
we get (v —v= ) > i i 'finz'+wL'+1 szl L, e;.

e The computation of the remaining terms is based on the following obvious

formulas
Fik ) 12 ll (W) ll i 12,11+1 (Sik,ik_1+lwi+k’
Ej - BBy (W) = 85y 18y -1 Oy -1 Wi
Hence, picking nontrivial terms only at jopl . ,Rgﬁc/ 'Raik' .. 'Rail (in the order listed)
is possible only if i <, --- <, i}, j; <_ --- <_ jp, and gives a nonzero contribution to
C},l ifandonlyifk=%, iy =1,_,+1=...=i;+k—-1,and i, =j, for 1 < a < k. Thus,
the remaining terms contributing to C},l depend on <. (only on Or*) and give in total
el?,ti+1:'“:€]?tf2‘j71:i1
—1,2 +1-2i
Z (v —v H2Dyn =2 F L F K, Eiy By,

1<i<j—1l<n-1

Rewriting this in terms of e;, f; and Lp, and moving the latter to the middle, we get

n—1 i
i - =1 = _nt
—1\2(G—1) =20+ gep<icg (N —N) 2> s—i (Nsp—Nsp)
E wv—v"h) v i<a<b<j—1\"ap ™ "ab flf} l'Kwi - I I lp i .e

J—l “e el’
p=1
£
where the sumisoverall 1 <i <j—1 < n — 1 such that 6”+1 = =€ i, = +1.
Note that L, le+ e SEt My = p:k(nip - nip). Then the Cartan part above equals

L (=)
s iV Spsp - K
wl+w] H Zk 1(25 i mSk+8kl+6k])wk

6102 Ae\ 20 Uo 18sn [00yog meT AjISIaAIun s A AQ 0FSS8YS/EQ0ZUI/UIWI/EE0L 0L /I0P/10B1Sqe-8]014B-80UBAPE/UIWI/WOD dNO"dlWapeoe)/:sd)y WoJ) papeojumoq



12 R. Gonin and A. Tsymbaliuk

We have listed all the nonzero terms contributing to C/Vl. To obtain the desired
difference operator D,, apply the characters x* with x*(e;) = c;’ X~ (f}) = ¢/ asin

[6, Lemma 5.2]. Set b, := (v — V‘l)zvng_”ﬁcjci_. Then we have

n n—1

N n+1-2j Z =2 o

D, = ZV TZZU]' + byv e Tzrklzl(mik+5k,i+3k,i+1)wk+
j=1 i=1

+ +
i1 =6 g jo1 =F] N
z bi---b; (V2 Zicach -1 Moy ™Nap) ¢
1<i<j—1<n-1
j-1
e Xsi T

Zﬁzl(ZJS; Mgk +8k,i+0k ) ok (3.4)

Conjugating this by e?, we finally obtain the explicit formula for the 1st

hamiltonian D, of the type 4,,_; modified quantum difference Toda system:

n n—1
— b e lmy o
D, = z TZWJ‘ + z blV e Tzzzl(mik+3k,i+5k,i+1)wk+
j=1 i=1

+ +
€ =.=€;: . .==*1
1,i+1 —2,j-1 .
i Jj—1 2k—n—1

. P n
z b bj_lv7_1_1+2i5a<b§j—1(nab_nab)+2k:1 s=i = 2 Msky

1<i<j—1<n-1

_ zj;i as ,
e = SR Myt S i)k (3.5)

Remark 3.10. If et = ¢, then the last sum is vacuous. If we also set n"T = n~ and
¢t = +1 for all i, then we recover the formula [6, (5.7)] for the 1st hamiltonian of the

13
type A,,_; quantum difference Toda lattice:

n—1

n
Dy =D Top —w=v )2 €T 0. (3.6)
j=1

i=1

Let A, be the associative C(v'/N)-algebra generated by {Wj.El,DjFl ]” , with the

defining relations

+ ”
[w;, w,] = [D;,D;] = 0, w'wi! = D' Df! = 1, D;w; = v’isw,D;. (3.7)
Define A,, as the quotient of the C(v!/N)-subalgebra generated by {W]?—Ll, (Di/DiH)il}}giZ
by the relation w;---w, = 1. Consider the anti-isomorphism from the algebra A,

to the algebra DV(HE&) of Section 2.5, sending w; — T_,,D;/D;y, + e . Then the
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Modified Quantum difference Toda Systems 13

hamiltonian D, is the image of the following element H = H(e*, nF, ¢®) of A,;:

n n—1 n

+ .+ * -2 S| Zenoly, ~Mige—dki—dkis1  Di
H(e®,n®, 6%) = 3 w4 D by T2 M [T et =ty

j=1 i=1 k=1 i+1

+ +
=g + J-1 2k=—n-1
.. - n 1 2kene
Z b;---b;_; Wi icacb-1 Moy —Ngp) +2gem 2oy =7 Msk o

1<i<j—1<n-1

n J—1
- - Mgg—08k i —0Ok i D.
| | Wy Zomi Mok 0k =0k) —D’. (3.8)
k=1 J

The following is the key property of H(e*, n%, ¢¥) in type A.

Proposition 3.11. H(e*, n*, ¢*) depends only on € = (¢,,_5,...,€;) € {—1,0,1}"~2 with
e -
€ = w, up to algebra automorphisms of A,,.

This result implies that given two pairs of Sevostyanov triples (e*,n*,c*) and
sk pE oz i - _ o+ =
(€5,0%,0%) with €5, — €50 = €1 — €01
of DV(HE&) that maps the 1st hamiltonian D, (e*,n¥,c®) to D, (€%, A%, c*). As we will

there exists an algebra automorphism

see in Appendix B, the same automorphism maps the modified quantum Toda system
T (e*,n*, c®) to T (%, A%, ).

We present the proof of Proposition 3.11 in Appendix A.

3.12. Explicit formulas and classification in type Cp,

Recall explicit formulas for the action of U, (sp,,) on its 1st fundamental representation
V,. The space V; has a basis {wy,..., w,, w, ,...,wy,}, in which the action is
given via

EL(W]) = ajli_,’_le_l, El(Wn+]) = Sj,iwn+j+1' En(W]) =0, En(Wn+]) = 8j,an'

F(wy) =8 Wiy, Fi(Wyy) =81 Wnyj1, Fp(W)) = 85, Woy, Fp(Wpj) =0,

— =i — =i _ _ 1
Li(wj) = vistwy, Ll-(wn+j) =v Ustwy, Ln(wj) =vw;, Ln(Wn+j) =V Wy
Ki(Wj) = i i+1 w;j, Ki(wn+j) — y Y%t ],l+lwn+j,

_ 25 _ =25
Ky, (w)) =viirw;, K,(W,, ;) =v “imw,

forany 1 <i <n,1 <j < n. Let @; be the weight of w; (1 < j < n), so that the weight

of w

ntj €quals —w;, while (w;, @;) = ¢; ;. Recall that the simple positive roots are given
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14 R. Gonin and A. Tsymbaliuk

byo; = w;—w;, 1 <i<n-1)and o, = 2w, while p = >, (n+ 1 — D)w; and
d=...=d,_;,=1d,=2.

To compute D, explicitly, we use the same strategy as in type A. Note that the
operators {E7, F] qz% -, act trivially on V;. Therefore, applying formula (3.1), we can

replace R, by Rai =1+ (v; —v; 1E; ® F,. Let us now compute all the nonzero terms

contributing to Cy,
e Picking 1 out of each Ry}, R, , we recover > 1" (Vz(n+1—i) : Kppy, + v20+1-0.

K )

e Picking nontrivial terms only at Rg;, R,, the result does not depend on Or*
(hence, the orderings <) and the total contribution of the nonzero terms
equals

By, + V2R L B, )+

Wi+1

n—1
Z(V — v 12 (V2(n+1—i)FiK
i=1

v* = v ?V?F,K_, EK

wn "

e The other terms contributing to Cj, depend on <, (only on Or*). Picking

nontrivial terms only at RS,]PI Lo ,Rg};,ﬁaik, . 'Rail (in the order listed) is
possible only if i, <, --- <, i, j; <_ --- <_ Jjp, and gives a nonzero
contribution to €}, if and only if k = k', iy =, £1 =... =5, £ (k-1

(the sign stays the same everywhere), and i, = j, for 1 < a < k. When
computing these contributions, we shall distinguish between the two cases:
max(i;, ;) = n and max(i;, i;) < n. The total contribution of such terms with

k > 1 equals
€ ==e g j=E]
—1\2(—i+1) 2(n+1—i
Z (v — v~ 120D y2(n l)'Fi"'FijHlEj"'Eini“‘
1<i<j<n

+ _ _ + _
fi,i+1_“'—€n—1,n—i1

Z (V _ V—I)Z(n—i) (VZ _ V—2)2V2(n+1—i) A Fl ...F. K E ---EK +

n-"—wn 1wy
1<i<n

£ _ 4+ _
€ i1 = =€ =1

—y 120D -20-) LR . E,
> (v—v v Fj- - FK_gE-EK_, +
1<i<j<n

£ _ __+ _
€ it1 = =1, =1

> (v—v )22 — v 2)2y2 F . FK_ B E K,
1<i<n
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Modified Quantum difference Toda Systems 15

We have listed all the nonzero terms contributing to Cj, . To obtain D, = Dy, , we

should rewrite the above formulas via e;f; and L, = K

w1+...+op (1 < p = n),

moving all the Cartan terms to the middle, and then apply the characters x* with
xte) = c;r X~ (f;)) = c; . Conjugating further by e”, we obtain the explicit formula
for the 1st hamiltonian D; of the type C, modified quantum difference Toda system.

+

o
. . . . — n.—n. —
To write it down, define constants b;,m; via b; = (v; — v; l)zvi " fele; and

My = Z;:k(ni; - n;;). Then we have

n
r_i(k—n—1 —an,
Dl = Z(TZZUi + T—Zwi) + anZkil( "=DMnk -e “ Tzzzl mnkwk+

i=1

n—1

y2k=(k—n—Dmg -
Z bv e N\ ITyp mu+siitsiinoe T TS ma—ski—sk e nmw ) T
i=1

+ +
i1 == = E] ;
.. _ n
E bi ce ijJ_H_ziSchgi(ngb_nab)‘i'Zk:1 > i(k=n—=1)mg x
1<i<j<n
i —as
e ™ iT. i +
S ) M8k, i+ )k
+ +
Ei,i+1:"':€n—1,n=i1
> b, - by v icacpen Moy =Ngp) (1o + Xy Eii(k-n—DMse o
1<i<n
—j—...—p,
€ TZZ:] (X My+3g i~ T
+ +
i1 == = F1 ;
E bi A ijJ_L+ZiSa<ij(nlera_nba)+zlré:1 Zs=i(k_n_l)msk X
1<i<j<n
e %= . +
S O Mgk, —8k,j 1)k
+ +
ei,i+l:"':gn—l,nzz':1
E bi cee ann+1_l+ziﬁa<b5n(n;a_n;a)+zz=l Z?:i(k_n_l)msk e
1<i<n

—otj—...—p
e TZL’Zl(Z?:i Mg =0k i+8k,n) @k (3.9

Remark 3.13. If et = ¢, then the last four sums are vacuous. If we also set nt =n~
and cfc = =+1 for all i, then we obtain the formula for the 1st hamiltonian of the type
C,, quantum difference Toda lattice as defined in [6] (we write down this formula as we

could not find it in the literature, even though it can be derived completely analogously
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16 R. Gonin and A. Tsymbaliuk

to [6, (5.7)], cf. [7, the end of Section 3]):

D, —Z<Tzw FT_gp) = (v —v 1) Ze Tt + T ) ~ (V2 =v")%e ™", (3.10)
i=1

Let C,, be the C(v!/N)-subalgebra of A, generated by {wjEl (D;/Dy E, Diz}lgizz
(note that C, can be abstractly defined as the associative algebra generated
by {WjEl Dil} ' , with the defining relations [w;, Wj] = [Di,Dj] = 0,\7vijtl\7v§F1 = Iﬂiﬂbfl =
1,Diwj = 5Udlw D;, where d; = 1 + 8; n). Consider the anti-isomorphism from C, to
the algebra DV(H;:‘SZ”) of Section 2.5, sending w; — T_w],,Di/Di+1 — e %, D2 s emon,

Then the hamiltonian D, is the image of the following element H = H(e*, n*, c*)

of C,;:

n n
Hee®, nt, o) = > w2 +wl) + b,y k=n=bmuc [Ty Mk p2 4

i=1 k:
n—1 n D
2 : bivzzzl(k—n—l)mik ) H _mlk_‘ski_‘sk i H _mLk+(Sk i+0ki+1 5 Py
i=1 k=1 k=1 i+1
+
6i,i+1 ] lj_j:l j
E b; - bjV7_1+Zisa<bsj(n;b_nab)"'zzzl 2s_ik—n—Dmg
1<i<j<n
n .
= M=k i— ki1 D,
[Twe DT
k:l j+1
+ +
i1 == = F 1 y
z b bJ.Vl—l+2i5a<bg(ngfa—nba)+27§=1 S (k=n-Dmg
1<i<j<n
n ;
=3 Matdkitdej1 Dy
[Twe Dot
k=1 Jj+1
+ +
6i,i+1="':6n—1,n=il
z b, bnvn+1—i+zi§a<bgn(n;b—n;b)(1+5b,n>+zz=1 Yo i(k=n—Dmg
1<i<n
oy 5145
= 2us—i Msk—0k,i+0k,n
[T we -D,D,+
+ +
€iit1= =1 n =1
E bi e bnVn+1_l+2i§a<b§n(ng—a—n;a)+zz:1 Z?:i(k_n_l)mSk X
1<i<n

n n —
H WI; 2 smi Msk+0ki—0kn D,D,. (3.11)
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Modified Quantum difference Toda Systems 17
The following is the key property of H(e*, n%, ¢¥) in type C.

Proposition 3.14. H(e*, n*, ¢*) depends only on € = (¢,,_;,...,€;) € {—1,0,1}""! with

T _
€. | —€..

e L+l ii4l .

€; = —=——=, up to algebra automorphisms of C,,.

The proof of this result is completely analogous to that of Proposition 3.11
given in Appendix A, see also Remark A.1; we leave the details to the interested reader.
Proposition 3.14 implies that given two pairs of Sevostyanov triples (e*,n*,c*) and

st pd oy oo + - _ ot ==
(€5,n%,¢%) with €y — €5 = €50 — €41
of DV(Hgan) that maps the 1st hamiltonian D, (e*, n¥, ¢®) to D, (é*, A%, c*). As we will

there exists an algebra automorphism

see in Appendix B, the same automorphism maps the modified quantum Toda system

T (e, nE, c*) to T (€%, AT, &%).

3.15 Explicit formulas and classification in type Dy,

Recall explicit formulas for the action of U, (so0,,) on its 1st fundamental representation

V,. The space V, has a basis {w,..., wy,}, in which the action is given via
Ej(Wyj_1) = 8ji11Waj_3, Ejf(Wy)) = 8; ;Wyi\o,

Fi(Waj1) = 8;;Wajp1, Fi(Wyj) = 0;i11Wpj s,

8

8, —8.
Lp(WZj—l) = VIPWy_, Lp(sz) =V UPwy;,
L. ( ) = 7= L. (W)= ~3+8in
n—1(Wyj_y) =V Woj_1s Ly (wy)) =v Woj,
8 i—8i; EEVE Y
Ki(WZj—l) =V Wy, Ki(sz) = v T Wy,

E,(Wy) = 8j n 1Wop_1 +8; nWop_3, Fry(Wyj_1) = 6j,,_1Way +8; ,Woy_s,

1 _1
E,(wy_1) = 0, Fn(wzj) =0, Ln(WZj—l) =V2Wy_1, Ln(wzj) =V 2wy,

8

8j,n+5j, jn 0% n-1 sz

Kp(Wyiy) =V "Wy, Kyp(Wyj) = v

foranyl<p<n-21<i<n,1l1<j<n. Letwjbe‘cheweightofwzj_l (1<j<mn),so
that the weight of w,; equals —w;, while (w;, @;) = §; ;. Recall that the simple roots are
givenbyo; =w; —w;,; 1 <i<n-1)andea, =w,_; +w,, whilep=>" (n—i)w; and

d=...=d,=1
To compute D, explicitly, we use the same strategy as in type A. Similarly to the

r>1
1<i<n

types A and C treated above, we note that the operators {E], F; } act trivially on V;;
hence, applying formula (3.1), we can replace R,, by Rai =1+ (v—v )E; ® F;. Let us

now compute all the nonzero terms contributing to CQ,I:
e Picking 1 out of each Ry, R, , we recover >, (Vz("_i) - Kypy, + v 270

K_2wi).
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18 R. Gonin and A. Tsymbaliuk

Picking nontrivial terms only at Rg}),Rai, the result does not depend on Or*
(hence, the orderings <,) and the total contribution of the nonzero terms

equals

EK, + V_z(”_i_l)FiK_wiEiK_wiH) +

i+1

n—1 )
Z(V _ V—1)2 (VZ(n—l)Fle
i=1

w—v1)? (FnK_wn_lEann + FnK_wnEann_l) .
In contrast to the types A, C considered above, there is one more summand
independent of the orientations. It arises by picking nontrivial terms only at
Roy_, Roh and R, R, (notethat E, |E, = E,E, | F, |F, = F,F,_, due

to the v-Serre relations) and equals

—1y4,2
(v—v )'Vv°F,F,

—IK—wn_lEnEn—lK

@p-1"

The contribution of the remaining terms to Cj, depends on Or*. Tracing
back explicit formulas for the action of U, (s0,,) on V;, we see that the total

sum of such terms equals

+ +
€ ip1 == =1
_ v H20-i+D2n-) g R ....E.
2, v NN R Fi, By Bt
1<i<j<n
+ + +
éi,iJrl:“':En—:i,n—z:en—Z,n::‘:1
Z (v — V—l 2(n—1)V2(n—z).
1<i<n-1
F;-- 'Fn—ZFnK—wnEnEn—z .- 'EiKzzri"_
+ + +
Gi,iJrl:'”:En—Z,n—l:en—z,n::‘:1
Z (v — V_l)z(n_l+1)V2(n_l)~
1<i<n-1
Fi o 'Fn—anK—wn_lEnEn—l o 'Eini+
+ +
€ g1 == = F1
_o—1\2(—i+1)  —2(n—j—1)
> v—-vh v Fj---FK_, B EK_,.  +
1<i<j<n
+ + +
6i,i+1:"':Gn—a,n—zzén—z,n:¥l
— v H20-0 F F FK__E;---E, ,E.K
(v—v") Intn-2 b ;B T Pn—2En wn+
1<i<n-1
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Modified Quantum difference Toda Systems 19

+ + +
€it1 :"':en—z,n—l:en—Z,n::F1
Z (v — V—l)Z(n—l+l)V2.
1<i<n-—1
FnFn—l o 'FiK—wiEi o 'En—lEann_l'

We have listed all the nonzero terms contributing to Cy, . To obtain D, = Dy, , we should

Koyt vy ifl<p<n-2
rewrite the above formulas via e;, f; and L, = K%(w1+...+wn_1—wn)’ ifp=n-1 '
K, ifp=n

3 (@1+..+@p—1+w@n)’
moving all the Cartan terms to the middle, and then apply the characters x* with
xT(e) = c;r,x_(fi) = ¢; . Conjugating further by e”, we obtain the explicit formula for
the 1st hamiltonian D,; of the type D, modified quantum difference Toda system. To

n—2— _ o4y 41— + 1= _nty s
o . o —n2 )+ 5N —n" )45 —nl), ifk<n
write it down, define m,, := § <P~k ip? T 27in-1 Hin—17 28 in - Hin

1 - 1 - ~
_f(ni,n—l - n;n—l) +z(Ny, = n;tl)' ifk=n

tons o4
and b; := (v — v 1)2v"Micl ;. Then we have

n
_ =1 (k—n)m -
D, = Z(Tzwi + T—2wi) + anZk_l MMyk | o=0n Tzzzl(mnk—5k,n—1+5k,n)wk+

i=1

—2+Zﬁ:1 (k—m)myk  ,—an
bv € Tz;cl=1 (Mpk+8kn—1~Sk, )@k T

N =N DA (k=) (M g+ Myk) | =1 —a
bn—lan n—-1n""'"'n—-1n n nklL e tn nTzzzl(mn—l,k+mn,k)wk+

n—1

R Y o Ol P
Zblv ! e Tzz=1(mik+5k,i+5k,i+1)wk + TZLl(mik—Bk,i—fSk,iﬂ)Wk +
i=1

+

+
€ ip1 == = F] . ;
. _ n
E bi e ijJ_l+ZiSa<ij(nab_nab)+Zk:1 Zg:i(k_n)msk x
1<i<j<n
e %Y . +
S O M8, i+ 0k,
+ +
61’,L'+1:"':En—Z,nzz‘:1 ‘ aben-i . + ~ . sint
E bi . bn_zbnvn_l_1+Ziga<b§n(nab_nab)+2k:1 Zigsgn (k—n)mg x
1<i<n-—1
—0{—...—0p—2—Q
e n-2 nT. 1 +
ZLl(fo;;n Mk +3k,i—8k,n) Tk
+ + +
ei,i+1:”':en—z,n—l:en—Z,n::l:1
. — n n
E b;--- bnVn_l+ziﬁa<bﬁn(naer_nab)+Zk:1 Zomik=mMge o (3.12)
1<i<n-—1
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20 R. Gonin and A. Tsymbaliuk

—oj—...—0p
€ T2ﬁ=1 (O Magedk, =1k T
+ +
€ i1 = =€ =1 ;
.. _ .
E bl e ij]_1+zi§a<b§j(nz—u_nba)+2k=1 Zs:i(k—n)msk %
1<i<j<n
e —as
e i ]T . +
S O Mge—8ki—Sk )T
+ +
Gi.i+1:'":€n72,n:;1 ; ab#n—-1 , + - n s#n—1
E b;--- bn_zbnvn_l‘1+2iéa<bsn(”ba_”ba)+zk=l Y ieen (k—m)mg %
1<i<n-—1
—0tj—...—0p—2—0pn
e 1 n T 1 +
Zl’:ﬂ(zzngn Mgk —8k,i+8k,n) Tk
+ + +
6i,i—*—l:"':en—Z,n—l:En—Z,nz:Fl N
7 - n n
E b;--- ann_L+ZiSa<bSn(nba_nba)+2k=l 2 sik—n)mge o
1<i<n-—1
—j—...—0p,
€ TZZ=1 (X My =0k, i+0k,n—1) Tk *
Remark 3.16. If et = €7, then the last six sums are vacuous. If we further set

nt = n~ and CijE = =+1 for all i, then we obtain the formula for the 1st hamiltonian
of the type D,, quantum difference Toda lattice as defined in [6] (we write down this
formula as we could not find it in the literature, even though it can be derived completely
analogously to [6, (5.7)], cf. [7, the end of Section 3]):

n n—1
D, = Z(Tzwi t T 90) — (V= vh? Z e ™ (Twi+wi+l + T—Ufi—ZZfi+1) -
i=1

i=1

(v — v 1)2e—on (T_wn_1 o, + V_szn_l—wn) (v —vlteman1man (313

Recall the algebra C,, from Section 3.12. Consider the anti-isomorphism from
C, to the algebra DV(HESM) of Section 2.5, sending w; > T_
e?n-17% Tet H = H(e*,n*, ¢*) be the element of C, that corresponds to D; under this

anti-isomorphism (to save space, we omit the explicit long formula for H). The following

D;/Dj;; — e7%,D; =

is the key property of H(e*,n*, ¢*) in type D.

Proposition 3.17. H(e*,n*, ¢*) depends only on € = (¢,,_;,...,€;) € {—1,0,1}""! with
+ e o e
€ = w 1<i<n—2),¢, ;= m, up to algebra automorphisms of C,,.

The proof of this result is completely analogous to that of Proposition 3.11

given in Appendix A, see also Remark A.1; we leave the details to the inter-
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Modified Quantum difference Toda Systems 21

ested reader. Proposition 3.17 implies that given two pairs of Sevostyanov triples

+ nt P S S T + = _ ozt ==
(e=,n=,c*) and (€*,n*,c*) with €ie1 — €iiv1 = €ip1 — € (
+

o €p_op = 6;—2 n — €,_o o there exists an algebra automorphism of DV(HS""SZ”) that

1 <i < n-2) and
. N

maps the 1st hamiltonian D, (¥, n¥, ¢®) to D, (€*, A%, ¢*). As we will see in Appendix B,
the same automorphism maps the modified quantum Toda system 7 (e*,n*,c*) to

T (€%, n*, &%),

3.18 Explicit formulas and classification in type By,

Recall explicit formulas for the action of U, (s0,, ;) on its 1st fundamental representa-

tion V. The space V; has a basis {wy, ..., wy,}, in which the action is given via

Ei(WZj—l) = 8j,i+1W2j—3' EL(WZJ) = 8j,iW2j+2’ EZ(WO) = O,

Fi(wyj_1) = 8; Wy, Fi(Wyj) = 8; ;11 Wyj_o, Fj(Wg) =0,

Li(wyj_1) = vsiwy;_y, Li(Wyj) = v “Vstwy;, Li(wy) = wy,

25 i-26; 28 +26;
Ki(wyj_y) = vIim2ittwy; , Kyj(wyy) = v 299wy, Ki(wy) = wy,

En(WZj—l) =0, En(WZj) = 5j,nWO' E,(Wg) = wy,_1,
Fo(Woj_1) = 8, Wo, Fp(Wy;) =0, Fp(wo) = Wy,
Ly (Wyj_1) = VWpi_y, Ly (W) = v wy;, L (wo) = wy,

5; —5;
Kn(WZj—l) =VITWyi_1, Kn(sz) =V Wy, K, (wy) = wy

foranyl <i<n,1<j<n.

Let w; be the weight of Woyi_1 (1 <j < n), so that the weight of Wyj equals —wj,
while w;, has the zero weight. We note that now (w;, @;) = 2§;;. Recall that the simple
roots are given by o; = w; —w;,, (1 <i <n-1)and a,, = w,, while p = Z?zl(n+%—i)wi
andd, =...=d,_;, =2,d,=1.

To compute D, explicitly, we use the same strategy as in type A. In contrast to
the types 4, C,D treated above, E2 and FZ act nontrivially on V;, while {E], F] }{;Ln U
{En/ Frls>

R, =1+ v?*-v )E®F;forl <i<nandR, byR, :=14+(v-v )E,®F,+cE;QF;

2 still act by zero on V. Therefore, applying formula (3.1), we can replace R, by

for ¢ := (1 — v"1)(v — v7!). Let us now compute all the non-zero terms contributing

to Cy:
e Picking 1 out of each R;”, R;, we recover 14+ >} | (V4"+2_4i Ky, + v AT AL

K_2wi).
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22 R. Gonin and A. Tsymbaliuk

e Picking nontrivial terms only at Rg}),Rai, the result does not depend on Or*
(hence, the orderings <,) and the total contribution of the nonzero terms

equals

n—1
Z(Vz — 22 (V4n+2—4iFiK

i=1

EK, + V_4”+2+4iFiK_wiEiK_wi+l) +

WDi+1

(v—v )2 FK_, E,+V*F,EK, )+ c*V’FiK_,, E:K

n-n>wy —wp o n oy

e The contribution of the remaining terms to Cy, depends on Or*. Tracing
back explicit formulas for the action of U,(s0,,,;) on V;, we see that the

total sum of such terms equals

+ . _+ _
Ei,i+1_"'_€j—1J—i1

2 _ ,=2\2(—i+1) An+2—-4i 1. LT
> V2 —v7? v Fy---FiK, E--EK,+
1<i<j<n

+ _ _ + _
Ei,i+1_“'_€n—1,n—i1

Z (V2 — v 22m-iy, _ ymh2pAnt2-4 g g g

i n-n’" i
1<i<n

+ &+ _
6i,i+1_"'_€n—1,n—il

> A (E—y 2)HnhyAnt2Al g F, (FEK, EAE, ) EK, +

1<i<n

+ +
i1 == = F1
Z (V2 — v 2)20—iD) —4nt2+d) -F;---FiK_, E;---EK +

1<i<j<n

eii'iH:...:erf_l,n::Fl
Z (V2 — v2)2=D) (=12 -F,---FK__ E;---E,+
1<i<n

+ _ __+ _
Ei,i+1_“‘_gn—l,n_:':l

> AWt -vH*n-dy2 F2p | ...FK__E;---E

1™ = n—1

2
E’K,, .

1<i<n

We have listed all the nonzero terms contributing to Cj, . To obtain D, = Dy, , we

, ifl<p<n
should rewrite the above formulas via e;, f; and L, = @ittwp ,

K%(w1+...+u7n)’ lfp =n
moving all the Cartan terms to the middle, and then apply the characters
x* with x*(e) = ¢, x™(f) = ¢;. Conjugating further by e”, we obtain the explicit

formula for the 1st hamiltonian D, of the type B,, modified quantum difference Toda
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system. To write it down, define constants b;, m; via my, := Zzzk(ni; - n?l'))(l - %Sp,n)

L
nt—n; _
and b; := (v; — v; )2v; " ictc; . Then we have

n
Dy =1+ D (Top, + T_pe)+
i=1
> r 2k—2n-1)my;  —«a -1
an k=t Foemtm (VTzrk;l(mnk_Sk,n)wk tv TZZ=1(mnk+8k,n)wk) +

=232 =24+ (N —Npn)+ 2 g (dk—4n—2)Mpg | ,—20
1 +v)"“bsv nn " nn nk . e TZZ:1 omy oo T

n—1
. Zrklzl (2k—2n—1)m Lo
Z biv € Tzzzl(mik+5k,i+5k,i+1)wk + TZ?:l(mik—Sk,i—Bk,m)wk +
i=1
+ +
i1 ==y = F] o . o
Z bi R ijZJ_ZH'Z Dica<h<jNgy—Ngp)+2 ko 2 (2k—2n—1)mg %

1<i<j<n
i —a
e JT i +
S O M8k i+ 1)k
+ +
Ei,i-H:"':en—l,n:il
Z b.---b Vzn_Zi_1+Zi5u<bgn(n;b_n;b)(z_%,n)"'zz:l > (2k—2n—1)mg %
1 n
1<i<n

—aj—...—0y
€ Tyr 0 mgspomet

+ _ __=* _
6i,i-%—l _“'_en—l,n_il

Z 1+ V)_zbi - bn_lbivzn_zﬂ'(n;n_n;n)‘i‘z Zi5a<b§n(n;b_n;b) x

1<i<n
SE ST (2k—2n—1)(14850) Mgt . p—ti—...—ttn_1—20tn
v = e TZLl(Z?:i Mgt +Mpget8t,i =8k n)x T

+* _ __+x _
i1 === F1

Z b;--- ijzf—2i+2 Yicacbsj(Mpa—Npa) T Xkm X (2k—2n—D)mge
1<i<j<n

—o—...—0

e iT. i +
S O Mgk =8, —8k 1)k

£
€ it1= =€ 1,n =1

b.---b V2n—2i+1+2 Zi§a<bgn(n2—u_n;a)+22:l Z?:i(Zk—Z”—l)msk X
13 n

1<i<n

—j—...—0y
€ Tyr 0 img—spomet

+ _ __+ _
ei,i+1 _"'_en—l,n_¥1

Z A +v)"%b;---b,_ b2 Y220 (N =)+ 3o cp<n (Mg —Npg) (24285,0) o

1<i<n

Z;{L:l Z”:-(zk—Zn—l)(1+5S,n)msk L o Qj—...—0p_1—20n
v = e TZZ:](Z?:;‘ Mgk +Myk—0k i +0k,n) Dk * (314)
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24 R. Gonin and A. Tsymbaliuk

Remark 3.19. If et = ¢, then the last six sums are vacuous. If we further set n™ =n~
and Cii = =+1 for all i, then we obtain the formula for the 1st hamiltonian of the type
B,, quantum difference Toda lattice as defined in [6] (we write down this formula as we
could not find it in the literature, even though it can be derived completely analogously
to [6, (5.7)], cf. [7, the end of Section 3]):

n n—1
Dy =14 D (Top + Topp) = (V2= v 22 > e (Twﬁwwl + T—Wi-wm) B
i=1

i=1

(v — v 1)2e~n (VT_wn + V_lTwn) Fv 21 —v 2w —v1)2e2n . (3.15)

Recall the algebra A,, from Section 3.9. Consider the anti-isomorphism from A4,
to the algebra DV(HS""SZHI) of Section 2.5, sending w; T_,.Dj— e 2% Let H =
H(e*,n%, ¢*) be the element of A, that corresponds to D, under this anti-isomorphism
(to save space, we omit the explicit long formula for H). The following is the key property
of H(e*,n*, ¢*) in type B.

Proposition 3.20. H(e*,n*, c®) depends only on € = (¢ ., €) € {—=1,0,1}""! with

n—1s--

€

e
= w, up to algebra automorphisms of A,,.

The proof of this result is analogous to that of Proposition 3.11 given in
Appendix A, see also Remark A.1; we leave the details to the interested reader.
Proposition 3.20 implies that given two pairs of Sevostyanov triples (e¢*,n*,c*) and
Zt pd Ay oo + - + ==
(€5,n=,ch) with €y — €50 =€ — €

DV(HggZHH) that maps the 1st hamiltonian D, (e*,n*, c®) to D, (€%, A%, ¢F). As we will

=é there exists an algebra automorphism of
see in Appendix B, the same automorphism maps the modified quantum Toda system

T (e, n%, c*) to T (€%, AT, &%).

3.21. Lax matrix realization in type A

In this section, we identify the type A,_; modified quantum difference Toda systems

Recall the algebra A, of Section 3.9. Consider the following three (local) Lax

matrices:

-1 _w.,~1 w.p-l
LV (z) = w; w;z w;D;
i T -1

—w;D;z w;

) e Mat(2,z 1 A,[2]), (3.16)
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~1,1/2 _\y.z~1/2 p=1,1/2
W'z Wz Tz
L%(z) = ( f A i ) e Mat(2,z" /%A, z]), (3.17)
—D;z
-1 —1p-1
w; z—w; w; Dz
L (z) = ( T ) € Mat(2, A,lz). (3.18)
-w; "Dy —w;
For any k= (k,, ..., ky) € {-1,0,1}", define the mixed complete monodromy matrix
TV(2) = Liy*(2) - L7 (2). (3.19)
We also recall the standard trigonometric R-matrix
1 0 0 0
0 z—1 . Z(V—V_i) 0
Rtrig (2) = 0 ‘/‘;Z:‘:-/—l VZZ__Vl 0
vz—y—1 vz—y—1
0 0 0 1

The following key property of the complete monodromy matrices is established in [10,
11(i)].

Proposition 3.22. For any ke {-1,0,1}7, Ti(z) satisfies the trigonometric RTT relation:
Ryig(z/w) (Ti@ @1) (18 Téw)) = (10 TEw)) (T4 ® 1) Rygz/w).

As an immediate corollary of this result, we obtained (see [10, 11(iii)]) the

following.

Proposition 3.23. ([10]). Fix k= (ky, ... k) e{-1,0,1}"
(a) The coefficients in powers of z of the matrix element T;Z(Z)ll generate a com-
mutative subalgebra of 4,. Moreover, they lie in the subalgebra of A, generated by
L<i
{W;ﬂr (Di/Di+1)i1}1giZ'
k]'—l

(b) T2y, = (=D W, (zs - HEZSJrl + higher powers of z) , where s = >, .

The hamiltonian H’zC equals

ki+1:...:kj_1:1

n n—1
2 T S D; ko —ki—1 D;
H'§=§Wj_2+§wik’ Wy k=t 2y E wEl WS D (3.20)
j=1 i=1

i+1 D.
1 1<icj-l<n-1 J

(c) Set k' = (0,k,_1,...,ky,0). Then HE is conjugate to HE/.
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26 R. Gonin and A. Tsymbaliuk

Let 7% denote the commutative subalgebra of A, generated by the images of the
coefficients in powers of z of the matrix element T;%(Z)ll , while Flg e T* denote the image
of HE. The main result of this section identifies 7% with the pre-images 7 (%, n*, ¢*) of
T (e*,n*, ct) in type A,_; under the anti-isomorphism A, — DV(H:&) of Section 3.9.
This provides a Lax matrix realization of the type A modified quantum difference Toda

systems.

Theorem 3.24. Given a palr of type A, , Sevostyanov triples (e*,n*,c*) and k e

{—1,0,1}" satisfying k;, | = % forany 1 <i < n — 2, the following holds:

(a) There is an algebra automorphism of A,, that maps H(e*, n*, ¢*) to I:|’2°.

(b) The automorphism of part (a) maps 7 (¢, n%, ¢*) to T*.

The proof of Theorem 3.24 is presented in Appendix E and closely follows our

proofs of Proposition 3.11 (see Appendix A) and Theorem 3.2 (see Appendix B).

Remark 3.25. For k = 0, we recover the Lax matrix realization of the type A quantum
difference Toda lattice, due to [15].

Actually, the above construction admits a standard one-parameter deformation

of commutative subalgebras of A, as provided by the following result.

Proposition 3.26. (a) For any ¢ € C(v!/N), the coefficients in powers of z of the linear

combination Tg(z)ll +8T£(Z)22 generate a commutative subalgebra of A,,. Moreover, they

lie in the subalgebra of A,, generated by {Wjﬂ, (Di/DiH)il}}giz.
(b) We have TV(Z)U + sTV(Z)zz = (=D"wy;--- (|:|11ch - I:Ik s+1 1 higher powers of z),
where s = 3" 1 . Here H’f =1+e[]L, 81 [T, W, 2 while Hk is given by
n ki1 =..=kj_1=1
AT D, ke k-1 Dy
=St St R S e
i=1 1 1<icj-1<n-1 J
ki=..=ki_1=1 kj:—l
kj+1=~~:kn=1 f kel D. ki=1(i#j)
e > Wt T T e ST [ we? ] B2y
1<i<j<n Polgjzn kA

Proof. (a) Follows from the equality [TZ(Z)11 + 8TZ(Z)22' TZ(W)11 + ETZ(W)ZZ] = 0,
which is implied by the RTT relation of Proposition 3.22.
(b) Straightforward computation. |
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Modified Quantum difference Toda Systems 27

Definition 3.27. A type A,,_, periodic modified quantum difference Toda system is

the commutative subalgebra 7%¢ of A,,.
We note that 7% coincides with 7*.

Remark 3.28. (a) In particular, I:|g is conjugate (in the sense of (A1, A2)) to the element
of A, that corresponds under the anti-isomorphism A, — D (H g‘[‘i ) of Section 3.9 to the
1st hamiltonian of the type Agll quantum difference affine Toda system of [6, (5.9)]:

" _
=> T, = (V = v1)? D e itmia Tty — K(V—V hHemontonr 0 (3.22)

with k = (=1)*(v — v—1)~2ng,

The quantum difference affine Toda systems are defined similarly to the (finite
type) g-Toda systems of loc.cit., but starting from a quantum affine algebra and its
center at the critical level. The parameter « € C(v¥/N) is essential, that is, it cannot be
removed, cf. [6, Remark 1].

(b) We expect that most of our results from this paper can be generalized to an affine
setting. In particular, the type 4,,_; periodic modified quantum difference Toda systems
introduced above should be conjugate to the type Ailll , modified quantum difference
affine Toda systems, thus generalizing part (a) of the current Remark. To state this
more precisely, let us first specify what we mean by a Sevostyanov triple (¢,1,¢) for
g of an affine type, except A(ll). Let oy, ...,a, be simple positive roots of § (with «
the distinguished one) and {a;}? ;, be the labels on the Dynkin diagram of g as in [12,
Chapter IV, Table Aff]. Then a Sevostyanov triple (¢,N, ¢) is a collection of the following
data: (1) € = (&7 17=0

¢ =l € (C(v¥/Ny*)n+1 ig a collection of nonzero constants, and (3) A = (n

is the associated matrix of an orientation of Dyn(g) as before, (2)
1<j<n
lJ)0<i§n

is an integer matrix satisfying d;n; — d;n; = ¢€;b; for 1 < i,j < n and ding; +

i
Zp 1 dp ]p aO GOJbO_] for 1 < J <n.

In particular, given a pair of type A" | (n > 2) Sevostyanov triples (¢*, A%, %),
the corresponding difference operator H(é*, h*, ¢%) e A, should depend (up to algebra
€0) € {—1,0,1}", where ¢; := %E”“ with

indices considered modulo n. The resulting 3" difference operators H(e*, A%, &%) should

automorphisms of A,,) only on € = (¢,,_y, ...

be conjugate to the images of 3" hamiltonians I:|’2c in fln. We have verified this result for

+ o+ _
€1 = €on—1 = 1.

(c) The type A(ll) deserves a special treatment, since it is the only affine type for which

the analogue of Lemma 2.4 fails to hold (as a;; = a,; = —2). Instead, such characters
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28 R. Gonin and A. Tsymbaliuk

x* exist if and only if nj; + nj} € {=2,0,2}. Let H@A*, &%) be the element of A, that
corresponds to the 1st hamiltonian of the type Agl) modified quantum difference affine
Toda system associated with the pair (A%, ¢*). We expect that H(A*, ¢*) depends (up to
algebra automorphisms of /_12) only on m € {£2,+£1,0}. On the other hand, it
is easy to see that the equivalence class of the difference operator H;kz’kl) depends only
on k, — k; € {£2,41,0}. We expect that the resulting five difference operators in A, are

conjugate to the aforementioned five difference operators H(A*, &%).

3.29. Lax matrix realization in type C

Motivated by the construction of the previous section, we provide a Lax matrix
realization of the type C modified quantum difference Toda systems.
In addition to L;-"k(z) (k = £1,0) of (3.16-3.18), consider three more (local) Lax

matrices:

-1,_-1 -1
- W, — W, Z w; D,
L:./'_l(z) ::( t 1 l—l . l—l L ) e Mat(Z,Z_l.An[Z]), (3.23)
-w; Dl. z w;
1/2 _gw—1,-1/2 1/2
v, .. [ Wiz w; "z D;z _1)2
L (2) == ( —Di‘lz‘l/z 0 e Mat(2,z” /“ A, [z]), (3.24)
-1
W:Z — W; w.D.z
L:."l( ) =( L _‘1 vt )eMat(z,An[z]). (3.25)
—wiDi —-w;
For any k = (k... k) € {—1,0,1}"*, define the double mixed complete monodromy
matrix
TV (2) := AGRIO IS ALY ALLTCI BEIS ALt Y (3.26)

Let us summarize the key properties of the double mixed complete monodromy

matrices.

Proposition 3.30. Fix k= (ky, ... k) e{-1,0,1}"

(a) ’]Tg(z) satisfies the trigonometric RTT relation

Riyyig(2/w) (Tg(z) ® 1) (1 ® T}g(w)) - (1 ® Tg(w)) (T}g(z) ® 1) Riyyig (2/W).

(b) The coefficients in powers of z of the matrix element ?I‘g(z)11 generate a commutative
subalgebra of A,,. Moreover, they belong to the subalgebra C,, of A,, introduced in
Section 3.12.
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(c) We have Ti(z)ll =z " - ng_”“ + higher powers of z. The hamiltonian ]HIE equals

—ki—1 1 —ki+1, —kia+1)  Dj ke
Hj = Z(W +w; %) + Z ( z+1l+1 +w Wi ) D Lt vTrw P DR
i+1
kip1=..=kj=1 ) D kit1=...=kn=1
—k;—1 —kjy1— i —1,,,~ki—1 —kp—1
> W, Wi 5ot > vl ~.w k=l DD+
1<i<j<n J+1 1<i<n
kiy1=..=kj=—1 . D kiy1=..=kn=—1 .
—ki+1 —kj j —ki+1 _
> W g ot >, wwTew DD, (3.27)
1<i<j<n J+1 1<i<n

Proof. (a) Note that I_,:."k(z) is obtained from L;."k(z) by applying the automorphism of
A, that maps Wfd — Wfl, Dfd = Dfl. Hence, each of them satisfies the trigonometric
RTT relation. Thus, an arbitrary product of L;./'k(z) and f,;”k (z) also satisfies the
trigonometric RTT relation. (b) This is an immediate corollary of (a). (c) Straightforward

computation. |

Let 7% denote the commutative subalgebra of C,, generated by the coefficients in
powers of z of the matrix element ’H‘i(z)“. The main result of this section identifies 7%
with the pre-images 7 (¢*, n*, c*) of T(e*,n*, c*) in type C,, under the anti-isomorphism
¢, - D (H;‘gz ) of Section 3.12. This provides a Lax matrix realization of the type C

modified quantum difference Toda systems.

Theorem 3.31. Given a palr of type C, Sevostyanov triples (e*,n*,c*) and k «

% forany 1 <i < n —1, the following holds:

{—1,0,1}" satisfying k; ; =
(a) There is an algebra automorphism of C,, which maps H(e * nE, %) to lec_

(b) The automorphism of part (a) maps 7 (¢¥, n%, ¢¥) to T*.

The proof of Theorem 3.31 is completely analogous to that of Theorem 3.24 given

in Appendix E, see also Remark A.1; we leave the details to the interested reader.

Remark 3.32. Recall that any nonsimply laced simple Lie algebra g’ admits a folding
realization g ~ g°, where g is a simply laced Lie algebra endowed with an outer
automorphism o of a finite order (arising as an automorphism of the corresponding
Dynkin diagram). This observation allows to relate the classical Toda system of g’ to the

Toda system of g; see [17]. The above construction of the modified quantum difference
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30 R. Gonin and A. Tsymbaliuk

Toda systems in types C,, and A,,_; via Lax matrices exhibits the former as a folding

of the latter, once we require that the orientations €* of Dyn(sl,,) = A,,_; satisfy
£ £

6i,i+1 - 62n i—1,2n—i
pair (B, D, ). It would be interesting to understand the explicit relation. Let us warn

for all i. However, such a naive approach fails to work for the

the interested reader that the folding for quantum groups is more elaborate than in the

classical set-up; see [1].

Analogously to the type A case, the above construction admits a standard one-
parameter deformation of commutative subalgebras of C,, as provided by the following

result.

Proposition 3.33. (a) For any ¢ € C(v!/N), the coefficients in powers of z of the linear
combination ’]I‘g(z)ll +8T£(Z)22 generate a commutative subalgebra of 4,,. Moreover, they
belong to the subalgebra C,, of A,,.

(b) We have ']l“Z(z)11 + STZ(Z)zz =z " - ]I:]IEZ_”+1 + higher powers of z. The hamiltonian

]ﬁlg is given by the following formula:

n n—1
fk _ 2 w2 ki1, k=1 kbl ka1 D o o
HS = > W} +w; )+Z(Wi Tw T W T W oo Wt - Dot

i+1
ki+1=4..:kj:1 1 D ki+1=...=kn=1
—ki—1 —Kjr1— i -1, —ki—1 —k,—1
Z w; Wi ‘D + Z voow, e w - DD+
1<i<j<n J+1 1<i<n
kip1=..=ki=—1 LD Kiy1=..=kn=—1
—k;+1 —kjt1+ i —ki+1 —kn+1
Z Wi Wi 'D. + Z vW; S Wy DDy
1<i<j<n J+1 1<i<n
2k 2k u u D = D
- —2ki 4 Rk pr2 ) R 2, “n_
e 81 (1 =8 Wy VAW DT [ T80 [ [ D Sk-1 le D. T
= j 1 i=1 1
ki=..=k;=1 ) 1 ki=..=kj=—1 N 1
k-1 yTRmlo - -1 —ki+l it L
z Wy Wit D.D. + Z v W Wit D.-D
1<i<n 1=i+1 1<i<n 1=+

(3.28)

Definition 3.34. A type C,, periodic modified quantum difference Toda system is

the commutative subalgebra 7% of C,,.

We note that 7%0 coincides with 7.
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Remark 3.35. (a) In particular, ]I:]Ig’ is conjugate to the element of C, that

corresponds under the anti-isomorphism C, — D,(H2 ) of Section 3.12 to the

SPan
1st hamiltonian of the type Cﬁll) quantum difference affine Toda system of [6]
(cf. Remark 3.28(a)):
n—1

n
]51 = Z(Tza;i + T—zwi) - (= V_l)z Z e T (Twi+wi+1 + T—wi—wiﬂ) -
i=1

i=1

(VZ _ V—2)26—2wn _ K_V—ZTL—Z(VZ _ V—2)262w1 (3'29)

with k = v&12(y — p=1)=4=D (2 _ =2y,
Here « € C(v!/N) is an essential parameter. For « = 0, we recover D, of (3.10).
(b) Following our discussion and notations of Remark 3.28(b), we have also verified

that the element of C, corresponding under the anti-isomorphism C, — D, (H2 ) to

5Pan
H(e*, nt, &%) with eoil = 1, is conjugate to I?]I’zé with k; = 0 and k;; = e’t“% for any
1<i<n-1.
(c) For completeness of our list (3.22, 3.29), let us present explicit formulas for the
1st hamiltonian D, of the quantum difference affine Toda systems (defined in [6]) for
the remaining classical series DY’ and BY}’ (as we could not find such formulas in the

literature):

e In type D;“, we have

n n—1

N —152 —witw;

D, = Z(TZwi + T—Zwi) —(v=v) Z e (Tw'i+wi+1 + T—wi—wi+1) -
i=1 i=1

(v — v 1)2e @n-1-on (T

-2 _ o—I\4,—2mp_1 _
—®n-1+n tv Twn—l—wn) + (V v ) e

KV—2n+2 (V _ V—1)26w1+wz (T_w1 - + Tw1_w2) + KV—2n+2 (V _ V—1)462w2.

(3.30)

e In type BY, we have

n n—1
N 2 —2\2 —wj i
D, = 1+Z(TZZUi+T—ZZUi)_(V V) Z e (Twi+wi+l + T_wi_wi+1) B
i=1

i=1

(v—v1)2e ™ (VT_w" + V_lTw") +v 21 —v H2(w —vhH2Ze2on_

KV—4n+2 (Vz _ V—Z)Zew1+w2 (T_w1+w2 + Tw-1 _wz) + KV—4n+2 (Vz _ V—2)462w2.

(3.31)

For « = 0, these formulas recover D, of (3.13) and (3.15), respectively.
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3.36 Explicit formulas and classification in type G,

Recall explicit formulas for the action of U, (g,) on its 1st fundamental representation

6

V,. The space V; has a basis {w;}; ;, in which the action is given by the following

formulas:
E :wy (V+V_1)W2, w0, wy = 0, wy = 0, wy = wy, wg = (V+V_1)W0,
Wg = Wy,
Ey,wyg— 0, wy = 0, wy = wg, Wy = Wy, Wy 0, wg = 0, wg = 0,
Fi:wy > wg, Wy = Wy, Wy = Wy, Wy Wy, Wy 0, wg = 0, wg = 0,
Fyp:wyg—=> 0, w; =0, wor=> 0, wyg—= 0, wy= 0, wg = Wy, Wg > Wy,
Li:wy—= wy,wy = V2W1,W2 = VWy, W3 V_1W3,W4 = V_2W4,W5 4 V_1W5,

Wg = Vg,

. 3 -3 -3
Ly: Wy Wy, Wy B VPW, Wy 5 Wy, Wy 5V "W3, Wy > V "W, W5 — W;,
wg = VW,
6 6
. 2 -1 -2
K1t wy = Wy, Wy = VW, Wy 5 VW, Wy > VW3, Wy > VW, Wy — V “Wsp,
-1
Wg = V" Wy,
. -3 -3 3
Kyt wy = Wy, Wy Wy, Wy = V "Wy, W V "Wy, Wy > Wy, W > VoW,

3
Wg — Vo wyg.

Let w; and w, be the weights of w, and wyg, respectively, so that (w;,@;) =
(wy, wy) = 2,(w;,w,) = —1. Then the weights of wy, w;, wy, w,, wg are equal to 0, w; +
w,, —W,y, —W, — Wy, —w,, respectively. We also note that the simple roots are given by
o = @y, 0y = —w; + w,. Finally, we have p = 5«; + 3a, = 2 + 3w, and d; =1,d, = 3.

To compute D;, we use the same strategy as for the classical types. Analogously
to type B, the operators E? and F? act nontrivially on V, while {ET, F} }:;1;61',1 still act
by zero on V,. Therefore, applying formula (3.1), we can replace R, by Raz =142 —
v 3)E,®F,and R, byR, =1+ (v —-v )E ®F +cEf®@F; forc:=(1—-v H)(v—-v).

Let us now compute all the nonzero terms contributing to Cy, :
e Picking 1 out of each f??p,l_%i, We recover

2 -2 8 -8 10 —10
1+v 'K2w1+v 'K—2w1+v 'K2w2+v 'K—2w2+v 'K2w1+2w2+v 'K—2w1—2w2‘
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e Picking nontrivial terms only at Rg}),Rai, the result does not depend on Or*
(hence, the orderings <,) and the total contribution of the nonzero terms

equals
(v — V_l)2 (VZ(V + V_l)FlEle1 + (v + V_l)FlK_le1
+ VIR K, E\K, 0 + V‘BFIK_wl_szIK_wz)
+ 0 = V2 (VK , By, + V2 FpK 1, FpK )
+c*vi(v+v YRR, E2K, .

e The contribution of the remaining terms to Cy, depends on Or*. Tracing
back explicit formulas for the action of U, (g,) on V;, let us evaluate the total
contribution of such terms for each of the four possible pairs (Ort, Or™).
Case 1: if Or™ = Or—, then there are no other terms.

Case 2:if Or": a; « @, and Or™: @; — «,, then the total contribution equals

v —v1)?? —v 2 (v + v )F,F E EK, +Vv °F,FK E\E;K_, )+

—w1—w2

AW —vH B w4 vhH? -FZFIZK_leszsz.
Case 3:if Or": a; = ay and Or™: «; < «,, then the total contribution equals

(v —v H2(® —v 2 (v'°F F,K,, E,E K

w1+

+ (v + v HF FK_, EjE))+

AW —v A (w4 v 2 FPRK E2E12Kw1.

—wy

Thus, we have listed all the nonzero terms contributing to C’Vl. To obtain ]31 = ]_)Vl’

, Imoving

w1t+wa!

K

w1+2wy!

we should rewrite the above formulas via e;, f; and L, =

all the Cartan terms to the middle, and then apply the characters x* with x*(e;) =
c;r X~ (f)) = ¢; . Conjugating further by e”, we obtain the explicit formula for the 1st
hamiltonian D; of the type G, modified quantum difference Toda system. To write it

: e (n— _nt -t e (p— _nt -t
down, define consfants m;; = (N; =N+ (N —nj), My = (n; —nj)+2(n;, —nj) and
T —n..
i i

i Cl

—. Then we have

. -1y2.0
b= (v; —v; ) c

D) =14 Top, + T2, + Tow, + T2, + Ty 4200y + T—205 —20,)+

—my—4 . -1 -1 -1
bIV mu=imiz . = (V v+v )T(m11+1)w1+m12w2 +viv+v )T(mll—l)w'1+m12w'2 +
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34 R. Gonin and A. Tsymbaliuk

Ty +)ym +miz+2)m; + L —Do +mz-2)m,) +

—my; —4m -
bZV 2 2.em (T(m21+1)ZD1+(m22+1)WZ + T(m21—1)w1+(m22—1)wz) +

2 —1,2
bl(V +v) V—2+(n;’1—nfl)—(2m11+8m12) Le2a +
—(1 T V)2 2myiw1+2mye w2

S+ 85— .- {b b V—4-‘:-3(nfr2—f11_2)—(f’f111+f'f121-i-4mlz+4f‘f122)><
€10~ 17€5,1 1¥2

-] —o2 —1
€ ((V TV )Ty +manm +Hmiz+ma+ ey T VT(m11+m21—2)w1+(m12+m22—1)w2) +

2 —1y2
biby(v+v™) =8+ =NT)+6(NY, —NnT,)—(2m11 +ma1 +8Mmiz+4mzz) o
(1 +v)2

e—2a1—a2T +
(2mi14+ma1 —D@1+(2mi2+maz+1) w2

FY S .{b b V3+3(n1+2—n1_2)—(m11+m21+4m12+4m22)x
€19:17€15,—1 12

—0]—02 —1
€ (V(V TV ) Ty +manm +miz+ma -1y, T T(ml1+m21+2)w’1+(m12+m22+1)w2) +

b2b, (v + v 1)2

AT =) +6(NT,—n1,) —(2M11 +ma1 +8Mia+4mz2) o
1+ v)?

2 —
e " azT(2m11+m21+1)w1+(2m12+m22—1)w2}' (3.32)

Remark 3.37. Ifet = ¢, then the terms with §'s are vacuous. If we further set n™ = n—
and cii = %1 for all i, then we obtain the formula for the 1st hamiltonian of the type G,

quantum difference Toda lattice as defined in [6]:
Dl =1+ (TZw'l + T—Zwl + T2w2 + T—2w2 + T2w1+2w2 + T—2w1—2w2)_
wv—vHZ. e w v+ V_l)Tw1 +v(v+ V_l)T_w1 + T t2my T Ty —2,)—
(VS - V_3)2 e (Tw1+w2 + T—an—wz) + V_z(l - V_I)Z(Vz - V—Z)Z ~e72*1, (3.33)

+

Let G, be the associative C(v)-algebra generated by {w; L Diﬂ}i:1 subject to

[W1'W2] = [Dl' DZ] =0, W?:IW;FI = D;tlDiFl =1,

D,w; = v?w,D,, D;w, = v_'w,D;, D,w; = v3w,D,, D,w, = v3w,D,.
Consider the anti-isomorphism from G, to the algebra DV(HSS) of Section 2.5, sending
w; = T_,,D; = e™®. Let H = H(e*,n*, c*) be the element of G, that corresponds to

D, under this anti-isomorphism. The following is the key property of H(e*,n*, c¥) in

type G,.
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L
Proposition 3.38. H(e*,n*, c*) depends only on € := 92,2 € {—1,0,1}, up to algebra

automorphisms of G,.

The proof of Proposition 3.38 is completely analogous to that of Proposition 3.11
given in Appendix A; we leave the details to the interested reader. Proposition 3.38
implies that given two pairs of Sevostyanov triples (e*,n*,ct) and (¢*,AT,¢*) with
€1+2 — €, = g;rz — €5, there exists an algebra automorphism of DV(HSS) that maps the
1st hamiltonian D, (%, n*, ¢®) to D, (€%, A%, ¢*). As we will see in Appendix B, the same

automorphism maps the modified quantum Toda system 7 (e, n*, c*) to 7 (¢*,nt, &¥).

Remark 3.39. For completeness of our list (3.22, 3.29, 3.30, 3.31), let us present the
explicit formula for the 1st hamiltonian ]51 of the type Gg) quantum difference affine

Toda system:

D) =14 Top, + T_2p, + Topy + T30y, + Tom 4200y + T—200—200,) —
v—vHZe ™1 (v (v + V_l)Tw1 +v(v+ V_I)T_w1 + Ty 20y T Tty —200y) —
(V3 _ V—S)Zewl—wz (Tw1+w2 + T_wl_wz) + V—2(1 _ V—I)Z(VZ _ V—2)2 . e—2w1_

kv 2R —vdRem (T 4 T Y kv (v —vTHE(vR = v3)2e? ™2, (3.34)

For « = 0, this recovers D, of (3.33).
4 Whittaker Vectors and Their Pairing

In this section, we study a pairing of two general Whittaker vectors (associated with
a pair of Sevostyanov triples (¢*,n*,c¥)) in universal Verma modules, following [7].
We obtain a fermionic formula for the corresponding terms jﬂ. We show that their
generating series is a natural solution of the modified quantum difference Toda system
T (e*,n*, c®) of Section 2. This provides a natural generalization of [7, Section 3], where

et =¢ andnt =n".

4.1 Whittaker vectors

Following the notations of [7], consider U,(g) and U,-1(g), whose generators will be
denoted by E; F; L; and E; F; L
universal Verma modules. Let {u;}]'; be indeterminates and consider an extension
k := Cw'N,uy,...,u,) of C(v'/N). Let U,(g)s be the subalgebra of U,(g) generated
by {Lf‘l,Fi}?zl and consider its action on k with F; acting trivially and L; acting
via multiplication by u;. We define the universal Verma module V over U,(g) as

;» respectively. In contrast to [7], we will work with
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V = U,(9) Ry, (g)< k. It is generated by 1 € k such that E;(1) = 0 and L;(1) = u; - 1
for 1 < i < n. We define the formal symbol A := Z?Zl dliolgo—;u(iv))ai,
only as an index or in the context of the homomorphism v*"’: P — k defined by
P 3> myw; > v X ™) = [T, ul™, so that K, (1) = v .1 for i € P. In particular, V is
graded by Q,:V = @4, Vs with Vy = {w € VIK, (W) = veA=Bw (u e P)}. Similarly, let
V be the universal Verma module over U,-i(g) generated by the highest weight vector 1
such that E’i(i) =0 and I_,i(i) = ul._1 .1for1 < i< n.Itis also Q, -graded: Y= $ﬂea+vﬂ
with 1_2/3 ={we ]_}|I_{M(W) = v~ WA =Pw (u e P)}.

which will appear

Remark 4.2. One can alternatively work with the standard Verma modules V* and
V*, % € P (one should further require A to be strictly antidominant for the existence of
Whittaker vectors), so that u; = v e C(v!/N). This viewpoint is used in [7]. We prefer
the current exposition as it is compatible with our discussion in Section 5. Nevertheless,
motivated by the above standard set-up, we will freely use the above notation v** for

neP.

There is a unique nondegenerate k-bilinear pairing (-,-): V x V — k such that
(1,1) = 1 and (xw, w’) = (w,o(x)w’) for all x € U,(g), w € V,w’ € V, where the algebra

anti-isomorphism o : U, (g) — U,-1(g) is determined by o (E;) = F;, 0 (F;) = E;, 0 (L;) = L7 "

Remark 4.3. One can alternatively work with a single universal Verma module V over
U, (g) endowed with the Shapovalov form (-,-): V x V — k; see our discussion in Remark
5.12.

For the key definition of this section, consider the completions YA, VA of V,V,

YA = H Vg, YA = H 1_25.

e e,

defined via

Given a pair of Sevostyanov triples (e*,n*, c*) (now C?E e k*), define vijE € Pvia v =

i
> h1 nl?;a)k, so that (vii,aj) - (v]i,oci) = Gij,tjbi,f We have associated Whittaker vectors
0 =0@t,nt,ct)= D 6,V (with, e Vy)

BeQ

and

0 =06(",n",c7) = z 9_/3 e V" (with 0_/3 € ]_)ﬁ),
BeQy
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which are uniquely determined by the following conditions:

0o=1, EK,+(0)=c; -0 and 0, =1, EK,-(0) =c; -0. (4.1)

1

Remark 4.4. This is a direct generalization of the classical notion of Whittaker vectors

for Lie algebras as defined by B. Kostant in his milestone work on the subject [14].

4.5. Pairing of Whittaker vectors

Set (t; ), := [y (1 — tk) forr e Z_q, and (t; t)q := 1. Choose convex orderings <, on A
such that el?; =—1= o; <4 «;, cf. Section 3.4. Let ot < -+ <4 oz be the simple roots

ordered with respect to <. For 1 <i#j < n wewritei <, jif o; <, ;. Define

Ty = Jg(e*,n*,c*) = (Gﬁ(e+,n+,c+),9_ﬂ(e_,n_,c_)) . (4.2)

Following [7, (3.11)] (we note that jﬁ is denoted by Jg in [7]) we also consider its slight
modification

Ty = Ty(e* 0%, cb) = vy BD/2H0P) (Qﬂ(e+,n+,c+),9_ﬂ(e_,n_,c_)) . (4.3)

For B ¢ Q,, we set J; := 0 and :Iﬁ := 0. Our 1st result provides a recursive formula for
jﬂ-

Theorem 4.6. We have
- 1
Jﬁ = Z (v2

v =204py) B~y ;0 (B=v.B) ,jy, (4.4)
0<y<p Vo

where (v2), := [[L, (v vD),., ¢ o= [1L (—¢f ¢ (v; — vi DD, 1, (o, B) = DLy my(v; —

+ — + n m;(m;—1 - + n
v A= B)+ Zj<+i mym;(v; — v, o) + Disl %(wi =) fora =3y mo; €Q,.

Proof. The proof is completely analogous to that of [7, Theorem 3.1] and is based
on an evaluation of (C(Gﬂ),éﬂ) in two different ways, where C is the Drinfeld Casimir

element. [ |

Solving the recursive relation (4.4), one obtains an explicit fermionic formula

for Jg.

Theorem 4.7. We have

>0 8Y=p J2BB)+RB)

s s
e B W% N [1E20(vHp0 9
P= =05+
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38 R. Gonin and A. Tsymbaliuk

where we set R(8) := 32 1, (ﬂ(t)'ﬂ -2 ﬁ(S)) and

B(B) = % i min(t, t') (,3“),,3“’)) _ it(k n p,ﬁ“>) .

t,t'=0 t=0

Proof. We will give a direct proof as the general machinery of fermionic formulas
developed in [7, Section 2] does not apply to our set-up. The formula is obvious for

B = 0. From now on, fix g > 0 (that is, € Q\{0}). Let us rewrite the equality (4.4) as

~ 1 ~
(1 _ V(ﬁ,ﬁ)—zuﬂa,ﬁ)) Jy= > v -PLb=pO=204p BP0 Py P T,

- 2
olpres Vh

We apply the same formula for jﬁ—ﬂl if B; < B. Proceeding in the same way, we finally

obtain

v 2Ba=h 4 ooy (Bebert-+Ba)y Beri++Baberi+tBa) =20+ Per1+.+a)

Jp = 2=l . (4.6)
P dZ;; 5. 550 [1L, (V)5 (1 — vibettbabet+b)=204p et +ba))

On the other hand, the summation in the right-hand side of (4.5) is over all
B = (B2, e QY with 32,8 = B. Such sequences are in bijection with tuples
{d B} (t}d11d > 1,8, > 0,t, € N, YL, B, = p} via plat-ttete-l = g (1 < e < d)
and 8® = 0 otherwise.

Hence, the right-hand side of (4.5) equals

2

d=1 pi1,...8a>0

Pt +ha=p [ Py v.(Bef=Pr—..—Be-1)
X

d
He:l (Vz)f}e
Z Vzgzl (t1+...+tet+e—1)(Be,Be)+2 29<ef (t1+...+tete— 1)(ﬂe,/39/)—2()»+p,23:1 (t1+...+tet+e—1)Be)

(4.7)

It is straightforward to verify that the right-hand side of (4.6) coincides with (4.7). H

4.8. J-functions: eigenfunctions of modified quantum difference Toda systems

Recall the elements w;” = w;/d; € P®; Q satisfying (¢;, »;") = §; ;. Consider a vector space
N, that consists of all formal sums {Zﬁea aﬁzﬂ_ﬂaﬂ € k} for which there exists g; € Q

. =Y
such that a; = 0 unless g — B, € Q,, where Zﬂ_k is used to denote [], ylfﬂ i ). The

vector space N, , is defined analogously with A being replaced by A + p. Consider
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the natural action of the algebra DV(Had) of Section 2.5 on the vector space N,,

determined by
B=ry — o~ (wB=2),B—L B—Ay _ B—a—L
T,y ") =v ® v e"‘(Z ) =Y “~*fora,B€Q,u cP. (4.8)

The action of DV(Had) on N, , is defined analogously.

Consider the following generating functions of the terms Jy defined in (4.2):

n
L. (B=1,wY)
T=Iyiy = > 5[]y €N,
BeQy  i=1 (4.9)

n
(B—r—p,w})
J=J({y;ly) = E JﬁHyi " eN,,,.
ﬂ€a+ i=1

Recall the difference operators Dy, D, € D, (H29) of Section 2.5, associated with the pair
of Sevostyanov triples (e*,n%, ¢*) and a finite-dimensional U, (g)-representation V. The

following is the key result of this section.

Theorem 4.9. (a) We have Dy,(J) = try, (v2*+) . J.
(b) We have Dy, (J) = try, (v2*+0)) . J.

Proof. First, we note that part (a) implies part (b), due to D, = e’D,e " and J = e” ).
The proof of part (a) is based on an evaluation of (CV(Gﬂ),éﬁ) in two different ways,
where Cy, is the central element of (2.2). On the one hand, C}, acts on V as a multiplication
by tr,(v2*+°)) (since Cy, is central, V is generated by 1, and Cy(1) = try(vZ*+P) . 1),
so that (CV(Gﬂ), 9_/3) = try(v?**#)).J,. On the other hand, we can use the explicit formula
for Cy.

Let {wy}}_, be a weight basis of V, and u; € P be the weight of wy, cf. Section

2.5. Then we have

1<k<N R R
CV(%) — Z c(ﬁz) .y A= BH20,10)+ 0=t (m), pup—a(m)) o
m=(my,...,myp)eN"
m,— m— m+ m+ m,— m— m.+ m4
<Wk Eaifl .. .Eaiﬁn . Fai_{_l .. .Fai;n Wk> . Fai;l .. .Fai;n . E“i'l*'l .. .E“i; (9;3)' (4_10)
where (wy|x|wy) is the matrix coefficient of x € U,(g), a(m) = X1 m; € Q,,

and c(m) € C(v) are certain coefficients for which we currently do not need explicit

formulas.
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Using the defining property of (-, -), we get

m,— m,— m;+ m.+ _ m;+ m.4 -m.— _mi— _
(Foti—l . Fai_n . Eai+1 . E‘)‘LJrn (9/3)' Qﬁ) = (EaiJrl N Eai+n (eﬁ)lEOli—n .. .Eai_l (Qﬁ)) .
1 n 1 n 1 n n 1

To evaluate the pairing in the right-hand side, note that the defining conditions (4.1)
of the Whittaker vectors imply E;K,+(0,) = ¢]6,_, and EK -(6,) = ¢; 6,

— Ty 0Fa=y) 70 = v AmYg
hence, E;(6,) = ¢;'v Vi ATV 0, _q, and Ey(6,) = c; v Vi ATV 6,

—ai for y € Q;
—o;- Applying this iteratively,

we find
it it - +\m; T (ML)
Byl - Eat 0p) = [[@)™vS ™D 05y,
1 .
i=1
_mi’; I 0 m 7, (m,p) 6
B o Ea (ﬂ)—H(C) v p—a(rm)
" i=1
n mi;_l + n
with 7;°(m, g) given by t(m, B) == -3 F 1>, % vi;,k — BT+ e My

m.——1
and r, (M, B) =D 1 1 >, ( A= ,3+7‘Ol ‘|‘Zs 1m -0 )

Summarizing all these calculations, we obtain the following equality:

1<k<N n
Z c(m) H(cj’ci‘)mi .y P —BH20,10)+ (= Bta (M), uk—a (M) +1;" (M, B)+7; (M.B)
m=(myi,...,mp)eNn i=1
m.— m— Mg mt
<Wk E“ilil ...Eai;n .F"‘i;fl ”F"i;n Wk> 'Jﬁ—a(ﬁm) =try, (VZ(A+p)) 'Jﬂ' (4.11)

~ ~ m.—
Let us now compute Dy (J). First, we need to rewrite F,'...F,™ and
12 L
m+ mi+ ! "
E, +1 - E, +" in terms of the Sevostyanov generators e;, f; and Cartan terms, moving

the latter to the right of f;'s and to the left of e;'s. We have

m, m.— ey T -
L 7, (m 1 n
F1.F, " =y . Ken _
i Rt f"‘il— o >y mivy !
m.4+ m.+ m+ m+

B n _ #r(m)
E, ~-~Eai¢ v VYK S mat ea+- ea+,

where ff:(ﬁl) are given by % (m) = >} Zr 1 (v+,roz++zs 1m+(x+) and

m.—
LTm = —->p ;> * (vi‘_,raik + > k1 miai). Tracing back the definition
k S S
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of Dy, we find

1<k<N n
b0, (X ) - Y o[l
Bea, Bea, m=(my,... my)eN" i=1

2o M v B0 = (2= (M), f—1)— (e 0 (M) T ()T, (1)

W o T By F B ) Ty (412
k|o.— o — o4 o4 k ﬂZ . .
ll in 1,1 in

Due to the equalities 7,7 (m)+17, (m) = ;" (m, B)+1, (M, B)+>1r, m; —v, a(m)+1—B)
and —(ug, a(m)) — Qu —a(m),f — 1 —a(m)) = A — B, ug) + O — B + a(m), iy — a(m)),
the coefficient of Zﬂ_* in the right-hand side of (4.12) coincides with the left-hand side
of (4.11).

The equality Dy, (J) = try, (v2*+?) . J follows. [ |

5 Geometric Realization of the Whittaker Vectors in Type A

In [3], A. Braverman and M. Finkelberg provided a geometric realization of the universal
Verma module over U, (sl,,), the Shapovalov form on it, and two particular Whittaker
vectors ¢, to of it via the Laumon based quasiflags’ moduli spaces. The vectors ¢
and w correspond to particular Sevostyanov triples (e,n,c) with the corresponding
orientations of the A,_; Dynkin diagram being equioriented.x’ In this section, we
generalize their construction by providing a geometric interpretation of all Whittaker

vectors and their pairing.

5.1 Laumon spaces

First, we recall the set-up of [9]. Let C be a smooth projective curve of genus zero. We fix
a coordinate z on C, and consider the action of C* on C such that v(z) = v_2z. We have
ct = {0, 00}. We consider an n-dimensional vector space W with a basis wy,...,w,,.
This defines a Cartan torus T ¢ G = SL(n) c Aut(W). We also consider its 2" 1-
fold cover, the bigger torus T, acting on W as follows: for T > t = (ty,...,t,) we have
t(wy) = tiwk.

Given an (n — 1)-tuple of nonnegative integers d = (d;,...,d,,_;) € N1, we
consider the Laumon’s based quasiflags’ space Q. It is the moduli space of flags of
locally free subsheaves 0 ¢ W, ¢ --- ¢ W,,_; ¢ W = W ® O such that rtkOV,) =
k,degOWV,) = —d;, W, C W is a vector subbundle in a neighborhood of co € C, and the
fiber of W, at oo equals the span (wy,..., wy) C W. It is a smooth connected quasi-

projective variety of dimension Zf:_ll 2d;.
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The group T x C* acts naturally on Q4. The set of fixed points of T x C* on Qg
is finite and is parametrized by collections d of nonnegative integers (dij)1<j<i<n—1 Such
that d; = Z}:l dij and dkj > dij fori > k > j; see [9, 2.11]. Given a collection d as above,
we will denote by d + §;; the collection d’, such that d;; = d;; + 1, while dj; = dy; for
(k,1) # (i,J). By abuse of notation, we use d to denote the corresponding T x C*-fixed
point in 9.

Forie{l,...,n—1}andd = (d,,...,d,_;), wesetd+i:=(d;,...,d;+1,...,d,_).
We have a correspondence €¢;; C Qg x Q4,; formed by the pairs W,, W.) such that
W; C W; and W; = WJ’. forj #i. It is a smooth quasi-projective variety of dimension 1 +
Z;‘;ll 2d;. We denote by p (resp. q) the natural projection €;; — Qg (resp. €;; — Qg;).
We also have amap s: ¢;; — C, given by W,, W,) = supp(W,;/W)). The correspondence
¢,4; comes equipped with a natural line bundle £; whose fiber at a point OV,, W,) equals

L'(C, W;/W)).
We denote by ‘M the direct sum of equivariant K-groups: 'M := @QKTX(CX (Qq)- It
is a module over KT*C" (pt) = C[T x C*] = Clty!, ... 1, vt ¢, - t, = 1]. We define

M ="M ®yivcx ot Frac(KTXCx(pt)) ®c(v) C(v!/Ny. It is naturally graded: M = SqaMy.
According to the Thomason localization theorem, restriction to the T x C*-fixed point
set induces an isomorphism of localized K-groups . The classes of the structure sheaves
[d] of the T x C*-fixed points d form a basis in @dKTXC (QTX(C Noc- The embedding of
a point g into 9, is a proper morphism, so the direct image in the equivariant K-theory
is well-defined, and we will denote by [é] € Mg the direct image of the structure sheaf

of the point d. The set {[d]} forms a basis of M.

5.2 Uy(slp)-action via Laumon spaces

Following Section 4.1, consider the universal Verma module V over U, (sl,,) with u; =
vi7 L, -1y, thatis, L;(1) = v Z ¢, - t;-1. We identify k = Frac(KT*C* (pt)) ®¢(,, C(v!/MN).
Define the following operators on M:

. -1 o div1—di+1-i .
Ei = ti-‘er i+1—Git lp*q* : MQ - Mg_i,

F;:= —ti_lvdi_di—lJriq* (L;®@p*): Mg — Mg,
—d-+i(i_1)

L=t -ty 4% ‘Mg — Mg,

K; _Ll_llele_+l z+1t1V i1~ 2drtdi1 -1, t Mg — Mg

To each d, we also assign a collection of T x C*-weights Sij t]?V_Zdif.

The following result is due to [3] (though our formulas follow [10, 24]).

Theorem 5.3. (a) The operators {E;, F; Lil}” 1 give rise to the action of U, (sl,,) on M.
(b) There is a unique U, (sl,,)-module isomorphism M — V taking [Oq ] to 1.
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(c) The action of L; is diagonal in the basis {[E]} and Li([é]) =t - tiv_di+i(i%1) . [é].
(d) The matrix coefficients of F;, E; in the fixed point basis {[E]} of M are as follows:

Fi[élé/] :—(1 —V2) lt 1 d —di 1+l H (1 ij/sik)_l H (]. _Sij/si—l,k)
]#ksz k<i—1

if d’ = d+8 for certain j < i;

2\—1,—1 _di 1—di+1-i -1
Ei@a’] = (]_ -V ) ti-‘er +1 1= H (]. - Sik/sij) H (1 - Si+1'k/sij)
J#k<i k<i+1

if é/ =d- 8;; for certain j < i. All the other matrix coefficients of F;, E; vanish.

5.4. Geometric realization of the Whittaker vectors

Choose a Sevostyanov triple (¢,n, c) and let e; := E; ]_[n ! n‘p =EK, vi=2" In,0,, be

ip®p’
the corresponding Sevostyanov generators. Choose a = (al, ....ay_1) €10, 1}" 1 so that
a; = 1+62i—1ri - l_ni‘1'2i+ni'i‘1 for 1 <i < n—1, while a; equals either 0 or 1.

Consider the line bundle D; on Q4 whose fiber at the point (W,) equals
det RT'(C,W;). We also define the line bundle D2 on Qd via D% .= ®" ID % Note that
D, is a pull-back of the 1st line bundle on the Drinfeld compactification and therefore
is trivial, which explains the irrelevance of our choice of a;. Finally, we introduce

the constants

n—1 n—1 n—1
-1 —
X =[] = v»ep [, - t,) 2~ Xis dinp T gar1 200

i=1 p=1 p=1

1
((nu‘H)d —2a;11didip1+——5— 4=l l (nll+2al+1))+Zl<] njid;d; Z?p 11 p(p Ld; iNip

The following is the key result of this section.

Theorem 5.5. Define 0, := X(d) - [D2] e M, and set 6 := Zq%- Then e;(0) = c; - 6 for

anyl <i<n-1.

Remark 5.6. (a) Due to Theorem 5.3, this provides a geometric realization of all
Whittaker vectors (associated with Sevostyanov triples) of the universal Verma module
V over U, (sl,).

(b) It is straightforward to verify that 6 does not depend on the choice of a; € {0, 1}.
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Proof. According to the Bott-Lefschetz formula, we have the following:
o 0= Za aa X(d) . ('DQ)l~ . [é], where aé = HWETaDd(l _ W)_l;

* g (p*q Ia.d = = (q,p" d.dn
According to Theorem 5.3(c, d), we have
o (@D sy = 1297 Himkei(l = 8yi/Sa) ™" Tieica (1 = 85/8i21 15
o A2 L@+ syl = v T (0o vt ) ™ @ gy,
2d

where s;; = t2

° (’DE) 21ay / (Dﬁ)lé = sg,i.

i as before. Finally, we also have

Therefore, it suffices to prove the following equality for any E andl1 <i<n-1:

o1 di —di—i -1
X(d+1) ti+1V i+1 70 lV_nii Ti—[ (t ot V_dp_;_@)nip . Zsai Hk<i ! _Sij/si—l,k) B
1 p -

—v2 ij k;é]
X(d) l1-v p=1 j<i k<i(l = Sij/Sik)

Lemma 5.7. For any E and 1 <i < n -1, the following equality holds:

a; [Mi<ia 1 - Sij/Si—1,k) _ (+2-,2d;_1—2d;\a;
DS = (v )4 (5.1)
j<i [T5 (= sii/si)

Proof. First, let us rewrite the left-hand side of (5.1) as

Si1 - Si Z al—ll_[ (Sz 1k = Sij)

. Y ij k#j
Si-11 " SicLi-1 5 Hk (slk—s )

az_l Hk 1(51 1,k—Sij)
Hkgi(szk Sij)
of degree 0 and without poles, hence, a constant. To evaluate this constant, let

If a; = 1, then the above sum qu is a rational function in

{SU}J 1
S;; — oo, in which case the 1st i — 1 summands tend to zero, while the last one tends to 1.

Si1-"Sii _ t2 2d;_1—2d;
—=lou  — phpyely i,
Si—1,1"""Si—1,i-1 i

Hence, this constant is 1, and the left-hand side of (5.1) equals

If a; = 0, then > . -sﬁlm -3 _IM = 0 as the left-hand

! ZJSL v Hk  (Sik— Sz]) ZJSL g Hi (Sik— Sl])
side is a rational function in {sl]}‘. , of degree -1 and without poles. Thus, the left-hand
l—[k#]

L
Hif{(slk —Sij)
without poles, hence, a constant. Specializing s; — 0, we see that this constant equals

side of (5.1) equals > _;_; This is a rational function in {s;; }‘ of degree 0 and

1 (as the 1st i — 1 summands specialize to 0, while the last one specializes to 1). [ |
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Due to Lemma 5.7, it remains to verify

. -1
X d+i g i T @-D\ " . —a
% =(1- V2)citi+lvdl_dl+1+‘v”” H (tl --~tpv_dp+p 2 ) ’ (t?VZd‘—l_Zd‘)_aH

a p=1
which is straightforward. This completes our proof of Theorem 5.5. |
Remark 5.8. Note that if ¢;;,; = —1 (resp. ¢;;,; = 1) for all i, then 0 is a linear

combination of [0y ] (resp. [Dgll with Dy = ®l’.‘:'11Di). These are exactly the two cases

considered in [3].

5.9. Geometric realization of the J-function

Recall the Shapovalov form (-,-) on the universal Verma module V, which is a unique
nondegenerate symmetric bilinear form on V with values in k ~ Frac(KiX‘Cx (PY) ®c(v)
C(v'/Ny characterized by (1,1) = 1 and (xw, w’) = (w,5x)w’) for all w,w’ € V,x €
U,(sl,), where o is the antiautomorphism of U,(sl,,) determined by ¢ (E;) = F;,6(F;) =
E;, 5(L;) =L,

Identifying V = M via Theorem 5.3(b), a geometric expression for the Shapovalov
form was obtained in [3, Proposition 2.29] (note that our formula differs from the one of

[3] as we use a slightly different action of U, (sl,)).

Proposition 5.10. If d # d’, then My is orthogonal to My . For F,F e Mg, we have

n
(F, F) = (—=1)Z dipXiy didin ~df+(1-20)d)) I1 AR [RT(Q4, F @ F @Dy, (56.2)

i=1

where D; = ®},'D; as in Remark 5.8.

Given a pair of Sevostyanov triples (¢*,n*, c*), choose the corresponding a* e
{0,1}"1 and X(d)* e Frac(KT*C” (pt)), and define vectors 0; = X(d)*[D] e M, as in

Section 5.4. Consider the following generating function:

n—1 _loglt;-t) _imn-1)

~ ~r og (v, — d dn—
s=a0 e = 1 B S )t
=1 d

Due to (5.2), the coefficient (6;{, 07) equals

a

n
n-1 4. sn-1l.4 4. Nd: i—d; 1-af —a;
(_1)Zi=11 dlVZi=11(dld1+1—di2+(1—21)dl)X(d)+X(d)— | | t?l di . [RF(QQ, ®?:_11Di i % ).

i=1
The following result is an immediate consequence of Theorems 4.9, 5.3, and

Remark 5.6.
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Theorem 5.11. J is an eigenfunction of the type 4,_; modified quantum difference

Toda system T (+e*, £n%, ¢*). In particular, for D; computed explicitly in (3.5), we have

D,(3) = (v"—l > tg) .

i=1

(5.4)

@

Remark 5.12. (a) There is an algebra isomorphism ¢: U, (sl,,) — U,-1(sl,,) determined
by E; - E; F; — F;,L; = L7'. Note that ¢ = ¢ 05 (with o defined in Section 4.1) and
the action of U, (sl,)) on V (as a ¢-pull-back of U,-i(sl,,)-action) is isomorphic to V. This
implies that the Shapovalov form on V is identified with the k-bilinear form on V x V of
Section 4.1.

(b) Under the identification of part (a), the Whittaker vector of V associated with a
Sevostyanov triple (¢~,n~,c”) becomes the Whittaker vector of V associated with the
Sevostyanov triple (—e~, —n",c7). This explains the appearance of the sign ‘- in front

of €7,n™ in Theorem 5.11.

5.13. B. Feigin's viewpoint via Uy (Lsl;)-action

According to [24, Theorem 2.12] (see also [10, Theorem 12.7]), the action of U, (sl,)) on M
can be extended to an action of the quantum loop algebra U, (Lsl,)) on M (actually, this
action factors through the one of U, (g[,,), extending the U, (sl,,)-action from Theorem 5.3,
via the evaluation homomorphism ev: U, (Lsl,,) — U,(gl,,)). In particular, loop generators
{e; i fi 1155 (see [24, 2.10]) act via

1<i<n-1

ei,r = ti_+11Vdi+1_di+1_ip*((viﬁi)®r ® q*) MQ N Mg_i/

for ==t o H 0 g, (L © (VL) @ D7) Mg — My,

Note that e; o = E; and f; o = F;. Following [3], define t € M" := [[; M = V" via

= tgwitht, :=[0g 1€ M, (5.5)
y d
Proposition 5.14. (a) Forany 1l <i <n — 1, we have ei,oLi_lLiH(E) = l—VVZE'
(b) Forany 1 <i <n— 1, we have ei,lL?—lLi_SLi+l(E) = 1":;?

Proof. Part (a) follows from Theorem 5.5 (see also [10, Proposition 12.21]). The proof
of part (b) is completely analogous to our proof of Theorem 5.5 (see also [10, Remark
12.22(b)]). [ |
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Let us now explain the relation between Proposition 5.14 regarding the “eigen-
property” of the (geometrically) simplest Whittaker vector ¢ and the geometric descrip-
tion of the general Whittaker vectors from Theorem 5.5. In what follows, we will view

the line bundle Dfl as an endomorphism of M given by the multiplication by [Diﬂ].

Proposition 5.15. We have the following equalities in End():
(a) DiejyoDi_l = ej forj #1,
(b) Dlel,ODL_l == V_iel-,l.

Proof. According to [8, Corollary 6.5(a)l, the operator D, is diagonal in the fixed point
basis {[d]}, and the eigenvalue at [d] is equal to [[i_, t2 =% ydudi=D Part (a) follows

as ejo: Mg — My_;. Likewise, the only nonzero matrix coefficients of D;e; OD._l are given

2.,—2(d; i—1) | 2 2. —2d;;
by Die; (D}’ @d-s) = GV €i0d,d-s; = V Sij " Ciodd-s; Where s; = ;v

before. According to [24 Proposition 2.15], the only non-zero matrix coefficients of e; ;

v as

in the fixed point basis are given by e; ;3 5_;. A=V +2$ [ €i.0d,d—5;0" Part (b) follows. M

Corollary 5.16. Foranya = (a,,...,a,_,) € {0,1}"!, the following holds in End(M):

(Do) e pe = |0 A= 5.6)
v'e,, ifa;=1.
For a € {0,1}"7!, define % € M" via
4= Z{’é with % = H(tl St) 724 DY e M. (5.7)
Note that ¢ = ¢ The special case of Theorem 5.5 follows immediately from

Proposition 5.14.

Proposition 5.17. 2 ¢ MM = V" is the Whittaker vector corresponding to the

Sevostyanov triple (e,n,c) with €; ;.1 = 2a;,, —1,n;; =68;;, — (1 +2a)8;; +2a;5;;_;, ¢; =
pltai@=2i)
1-v2

Proof. Since {%% = [Oq, ], it remains to verify the following equality forany 1 <i < n—1:

1+a;(4—20)
2a; ;—1-2a; v
€ioL; ale “ Ly, ((D%) = 1_vz [D4]. (5.8)
This follows by combining formula (5.6) with Proposition 5.14. ]
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Remark 5.18. We note that the above operator of multiplication by [D;] can be
interpreted entirely algebraically as a product of the Drinfeld Casimir element of the
subalgebra U, (sl;) C U,(sl,,) and a certain Cartan element, due to [8, Corollary 6.5(b)]. In
loc.cit., the authors choose to work with the action of U,(gl,,) instead of U, (sl,,), which

results in shorter formulas.

We conclude this section by generalizing the construction of [4, Theorem 6.12]. In
loc.cit., the authors established an edge-weight path model for the type A,,_; Whittaker
vector associated with a particular Sevostyanov triple (e,n,c) with €1 = 1 (1 <
I <n-2) and n; = i- 1841 — 28, + 8j,;_1). More generally, their construction
can be applied to Whittaker vectors associated with (e,n,c) satisfying €, , = €53 =

. = €y_3 -1 (corresponding to an equioriented A,_; Dynkin diagram). In particular,
identifying V = M, we obtain the following edge-weight path model for the Whittaker
vector ¢ € M” of (5.5).

Proposition 5.19. The following equality holds:

81
= (1 _sz) > y®) - p), (5.9)

BeQy PePg

where we use the following notations:

o 1Bl:=X0" ) mfor =" ma; eQ,,

e the set Py consists of all paths P = (p,, ..., py) such that p, = 0, py = 8,
and py —pr_1 =, (1 <ip <n-1)foralll <k <N,

o for P = (py,....py) € P, the vector |P) € M is defined as |P) :=
FiFiny -+ Fiy (O, D) with f; := LLZL F,

o for P = (py,....py) € Pg with pp — py_; = «;, the coefficient y(P) edge-

factorizes as y(P) = [[~_, where 0@ (y) = vi®u(y) with 7;(y) = (A +

1
o (py) '
p—y, w1~y ;) and v(y) = (v—v—1)=2 Z?:_ol (Vz(k+p,wi+1—wi) _ V2(k+p—)/,wi+1—wi))
forl<i<n-—1landy e Q, . Here w; is the i-th fundamental weight of s(,, as

before, and we set v, := 0, w,, :=0.

Noteworthy, there seems to be no such straightforward edge-weight path model
for a general type A Whittaker vector. Nevertheless, one can fix this by changing the
above definition of |P) with the help of the quantum loop algebra U, (Lsl,) in spirit of
Proposition 5.15 and Corollary 5.16. This is based on the following result.
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Proposition 5.20. Foranya = (a;,...,a,_;) € {0, 1}"71, the following holds in End(M):

-0, ifa: =0,
D, (DY = f”o, ' (5.10)
vifiy ifa;=1,
where D2 denotes an endomorphism of M given by the multiplication by [D2].
Proof. The proofis completely analogous to that of Proposition 5.15. |

Recall the element €& € M” of (5.7). Since [D%] = D%(¥), we obtain the following
edge-weight path model for ££.

Proposition 5.21. The following equality holds:

n-l 18I
2 — H(tl ...ti)—zai . Z (1 _VVZ) Z y(P) - [P)%, (5.11)
i=1 /360+ PEPﬁ

where for a path P = (py, ..., py) € Pg with py —py_; = o;, we set

LL7Lf o, ifa. =0,
|P)Q = fl%fi%,l .. .fl%([oﬁo]) with fig — i .H—lf;,O i
) V_LLiLi_Jrllﬁ,lr ifa; =1.

Proof. Follows by combining Propositions 5.19 and 5.20. u

According to Proposition 5.17, £ is the Whittaker vector corresponding to the

SeVOStYanOV trlple (6, n, C) with ei,i-‘rl = 2ai+1 — ]., nij = 3j,i+1 — (]. + 2ai)5j'i + 2ai5j'i_1 ,Cp =
1+a;(4—2i) _ . . . .

VJ;_—VZ. As a € {0,1}"! varies, we get all possible orientations Or of Dyn(sl,) = A

(here Or is determined by e¢). Since it is clear how the edge-weight path model gets

n—1

modified once we change n, c (while ¢ is kept fixed), cf. [7, (3.8, 3.9)], Proposition 5.21
provides an edge-weight path model for a general type A Whittaker vector.

A Proof of Proposition 3.11

Given two pairs of type A,_, Sevostyanov triples (e*,n*,¢*) and (¢%, A%, ¢*) such that
+ - _ oz =
Cit1 T Ciir1 T Ciiv1 T Cin
{rij: Ti}1<i<j<n such that the function

for 1 < i < n — 2, we will prove that there exist constants

F=F(Wy,...,W,) = exp Z rij log(w;) log(WJ-) + z r; log(w;) (A1)

1<i<j<n 1<i<n

6102 Ae\ 20 Uo 18sn [00yog meT AjISIaAIun s A AQ 0FSS8YS/EQ0ZUI/UIWI/EE0L 0L /I0P/10B1Sqe-8]014B-80UBAPE/UIWI/WOD dNO"dlWapeoe)/:sd)y WoJ) papeojumoq



50 R. Gonin and A. Tsymbaliuk

satisfies the equality
F~'H(e*, nt, ¢H)F = HES, /T, &%5). (A2)

We will view this as an equality in A, (rather than A,), treating H of (3.8) as elements of
A,,. This will immediately imply the result of Proposition 3.11. Set A :=1log(v).

e First, we note that the terms without D;’s are the same (and equal to >, Wj_z)
both in F~'H(e*, n*, c*)F and H(é*,n*, &%), independently of our choice of constants
{riir).

e Second, we will match the terms with {%ﬁl}?:_ll appearing in F~'H(e*, n%, cH)F

and H(é*,n*, ¢%). Their equality is equivalent to the following system of equations on

{ry):
T = Tiit1r ifl<j<i
m;; —my; _ Tij = Tig1r ifi+2<j<n a3)
h ps s
21y = Tijg1s ifj=i
| Tiit1 — 2rivy 441, Hj=1i+1

and the following system of equations on {r;}:

n
rp = Tipn =Ry — Ty — Ty i) + 07 log(by/by) + D (n—k+ 1/2)(My — ), (A4)
k=1
where the coefficients M, mU, b;, b are defined as in Section 3.9 via
1, —
My 3= Zpj (N =N
ji= Z;_l(ﬁ_ - ﬁ+),

=1

b; == (v— v )2y~ Licjci_,
b; == (v — v )2yl gt

It suffices to show that (A3) admits a solution, since (A4) obviously admits a
solution in terms of r; (unique up to a common constant). Pick any r;;. Using the last
two cases of (A3), we determine uniquely {r;; ., 7,1 i+1}7‘_1. Using the 1st case of (A3),

we determine uniquely riforj>i+1. The resulting collection {r; satisfies the

1]}1<l_]<n
1st, 3rd, and 4th cases of (A3). It remains to verify that it also satisfies the 2nd case of
(A3). We prove this by induction inj —i > 2.

@Ifj =i+2,thenr;; =7y 10 = (i1 =270, +HCrigy i —Tigniv2) = i —
Tiip2) = A7 M+ Mgy i =My =My g =My g +My, ;). Hence, it remains to prove
My + mi+1 i1~ M1, = My =My Mgy — My — My, Sincemg —mg ) =
i,i+1 n:—Hl z+l it nl+l i = r~]i_,i+1 - ﬁ;—iJrl l+1 it nz+1 it
The latter equality follows from nf — nf = ¢Xb_, and our assumption on the triples.

ng; — ng;, this is reduced to n;
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(b)Ifj > i+2 thenry —r ;= (i — Tigjo) + Cipjo1 — Tipay) — (o1 —
-1 - - - . .
rij) =h (mi,j—l +Mig i — My, — My —Mi_y i + M ;). Hence, it remains to prove
(m” 1= )—(m li—mj 1i+1) (ml] 1 mij)—(rhhj_lyi—r’hj_lli_'_l). Slmllarly to (a),this

is reduced to the proof of b;;_,(e; E;,rj_l). The latter follows

ij-1 "~ i,j—l) = bi,j—l(gijj—l -
immediately from the equality b;;_; = 0.

Thus, we have determlned a collection of constants {r; sat-

l]'r}1<l_]<n
isfying (A3, A4) (this collection is uniquely determined by a choice of ry;,ry;

however, we note that the image of F defined via (Al) in A, is independent of
this choice).

e Finally, it remains to verify that for F of (Al) with the constants r;;, ; chosen

l]’
as above, the terms with Q (G > i+1)in F~1H(e*, nt, ¢H)F and H(E*, AT, &%) do coincide.
First, we note that the condltlons el 1= = Eji—z,j—l = =41 and € 61 1= Ji 2j-1 =
41 are equivalent under our assumption on the triples. Pick j > i + 1 such that either of
these equivalent conditions is satisfied. Then the compatibility of the terms with % is
equivalent to the following equality:

-1
Fwy,...,vw;, ..., v wj,...,wn)_

Fwy,...,w,)

_1 ~
H e H v isacbsio gyl =g AL+ 3y X2 BHEE Mg ()
b,

We prove this by induction in j — i Note that the j = i 4+ 1 counterpart of (A5) is
just the compatibility of the terms with 5, established in the previous step. Writing
the left-hand side of (A5) as a product

-1
F(wl,...,vwi,...,v CVW_g, v wj,...,wn).F(wl,.. yVWi_1, VT w],...,wn) (46)
F(wy,... P VW1, V™ wj,...,wn) Fwy,...,w,)

and applying the induction assumption to both fractions of (A6), it is straightforward
to see that we obtain the right-hand side of (A5).

Thus, the function F defined via (Al) with the constants {ry, ri}i<icj<n
determined in our 2nd step satisfies the equality (A2). This completes our proof of

Proposition 3.11. |

Remark A.1. (a) The proofs of Propositions 3.14, 3.17, and 3.20 are analogous to the
above proof of Proposition 3.11. In each case, there exists a unique collection of con-

stants {r;;, ;}; <j<j<n Such that the function F defined via (A1) satisfies the corresponding

i
equality (A2). The way we choose such constants closely follows the above 2nd step in

6102 Ae\ 20 Uo 18sn [00yog meT AjISIaAIun s A AQ 0FSS8YS/EQ0ZUI/UIWI/EE0L 0L /I0P/10B1Sqe-8]014B-80UBAPE/UIWI/WOD dNO"dlWapeoe)/:sd)y WoJ) papeojumoq



52 R. Gonin and A. Tsymbaliuk

our proof of Proposition 3.11 and is determined by matching up the coefficients of

o {D;/D;,1}} and D2 for the type C,,,

o {D;/D;;1}"! and D,,_,D,, for the type D,,,

o {D;/D;;,}"}' and D,, for the type B,,.
Finally, it remains to check that the function F defined via (A1) with thus determined
{rij: rihi<i<j<n conjugates each of the remaining terms appearing in H(eT, n*, cT) into the
one of H(é*, A*, &¢*). This is verified by induction similarly to the above last step in our
proof of Proposition 3.11.
(b) The proof of Proposition 3.38 is also analogous, but the constants rij T; are deter-

mined by matching the terms with D; and D,.

B Proof of Theorem 3.2

Assume that g is either of the classical type or G,. Given two pairs of Sevostyanov
triples (e*,n*,c*) and (¢*,n*, %) with € = ¢ (defined right before Theorem 3.2), we
need to show that there exists an automorphism of D, (H2%) that maps 7 (¢*,n*, c*) to
T (€%, AT, ¢%).

According to our proof of Proposition 3.11 and Remark A.1 (which states that
the same argument applies to all classical types and G,), there exists a “formal function”
F of the shift operators T, such that conjugation by F is a well-defined automorphism of
D, (H*Y) satisfying FD, (¢*,n*, c*)F~! = D, (¢*, A*, &%). It remains to prove the following

result.

Proposition B.1. For any 1 <i < n, we have FD;(¢*,n*, c*)F~! = D;(é%,a*, c%).

Proof. Recall that D; € Dj (H2Y), where D; (H2?) is the subalgebra of D, (H?) generated
by {e®,T,J1 < i < n,u € P}. Let us extend the field C(v/N) to k and recall the
vector space N, of Section 4.8, which was equipped with a natural DV(Had)-action. In
particular, the subspace W, of N, formed by the formal sums [Zﬁea+ aﬁzﬁ_ﬂaﬁ € k}
is DS (H2%)-stable. Moreover, X(Zﬁ_k) contains only y”~* with y > g for any X €
Dy (H2Y), which we refer to as the “upper-triangular” property of the Dj (H29)-action.

In particular, we have

N; .
l - 0]
D;(e*,n*, )P, D@, A5, e P e | Do v AP )y e Py h (B1)
k=1 y>B
where N; is the dimension and {Mg)}’g’gl are the weights (counted with multiplicities)
of the i-th fundamental U, (g)-representation V;, while v("* (v e P) is defined as in

Section 4.1.
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Therefore, the action of D, (é*,n*,¢*) on W, is upper-triangular with pairwise
distinct diagonal matrix coefficients; hence, it is diagonalizable with a simple spectrum.

i Ny 20 A=)
Moreover, the eigenvalues are exactly (> .1, v/ - 1BeQ,;.

Remark B.2. Due to Theorem 4.9, the corresponding eigenbasis consists of the J-
functions J({y;}1 ;) associated with {» — p — g[8 € Q, }, cf. (4.9).

Since [D;(E*, A%, ¢*), D, (%, n%,¢%)] = 0, the action of D,;(E*, A%, ¢*) on W, is
diagonal in a D,(é*,n*,c*)-eigenbasis with the corresponding eigenvalues given by
leglzl Vz(ﬂg)'}”_ﬁ) (this also follows from Remark B.2 and Theorem 4.9). On the other hand,
the action of FD;(e*,n*,c*)F~! on W, is also upper-triangular with the same diagonal
matrix coefficients and commutes with D,(é%,a*,¢*) (since FD,(e*,n*, cF)F~!

D, (é%,n%,¢*) and [D,(e*,n*, c®),D;(ef,n*, ct)] = 0). Thus, both FD,(e*, n*, ct)F~!
and D;(E*, A%, ¢*) act diagonally in a D,(¢%,n*, ¢%)-eigenbasis and have the same
corresponding eigenvalues.

e ||
The equality FD;(e*,n*, ¢®)F~! = D,;(€*, n*, &%) follows.

Thus, conjugation by F maps 7 (e*,nt, ct) to T(e*,nt,&*). Theorem 3.2
follows. u

C Proof of Theorem 3.3

Following the discussion in Appendix B, consider a basis of W, in which all D; act
simultaneously diagonally with the corresponding eigenvalues given by Zl,g;l Vz(“;cl)'k_ﬂ).
The latter can be viewed as characters yx; of the fundamental representations evaluated
at v2—A),

Since the point v** € H(K) is general and the characters { x;}i, are known to be
algebraically independent, we immediately obtain part (a) of Theorem 3.3.

Part (c) of Theorem 3.3 follows from part (b) as Dy(e*,n*, ct) e Dy H)
commutes with D, (e*,n*, ¢*) for any finite-dimensional U,(g)-representation V, due
to Lemma 2.8(c).

It remains to prove part (b) of Theorem 3.3. The algebra D; (H29) is Z-graded via
deg(Tﬂ) = 0 and deg(e™®) = —1, so that the degree zero component D; (H24)? has a basis
{T,|n € P}. Note that the degree zero component Dl(.o) of D; equals Dl@) = leglzl TZM;;-). Let
D3 (Had)gv be the subspace spanned by {T5,|n € P}. We also consider a natural action of
the Weyl group W both on D7 (H*4)° and Dy (H*)S, via w(T,) = T,,, for p € P,w e W.

Given D € D; (H%%) that commutes with D;, let D denote its degree zero component.

Proposition C.1. We have D© e (D; (H2)9 )W,
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The proof of Proposition C.1 is based on the rank 1 case, for which we prove a
slightly more general result. In type A, the modified quantum difference Toda systems
are conjugate to the g-Toda of [6] with the 1st hamiltonian Dy, = T,, + T_5, — (v —

v 1)2e=*T,; see (3.6).

Lemma C.2. IntypeA,, given D e D; (H2Y) that commutes with D’ = a, D] + ar_lDI_l +

...+ ay for some ay, ..., a, € Qv'/N) with a, # 0,7 > 0, D must be a polynomial in D;.

Proof. Let D = DO 4 e DD 4 4 e=*D% with DO, ..., D9 e D5 (H2O and
D=9 = 0. We prove the claim by induction in s. Comparing the degree —r — s terms
in DD’ = D'D, we immediately get D™ = ¢,T, for some constant c,. Replacing D by
D—c,(—(v— v~1)72)SDS, we obtain another element of D3 (H2%) that commutes with D’
and has a smaller value of s, hence, is a polynomial in D, by the induction assumption.

Therefore, D is also a polynomial in D, . u

Proof of Proposition C.1. The result of Proposition C.1 follows immediately from
Lemma C.2. Indeed, it suffices to verify the following two claims for any 1 < i < n:

(I) the operator D9 is invariant with respect to the simple reflection s;,

(IT) every u appearing in D satisfies (i, ;) € 2d,Z.

To prove this, consider a subspace W; of W, that consists of
{Zﬂea+\Zai aﬁzﬂ_klaﬁ IS k}. It is stable under the action of D3 (H2d), hence, we obtain
the action of D; (H29) on the quotient W, := W, /W,. We also specialize u; — 1 for
J # i (recall that u; were used in our definition of A). As a result, summands with
e™% (j # 1) in D,D,; act by zero on W,, while ij (j # i) act by the identity operator.
Identifying further W, with the space W;?IZ) constructed for sl, instead of g (hence,
the superscript in our notations), D, gives rise to the operator D(VSIZ) with V being the
restriction of the 1st fundamental U, (g)-representation V; to the subalgebra generated
by Ei,Fi,Lfl, which is isomorphic to U, (sl,). As V is not a trivial Uy, (sl;)-module, D(V5[2)
is a nonconstant polynomial in the 1st hamiltonian D(fm. Hence, Lemma C.2 can be
applied with D’ = DSIZ) and D denoting the image of D acting on W, ~ Wif (2) by abuse
of notation. Therefore, both claims (I) and (II) follow. [ |

It is clear that (Dj(HA)Y )" is generated by {DEO)}?:I. Hence, due to
Proposition C.1, there exists a polynomial P in n variables such that D' := D —
P(D,,...,D,) is of strictly negative degree. Thus, the action of D’ on W, is upper-
triangular with zeros on the diagonal. As [D’,D;] = 0 and D, acts on W, with a simple
spectrum, we immediately get D’ = 0.

This completes our proof of Theorem 3.3. |
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D Proof of Theorem 3.1

Given a rank n simple Lie algebra g, fix an arbitrary orientation of the edges of Dyn(g)
as well as their labeling by numbers from 1 upton — 1. Foranedge 1 < e < n — 1, the
vertices t(e), h(e) will denote the tail and the head of that edge, respectively. To every

pair of Sevostyanov triples (e*,n*,c*t), we associate an invariant € = (e ., €) €

n—1r--
{-1,0,1}" ! viae, := %h(”zw e{-1,0,1}forl <e<n-—1.

To prove Theorem 3.1, it suffices to verify that given two pairs of Sevostyanov
triples (e*,n*,ct) and (é%,nA*,ct) satisfying € = ¢, there exists an automorphism
of D,(H2Y) that maps T (e*,n*,c*) to T(€*,A*,&F). Our proof is similar to that of
Theorem 3.2 presented in Appendix B, but is crucially based on the fermionic formula
of Theorem 4.7 for :]ﬂ instead of Propositions 3.11, 3.14, 3.17, 3.20, and 3.38 (we owe this
observation to A. Braverman).

Following Appendix B, consider the action of D (H24) on W, . Due to Remark B.2,
the action of pairwise commuting operators D;(e*, n*, ¢*) (resp. D;(é%, At, ¢¥)) is simul-
taneously diagonalizable in the basis of J-functions {J2 (¢*,n*, ¢*; {yviDIA=xr—p—B,B €
Q.} (resp. (JAEE A%, e5{y;hlA = A — p — BB € Q,)) (as A varies, we will use
the notations JA({yi}),Jé\ instead of J({y;}),J; used in Section 4). We note that both
JM(e®, nE, ¢ {y;)) — yP~ and TA (€%, 7%, 055 {y;)) — y#* contain only {y? ™}, _,.

The following is the key observation.

Proposition D.1. If ¢ = ¢, there exists a difference operator ® that acts on w,
and maps J*(e%,n*, ¢t {y;}) to a nonzero multiple of JA(&%, A%, c*;{y;}) for any
Aer—p—0Q,.

£ ok Lox n o+ “x n =
;v € Pvia v 1= > Njop and U7 = > Njwp. Due to Theorem
4.7, the pairing J§ (e*,n*, ¢*) depends only on {v; — v}

A, pB. Hence, as € = &, we may assume é* = ¢*,A~ = n~,¢~ = ¢, while y; := ¥

Proof. Define v

n

n and {c¢/c;}", for any fixed

+ _ ot
i TV

satisfy
(o, 7)) = (@, 7;) forany 1 < i,j < n. (D1)

In this set-up, we have the following.
Lemma D.2. There exist constants {s;}} | such that

JHEE, A, e = iy si(Bw+ 5 Xy (Bw))(B=2A%) | T EE nE, )
foranyAer—p—-Q,,Beq,.

This essentially follows from [7, (3.8, 3.9)], but let us provide a complete

argument.
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Proof. Sinceéf =¢*,A~ =n",¢" =c¢ and Jé\(o, e, ¢) is defined via (4.2), it suffices to

prove the following equality:
O (€ A%, 85 =657, nT, ") ay g, (D2)

where

n
appi= v 21 (Bl ) (B=2A ) | H(E;rv%mai) JeyBei), (D3)

i=1

Let 5/? denote the right-hand side of (D2). To prove (D2), it suffices to verify that
2 pea, 675\ satisfies the defining conditions (4.1) of the Whittaker vector associated with
(et,nt,ch).

First, the equality a, o = 1 implies 6 = 6{'(e*,n*,c*) = L.

Second, we note that the equality EK,+ (9é‘+ai (eF,n*,c™) = ¢f - Gé\ (et,nT,chH
A—p—ay) 20 Pty

aap

implies EK .+, . (Ohq,) = ci v -64. Therefore, it remains to verify

CTI—V(yi’A_ﬂ_ai) aAI/S‘f'Oli — ’5—‘1— (D4)
i a’Alﬁ l
Recalling the definition of a, 4 of (D3), we find

=t

Anprai _ G Lonm) |3 Sl (Brar o) ) (=204 )~ By ) (B=2M,7)) _
=L =
an,p ¢
ot 1 1 v ot
i) |z (P20t y)ty 2B ey _ Ci pB—A+aiy)
c’ c’ '
i i

where we used (D1) to evaluate Zj(ﬂ,w}/)(ai, V) = Zj(,B,wJ\/)(aj, v) =B, 7).
This implies (D4), which completes our proof of Lemma D.2. ]

Set

= log(T,,) log(T,) &
= i i) 1 r ‘
S (z—zl 2d;log(v) i_zlsl 0g(T,,)

This definition is motivated by the following result.

Lemma D.3. DJ(e*,n*, ¢*; {y;})) is a nonzero multiple of JA (€%, A%, ¢*; {y;}) for any
Aer—p—-0Q,.

Proof. Evoking formula (4.8), we get

D(yPN) = pP=A L y2 @] BN GiB= M+ X; si(@if=A)
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Combining this with Lemma D.2, the statement reduces to the g-independence of

Y 2
—Z(O)l,ﬁ Ay B — A)+Zs(wuﬁ A)__Z(,Bw)(ﬂ Ay _Zs(ﬁw)—

i=1 i=1

n \ . _ Vv . —
S PN Z NN s,

i=1
The latter follows from > | (@), B)(y;, A) = D it (@), A)(¥;, B), due to (D1). [ |
This completes our proof of Proposition D.I. |

Due to Proposition D.1, DD,(e*,n*, c*)®~! and D;(é*, A*,¢*) act diagonally in
the basis {J*(€*, A%, ¢*; {y;DIA € A — p — Q_} of W, with the same eigenvalues, hence,
they coincide for every 1 < i < n. Therefore, conjugation by © is a well-defined
automorphism of D,(H2?) that maps 7 (¥, n*, c¢®) to T(¢+, AT, &%),

This completes our proof of Theorem 3.1. |

E Proof of Theorem 3.24

The proof of Theorem 3.24 is similar to the one of Proposition 3.11 given in Appendix A
and of Theorem 3.2 given in Appendix B, but we provide details as the formulas are
different.

Proof of part (a).
Given a pair of type A,_, Sevostyanov triples (e*,n*,¢*) and k = (k,,,..., k) €
+—e
{-1,0,1)" satisfying k;, | = w for 1 < i < n — 2, we will prove that there exist

constants {r;;

ijir Ti}1<i<j<n Such that the function F defined in (A1) satisfies the equality

F~H(e*, n%, ¢®)F = HE. (E1)

We will view this as an equality in A, treating H(e*, n*, c*) as an element of A,,.

e First, we note that the terms without D;’s are the same (and equal to Z}Ll WJ-_Z)

both in F~1H(e*, n%, c*)F and Hk, independently of our ch01ce of constants {r;;,r;}.

ijr
e Second, we will match the terms with {D iy"~! appearing in F~'H(e*, n*, ¢*)F

and Hk Their equality is equivalent to the following system of equations on {rk:

Tji = T+l ifl1<j<i
My = 05k = iy _ )Ty = iy ifi+2<j<n (E2)
" 215 = Ty ifj=1
Tiiv1 = 2T, =141
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and the following system of equations on {r;}:

n
=T =Ry — T — i) — B og(d) + D (n—k+ 1/2)my. (E3)
k=1

Pick any r;,;,r;. It suffices to show that (E2) admits a solution since (E3) obviously
admits a unique solution with a given r; for any choice of r;. For a fixed ry;, the

constants {r; satisfying the 1st, 3rd, and 4th cases of (E2) are determined

]}1<1J<n
uniquely. It remains to verify that they also satisfy the 2nd case of (E2). We prove this
by induction inj—i > 2.

@ Ifj=i+2 thenr;p =710 = T = 2700 + @l — Tigive) —
(Fiiv1 — Tijyo) = h_l(mi i1 — Kkipp + Mg i — kiyp — My, ;). Hence, it remains to prove
—nt
1,i+1 ii+1
= 2k;,, due to the choice of k;_ ;.

(M; i =My i00) — (M ;= Mgy i) = 2k;, . The left-hand side is equal to n;;
i i = Dot (601 — €i41) = €1 — i
(b) Ifj > 142, then ry; —ry g ;= (r; 1 =Ty + gy =T ) — gy — 1) =
h_l(mij 1My =My 1,;)- Hence, it remains to prove (ml] 1= ij)_(mj—l,i_mj—l,i+l) =
0. The left-hand side is equal to b;;_, (¢; )=0asb;; ; =0.
Thus, we have determined a collection of constants {rij. rihi<i<j<n satisfying
(E2, E3).

e Finally, it remains to verify that for F of (A1) with the constants T chosen as

above the terms w1th i (j > i+1)in F7'H(e*, n*, c*)F and HX do coincide. First, we note

that the conditions Ezil+1 =...= 1{2,1—1 ==+l and k;;; = ... = k;_; = 1 are equivalent

under our assumption. Pick j > i + 1 such that either of these equivalent conditions

ij—1 "~ l]l

is satisfied. Then the compatibility of the terms Wlth is equivalent to the following

equality:
FWy, oo VW VW, W)
Fwy,...,w,)
U Mgk ok 1 - _Fasn sl ntl-2k
H Wk s=i MskTOk,iTOk; H Hb— V1’+1_J+Ziﬁa<b£j—1(nab_nab)+zk:1 Zs:i fmsk.
= p=i

(E4)

This equality is proved by induction in j — i, factoring the left-hand side as in (A6) and
noticing that the j =i + 1 counterpart of (E4) is just the compatibility of the terms with
%, established in the previous step.

Thus, the function F defined via (Al) with the constants {ry, ri}i<icj<q
determined in our 2nd step satisfies the equality (E1). This completes our proof of

Theorem 3.24(a).
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Proof of part (b).

Let us write
TV(@)y = ()W - W, 2 (1 —HEz 4 HEZ2 — 4 (—1)”H’,§+1z”) ,

ki—-1 -7 z . L. .
where s = Z}l:1 ’2 .Forl <r<mn,let H’r‘Jrl IS 7:’“ be the image of H’r‘Jrl in A,,. Consider
k;0

r+1
definition of Ti(z), we get lecfl = or({wj_z}): the r-th elementary symmetric polynomial

-2\n
of fw“}1 ;.

the summands in Hfﬂ without D;’s and let H"’, denote their sum. Tracing back the

Thus, the image of I:Ifﬂ under the anti-isomorphism A, — DV(HSSL) of

Section 3.9 is an element of D&(Hj‘&) whose action on W, (see Appendix B) is

upper-triangular with the same diagonal matrix coefficients as in the action of
D, € T(e*,n*, c*). Thus, the argument of Proposition B.1 can be applied to show that
the function F of part (a), which conjugates H(e*,n*, c*) into H% also conjugates the
preimage of D, in fln into HEH for all 1 < r < n. Therefore, conjugation with F is an
automorphism of A, that maps 7 (¢, n*, ¢*) to T*,

This completes our proof of Theorem 3.24. |
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