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Abstract
We define an integral form of shifted quantum affine algebras of type A and construct
Poincaré–Birkhoff–Witt–Drinfeld bases for them.When the shift is trivial, our integral
form coincides with the RTT integral form. We prove that these integral forms are
closed with respect to the coproduct and shift homomorphisms. We prove that the
homomorphism from our integral form to the corresponding quantized K -theoretic
Coulomb branch of a quiver gauge theory is always surjective. In one particular case
we identify this Coulomb branch with the extended quantum universal enveloping
algebra of type A. Finally, we obtain the rational (homological) analogues of the
above results [proved earlier in Kamnitzer et al. (Proc AmMath Soc 146(2):861–874,
2018a; On categoryO for affine Grassmannian slices and categorified tensor products.
arXiv:1806.07519, 2018b) via different techniques].
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1 Introduction

1.1 Summary

This paper is a sequel to Finkelberg and Tsymbaliuk (2017), where we initiated the
study of shifted quantum affine algebras. Recall that the shifted quantum affine algebra
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Uμ
v depends on a coweight μ of a semisimple Lie algebra g, and in case μ = 0 it is

just a central extension of the quantum loop algebra Uv(Lg) over the field C(v). Let
us represent μ in the form μ = λ−α, where λ is a dominant coweight of g, and α is a
sum of positive coroots. Also, let us assume from now on that g is simply-laced. Then
λ encodes a framing of a Dynkin quiver of g, and α encodes the dimension vector of
a representation of this quiver. Let Av stand for the quantized K -theoretic Coulomb
branch of the corresponding 3d N = 4 SUSY quiver gauge theory. It is a C[v, v−1]-
algebra, and we denote Av

frac := Av ⊗C[v,v−1] C(v). One of the main motivations for
our study of shifted quantum affine algebras was the existence of a homomorphism
�

λ
μ : Uμ

v [z±11 , . . . , z±1N ] → Av
frac, where N is the total dimension of the framing.

We conjectured that this homomorphism is surjective and also conjectured an explicit
description of its kernel. In other words, we gave a conjectural presentation of Av

frac

by generators and relations as a truncated shifted quantum affine algebra Uλ
μ.

It is very much desirable to have a similar presentation for the genuine quan-
tized K -theoretic Coulomb branch Av (e.g. in order to study the non-quantized
K -theoretic Coulomb branch at v = 1). To this end, it is necessary to construct an inte-
gral form (a C[v, v−1]-subalgebra) Uμ

v [z±11 , . . . , z±1N ] ⊂ Uμ
v [z±11 , . . . , z±1N ] such that

�
λ
μ(U

μ
v [z±11 , . . . , z±1N ]) = Av and the specialization U

μ
v=1[z±11 , . . . , z±1N ] is a com-

mutative C-algebra. Then Av would be represented as an explicit quotient algebra
U
λ
μ.
In the present paper, we restrict ourselves to the case g = sln , and pro-

pose a definition of the desired integral form U
μ
v [z±11 , . . . , z±1N ]. It possesses a

PBWD (Poincaré–Birkhoff–Witt–Drinfeld) C[v, v−1]-base, cf. Tsymbaliuk (2018).
We prove the surjectivity of �

λ
μ : U

μ
v [z±11 , . . . , z±1N ] → Av in Theorem 4.15.

Unfortunately, we are still unable to say much about the kernel ideal of
�

λ
μ : Uμ

v [z±11 , . . . , z±1N ] → Av in the general case. The only case when we were
able to determine the kernel ideal explicitly is g = sln, μ = 0, λ = nωn−1 (a
multiple of the last fundamental coweight). Then the corresponding truncated shifted
quantum affine C[v, v−1]-algebra Uλ

μ is isomorphic to an integral form˜Uv(sln) of an
extended version ˜Uv(sln) of the quantized universal enveloping algebra of sln . More
precisely, the Harish-Chandra center Z ofUv(sln) is isomorphic to the ring of symmet-

ric polynomials
(

C(v)[z±11 , . . . , z±1n ]
)�n

/(z1 · · · zn − 1), and ˜Uv(sln) := Uv(sln)⊗Z

C(v)[z±11 , . . . , z±1n ]/(z1 · · · zn − 1), cf. Beilinson and Ginzburg (1999). The corre-
sponding integral form Uv(sln) = ˜Uv(sln) ∩ Uv(sln) of the non-extended quantized
universal enveloping algebra Uv(sln) is nothing but the RTT integral form Urtt

v (sln).
It is free over C[v, v−1] and admits a PBW basis. The truncation homomorphism
U 0
v [z±11 , . . . , z±1n ] → ˜Uv(sln) factors through Jimbo’s evaluation homomorphism

Uv(Lsln)[z±11 , . . . , z±1n ] → ˜Uv(sln) of Jimbo (1986), and U0
v[z±11 , . . . , z±1n ] is noth-

ing but the pull-back of the RTT integral form of Uv(Lsln)[z±11 , . . . , z±1n ] along the
projectionU 0

v [z±11 , . . . , z±1n ]� Uv(Lsln)[z±11 , . . . , z±1n ]. In fact, our definition of the
integral form U

μ
v [z±11 , . . . , z±1N ] for general μ was found as a straightforward gener-

alization of the RTT integral form expressed in terms of a PBWD basis.
Note that Uv(sln) possesses three different integral forms:
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(a) Lusztig’s U ⊗Z C of (Lusztig 1990a, 0.4);
(b) Lusztig’s AO ⊗Z C of (Lusztig 1993, 29.5.1) (its specialization at v = 1 is the

commutative ring of functions C[SL(n)]);
(c) Urtt

v (sln) (its specialization at v = 1 is the commutative ring of functions on the
big Bruhat cell of SL(n)). It is dual to (a) with respect to a natural C(v)-valued
pairing on Uv(sln).

We expect that Uv(Lsln) is dual to the integral form of Chari and Pressley (1997) and
(Grojnowski 1994, §7.8) of Uv(Lsln) with respect to the new Drinfeld pairing, cf.
(Grojnowski 1994, Lemma 9.1).

Finally, recall that in Finkelberg and Tsymbaliuk (2017) we have constructed the
comultiplicationC(v)-algebra homomorphisms (in caseg = sln)�μ1,μ2 : Uμ1+μ2

v →
Uμ1
v ⊗ Uμ2

v for any coweights μ1, μ2. We prove in Theorem 4.23 that this coprod-
uct preserves our integral forms, and induces the C[v, v−1]-algebra homomorphisms
�μ1,μ2 : Uμ1+μ2

v → U
μ1
v ⊗ U

μ2
v .

To simplify the exposition of the paper, we start by establishing the ratio-
nal/homological counterparts of the aforementioned results, proved earlier in Kam-
nitzer et al. (2018a, b) using different techniques.

In Appendix A, we collect the relevant results on shifted Yangians and Drinfeld–
Gavarini duals,which are used in Sect. 2.Our objectives are twofold. First, we establish
the PBW property for the Drinfeld–Gavarini dual (Proposition A.2) and apply it to
the Yangians (Theorems A.7, A.10). Second, we identify two different approaches
(of Kamnitzer et al. 2014; Braverman et al. 2016; Finkelberg et al. 2018) towards
dominantly shifted Yangians of semisimple Lie algebras (Theorem A.12).

In Appendix B, we provide a short proof of the well-known PBW property for the
Yangian Y�(g), since the original proof of Levendorskii (1993) contains a gap.

1.2 Outline of the Paper

• In Sect. 2.1, we recall the RTT Yangians Y rtt
�
(gln),Y

rtt
�
(sln) and their C[�]-

subalgebras Yrtt
�
(gln),Y

rtt
�
(sln). Since the terminology varies in the literature, we

shall stress right away that the former two are quantizations of the universal
enveloping U (gln[t]),U (sln[t]) (see Remark 2.2), while the latter two quantize the
algebras of functions on the congruence subgroups GL(n)[[t−1]]1,SL(n)[[t−1]]1 (see
Remark 2.4) and can be viewed as the Drinfeld–Gavarini dual Gavarini (2002) of the
former, see Appendices A.1, A.6.

In Sect. 2.2,we recall the standard definition of the quantumminors and the quantum
determinant of T (z), as well as the description of the center ZY rtt

�
(gln). All of this is

crucially used in Sect. 2.10.
In Sect. 2.3, we recall the RTT evaluation homomorphism evrtt : Y rtt

�
(gln) �

U (gln) as well as the induced homomorphism between their C[�]-subalgebras
evrtt : Yrtt

�
(gln) � U(gln). The main result of this subsection provides a “mini-

malistic description” of the kernels of these homomorphisms, see Theorems 2.15 and
2.17 (the former is essentially due to Brundan and Kleshchev 2006).

In Sect. 2.4, we recall the Drinfeld Yangians Y�(gln) and Y�(sln). The isomor-
phism ϒ : Y�(gln)

∼−→ Y rtt
�
(gln) (see Theorem 2.18) is due to Iohara (1996) and is

essentially a Yangian counterpart of Ding and Frenkel (1993). Following Kamnitzer
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et al. (2014), we define their C[�]-subalgebras Y�(gln),Y�(sln), and the main result
identifies the former with Yrtt

�
(gln) via the isomorphism ϒ , see Proposition 2.21 (a

straightforward proof is sketched right after it, while amore conceptual one is provided
in Appendix A.6).

In Sect. 2.5, we recall the evaluation homomorphism ev : Y�(sln) → U (sln) of
Drinfeld (1985) and verify its compatibility with evrtt via ϒ , see Theorem 2.25.

In Sects. 2.6 and 2.7, we recall two alternative definitions of the shifted Yangian
Yμ for a general shift μ and for a dominant shift μ, respectively (μ is an element
of the coweight lattice). The fact that those two approaches are indeed equivalent for
dominant shifts is the subject of Theorem 2.31, the proof of which is presented in
Appendix A, see Theorem A.12.

In Sects. 2.8 and 2.9, we recall two key constructions of (Braverman et al.
2016, Appendix B): the homomorphism �

λ
μ : Yμ[z1, . . . , zN ] → ˜A� of Theo-

rem 2.34, which factors through the quantized Coulomb branch A� giving rise to

the homomorphism �
λ

μ : Yμ[z1, . . . , zN ] → A�. The main result of this subsection,

Proposition 2.36 due to Kamnitzer et al. (2018b), establishes the surjectivity of �
λ

μ

in type A. An alternative proof of this result is outlined in Remark 4.16 and crucially
utilizes the shuffle realizations of Y�(sln),Y�(sln) of (Tsymbaliuk 2018, §6).

In Sect. 2.10, we prove a reduced version of the conjectured description (Braverman
et al. 2016, RemarkB.21) ofKer(�λ

μ) as an explicit truncation ideal I
λ
μ in the particular

case μ = 0, λ = nωn−1 (which corresponds to the dimension vector (1, 2, . . . , n−1)
and the framing (0, . . . , 0, n)), see Theorem 2.39. An alternative proof of this result
was given earlier in Kamnitzer et al. (2018a). The key ingredient in our proof, The-
orem 2.41, identifies the reduced truncation ideal Inωn−1

0 with the kernel of a certain
version of the evaluation homomorphism ev. This culminates in Corollary 2.44, where
we identify the corresponding reduced Coulomb branch A� with the integral form of
the extended (in the sense of Beilinson and Ginzburg (1999)) universal enveloping
algebra of sln .
• In Sect. 3.1, we recall the RTT integral form Urtt

v (gln) following Faddeev et al.
(1989); Ding and Frenkel (1993). The latter is a C[v, v−1]-algebra, which can be
thought of as a quantization of the algebra of functions on the big Bruhat cell in
GL(n) (see (3.5) and Remark 3.15) as v→ 1.

In Sect. 3.2, we recall the RTT integral form Urtt
v (Lgln) following Faddeev et al.

(1989), Ding and Frenkel (1993). The latter is a C[v, v−1]-algebra, which can be
thought of as a quantization of the algebra of functions on the thick slice †W0 of
(Finkelberg and Tsymbaliuk 2017, 4(viii)) (see (3.10) and Remark 3.26) as v→ 1.

In Sect. 3.3, we recall the RTT evaluation homomorphism evrtt : Urtt
v (Lgln) �

Urtt
v (gln). The main result of this subsection provides a “minimalistic description” of

the kernel of this homomorphism, see Theorem 3.7.
In Sect. 3.4, we recall the Drinfeld-Jimbo quantum Uv(gln),Uv(sln) defined

over C(v), and an isomorphism ϒ : Uv(gln)
∼−→Urtt

v (gln) ⊗C[v,v−1] C(v) of
Ding and Frenkel (1993) (see Theorem 3.9). We introduce C[v, v−1]-subalgebras
Uv(gln),Uv(sln) in Definition 3.10, and identify the former with Urtt

v (gln) via ϒ , see
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Proposition 3.11. Finally, linear C[v, v−1]-bases of Uv(gln),Uv(sln) are constructed
in Theorem 3.14.

In Sect. 3.5, we recall the Drinfeld-Jimbo quantum loop algebras
Uv(Lgln),Uv(Lsln) defined over C(v), and an isomorphism ϒ : Uv(Lgln)

∼−→
Urtt
v (Lgln) ⊗C[v,v−1] C(v) of Ding and Frenkel (1993) (see Theorem 3.17). Follow-

ing Tsymbaliuk (2018), we introduce C[v, v−1]-subalgebras Uv(Lgln),Uv(Lsln) in
Definition 3.19, and identify the former with Urtt

v (Lgln) via ϒ , see Proposition 3.20.
Finally, based on Theorem 3.25 (proved in Tsymbaliuk 2018), we construct linear
C[v, v−1]-bases of Uv(Lgln),Uv(Lsln) in Theorem 3.24.

In Sect. 3.6, we recall the shuffle realizations of U>
v (Lgln) and its integral form

U>
v (Lgln) as recently established in Tsymbaliuk (2018), see Theorems 3.28, 3.30 and

Proposition 3.29. This is crucially used in Sect. 4.
In Sect. 3.7, we recall the evaluation homomorphism ev : Uv(Lsln)→ Uv(gln) of

Jimbo (1986) (see Theorem 3.32) and verify its compatibility with (a C(v)-extension
of) evrtt via ϒ , see Theorem 3.33.

In Sect. 3.8,we recall the standard definition of the quantumminors and the quantum
determinant of T±(z), as well as the description of the center of Urtt

v (gln). All of this
is crucially used in Sect. 4.3.

In Sect. 3.9, we slightly generalize the algebras of the previous subsections, which
is needed for Sect. 4.3.
• In Sect. 4.1, we recall the notion of shifted quantum affine algebras of Finkelberg

and Tsymbaliuk (2017):U sc,μ
v andU ad,μ

v [z±11 , . . . , z±1N ] (depending on a coweightμ).
We introduce their C[v, v−1]-subalgebras Usc,μ

v ,U
ad,μ
v [z±11 , . . . , z±1N ] and construct

linear C[v, v−1]-bases for those in Theorem 4.4. We also recall the homomorphism
˜�

λ
μ : U ad,μ

v [z±11 , . . . , z±1N ] → ˜Av
frac[z±11 , . . . , z±1N ] of Finkelberg and Tsymbaliuk

(2017) (see Theorem 4.1).
In Sect. 4.2, we recall the notion of the (extended) quantized K -theoretic Coulomb

branch Av (which is a C[v, v−1]-algebra) and the fact that ˜�λ
μ gives rise to a homo-

morphism �
λ

μ : U ad,μ
v [z±11 , . . . , z±1N ] → Av ⊗C[v,v−1] C(v). In Proposition 4.9 we

prove that the integral form U
ad,μ
v [z±11 , . . . , z±1N ] is mapped toAv under�

λ

μ, which is
based on explicit formulas (4.6, 4.7). In Theorem 4.11, we provide a shuffle interpre-
tation of the homomorphism ˜�λ

μ when restricted to either positive or negative halves

of U ad,μ
v [z±11 , . . . , z±1N ]. In Proposition 4.12, we combine this result with the shuffle

description of the integral forms U>
v (Lgln),U

<
v (Lgln) to compute ˜�λ

μ-images of cer-

tain elements in U
ad,μ
v [z±11 , . . . , z±1N ]. Combining this computation with the ideas of

Cautis and Williams (2018), we finally prove that�
λ

μ : Uad,μ
v [z±11 , . . . , z±1N ] → Av is

surjective, see Theorem 4.15.
In Sect. 4.3, we prove a reduced version of the integral counterpart of (Finkel-

berg and Tsymbaliuk 2017, Conjecture 8.14), see Conjecture 4.17, which identifies
Ker(�λ

μ)with an explicit truncation ideal I
λ
μ in the particular case μ = 0, λ = nωn−1

(which corresponds to the dimension vector (1, 2, . . . , n − 1) and the framing
(0, . . . , 0, n)), see Theorem 4.18. The key ingredient in our proof, Theorem 4.19,
identifies the reduced truncation ideal Inωn−1

0 with the kernel of a certain version
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of the evaluation homomorphism ev. This culminates in Corollary 4.22, where we
identify the corresponding reduced quantized Coulomb branch Av with the extended
version (in the sense of Beilinson and Ginzburg (1999)) of Uv(sln).

InSect. 4.4,weprove that theC(v)-algebra homomorphisms�μ1,μ2 : U sc,μ1+μ2
v →

U sc,μ1
v ⊗ U sc,μ2

v of (Finkelberg and Tsymbaliuk 2017, Theorem 10.26) generalizing
the Drinfeld-Jimbo coproduct on Uv(Lsln) give rise to C[v, v−1]-algebra homomor-
phisms�μ1,μ2 : Usc,μ1+μ2

v → U
sc,μ1
v ⊗U

sc,μ2
v , see Theorem 4.23. We also prove that

the integral forms Usc,•
v are intertwined by the shift homomorphisms of (Finkelberg

and Tsymbaliuk 2017, Lemma 10.24), see Lemma 4.31.
• In Appendix A.1, we recall the notion of the Drinfeld–Gavarini dual A′ of a Hopf

algebra A defined over C[�], see (A.1, A.2).
In Appendix A.2, following the ideas of Gavarini (2002), we establish a PBW

theorem for the Drinfeld–Gavarini dual A′ of a Hopf algebra A satisfying Assump-
tions (As1)–(As3), see Proposition A.2. This yields an explicit description of A′.

In Appendix A.3, assuming that the Hopf algebra A is in addition graded (see
assumption (As4)), we identify its Drinfeld–Gavarini dual A′ with the Rees algebra
of the specialization A�=1 with respect to the filtration (A.10), see Proposition A.4.

In Appendix A.4, we briefly recall the Yangian Y� = Y�(g) of a semisimple Lie
algebra g (generalizing the case g = sln featuring in Sect. 2) and its key relevant
properties.

InAppendixA.5, we verify that the aforementionedAssumptions (As1)–(As3) hold
for Y�, hence, Proposition A.2 applies. This culminates in the explicit description of
the Drinfeld–Gavarini dual Y ′

�
(thus filling in the gap of the description of Y ′

�
given

just before (Kamnitzer et al. 2014, Theorem 3.5)) and establishes a PBW theorem for
it, see Theorem A.7. The validity of the assumption (As4) for Y� and Proposition A.4
yield a Rees algebra description of Y ′

�
, see Corollary A.8.

In Appendix A.6, we verify that Assumptions (As1)–(As3) hold for the RTT
Yangian Y rtt

�
(gln). This gives rise to the identification of its Drinfeld–Gavarini dual

Y rtt
�
(gln)

′ with the subalgebra Yrtt
�
(gln) of Definition 2.3, as well as establishes the

PBW theorem (that we referred to in Sect. 2) for the latter, see Theorem A.10. As an
immediate corollary, we also deduce a new conceptual proof of Proposition 2.21.

In Appendix A.7, we compare two definitions of dominantly shifted Yangians for
any semisimple Lie algebra g: the Rees algebra construction of Section 2.6 (following
the approach undertaken in Braverman et al. (2016); Finkelberg et al. (2018)) and the
subalgebra construction of Sect. 2.7 (following the original approach of Kamnitzer
et al. (2014)). Our main result, Theorem A.12 (generalizing Theorem 2.31 stated for
g = sln) provides an identification of these two definitions.

InAppendixA.8, we introduce onemore definition of the shiftedYangian and prove
in Theorem A.17 that it is equivalent to the Rees algebra construction.
• In Appendix B.1, we state a simple but useful general result, Lemma B.1, relating

the specializations of the graded C[�]-algebra at � = 0 and � = 1. This is needed for
Theorem B.2.

In Appendix B.2, we recall the basic facts about Y = Y�=1.
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In Appendix B.3, we establish the PBW theorem for Y (thus filling in the gap of
Levendorskii (1993), though our proof is different), see Theorem B.2, which allows
us to immediately deduce the PBW theorem for the Yangian Y�, see Theorem B.3.

2 Shifted Yangian

This section is a rational/cohomological prototype of Sects. 3, 4.

2.1 The RTT Yangian of gln and sln

Let � be a formal variable. Consider the rational R-matrix

Rrat(z) = R�
rat(z) = 1− �

z
P (2.1)

which is an element ofC[�]⊗C(EndC
n)⊗2,where P =∑i, j Ei j⊗E ji ∈ (EndC

n)⊗2
is the permutation operator. It satisfies the famousYang-Baxter equationwith a spectral
parameter:

Rrat;12(u)Rrat;13(u + v)Rrat;23(v) = Rrat;23(v)Rrat;13(u + v)Rrat;12(u). (2.2)

Following Faddeev et al. (1989), define the RTT Yangian of gln , denoted by
Y rtt

�
(gln), to be the associative C[�]-algebra generated by {t (r)i j }r≥11≤i, j≤n subject to the

following defining relations:

Rrat(z − w)T1(z)T2(w) = T2(w)T1(z)Rrat(z − w). (2.3)

Here T (z) is the series in z−1 with coefficients in the algebra Y rtt
�
(gln) ⊗ End C

n ,

defined by T (z) =∑i, j ti j (z)⊗ Ei j with ti j (z) := δi j +�
∑

r>0 t
(r)
i j z−r . Multiplying

both sides of (2.3) by z − w, we obtain an equality of series in z, w with coefficients
in Y rtt

�
(gln)⊗ (End C

n)⊗2.
Let ZY rtt

�
(gln) denote the center of Y rtt

�
(gln). Explicitly,

ZY rtt
�
(gln) � C[�][d1, d2, . . .] with dr defined via qdet T (z) = 1 + �

∑

r≥1 dr z−r ,
see Definition 2.9 and Proposition 2.10.

For any formal series f (z) ∈ 1+ �

z C[�][[z−1]], the assignment

T (z) �→ f (z)T (z) (2.4)

defines an algebra automorphism of Y rtt
�
(gln).

Definition 2.1 The C[�]-subalgebra Y rtt
�
(sln) of Y rtt

�
(gln) formed by all the elements

fixed under all automorphisms (2.4) is called the RTT Yangian of sln .

Analogously to (Molev 2007, Theorem 1.8.2),1 we have a C[�]-algebra isomor-
phism

Y rtt
�
(gln) � Y rtt

�
(sln)⊗C[�] ZY rtt

�
(gln). (2.5)

1 We note that the C-algebras of loc.cit. are the quotients of their C[�]-counterparts above by (�− 1).
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Hence, there is a natural projection π : Y rtt
�
(gln) � Y rtt

�
(sln) with Ker(π) =

(d1, d2, . . .).

Remark 2.2 Note that the assignment t (r)i j �→ Ei j · tr−1 gives rise to a C-algebra iso-

morphism Y rtt
�
(gln)/(�)

∼−→U (gln[t]). This explains why Y rtt
�
(gln) is usually treated

as a quantization of the universal enveloping algebra U (gln[t]).
Definition 2.3 Let Yrtt

�
(gln) be the C[�]-subalgebra of Y rtt

�
(gln) generated by

{�t (r)i j }r≥11≤i, j≤n .

Let us note right away that (2.4) with f (z) ∈ 1 + �

z C[�][[z−1]] defines an
algebra automorphism of Yrtt

�
(gln). As in Definition 2.1, define Yrtt

�
(sln) to be the

C[�]-subalgebra of Yrtt
�
(gln) formed by all the elements fixed under these automor-

phisms. We also note that the center ZYrtt
�
(gln) of Yrtt

�
(gln) is explicitly given by

ZYrtt
�
(gln) � C[�][�d1, �d2, . . .] (clearly {�dr }r≥1 ⊂ Yrtt

�
(gln)). Finally, we also have

a C[�]-algebra isomorphism Yrtt
�
(gln) � Yrtt

�
(sln)⊗C[�] ZYrtt

�
(gln), cf. (2.5). Hence,

there is a natural projection π : Yrtt
�
(gln) � Yrtt

�
(sln) with Ker(π) = (�d1, �d2, . . .).

Remark 2.4 In contrast to Remark 2.2, we note that the assignment
�t (r)i j �→ t(r)i j gives rise to a C-algebra isomorphism Yrtt

�
(gln)/(�) � C[t(r)i j ]r≥11≤i, j≤n . In

other words,Yrtt
�
(gln) can be treated as a quantization of the algebra of functions on the

congruence subgroup GL(n)[[t−1]]1 := the kernel of the evaluation homomorphism
GL(n)[[t−1]] → GL(n).

2.2 QuantumMinors of T(z)

Werecall the notion of quantumminors following (Molev 2007, §1.6). This generalizes
qdet T (z) featuring in Sect. 2.1, and will be used in the proof of Theorem 2.41. For
1 < r ≤ n, define R(z1, . . . , zr ) ∈ (End C

n)⊗r via

R(z1, . . . , zr ) := (Rr−1,r )(Rr−2,r Rr−2,r−1) · · · (R1r · · · R12) with

Ri j := Rrat;i j (zi − z j ).

The following is implied by (2.2) and (2.3), cf. (Molev 2007, Proposition 1.6.1):

Lemma 2.5 R(z1, . . . , zr )T1(z1) · · · Tr (zr ) = Tr (zr ) · · · T1(z1)R(z1, . . . , zr ).
Let Ar ∈ (End C

n)⊗r denote the image of the antisymmetrizer
∑

σ∈�r
(−1)σ ·σ ∈

C[�r ] under the natural action of the symmetric group �r on (Cn)⊗r . Recall the
following classical observation, cf. (Molev 2007, Proposition 1.6.2):

Proposition 2.6 R(z, z − �, . . . , z − (r − 1)�) = Ar .

Combining Lemma 2.5 and Proposition 2.6, we obtain the following

Corollary 2.7 We have

Ar T1(z)T2(z−�) · · · Tr (z−(r−1)�) = Tr (z−(r−1)�) · · · T2(z−�)T1(z)Ar . (2.6)
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The operator of (2.6) can be written as
∑

ta1...arb1...br
(z)⊗ Ea1,b1 ⊗ · · · ⊗ Ear ,br with

ta1...arb1...br
(z) ∈ Yrtt

�
(gln)[[z−1]] and the sum taken over all a1, . . . , ar , b1, . . . , br ∈

{1, . . . , n}.
Definition 2.8 The coefficients ta1...arb1...br

(z) are called the quantum minors of T (z).

In the particular case r = n, the image of the operator An acting on (Cn)⊗n is 1-
dimensional. Hence AnT1(z) · · · Tn(z− (n− 1)�) = An · qdet T (z) with qdet T (z) ∈
Yrtt

�
(gln)[[z−1]]. We note that qdet T (z) = t1...n1...n (z) in the above notations.

Definition 2.9 qdet T (z) is called the quantum determinant of T (z).

Since ti j (z) ∈ δi j + �Y rtt
�
(gln)[[z−1]], it is clear that qdet T (z) ∈ 1 +

�Y rtt
�
(gln)[[z−1]]. Hence, it is of the form qdet T (z) = 1 + �

∑

r≥1 dr z−r with
dr ∈ Y rtt

�
(gln). The following result is well-known, cf. (Molev 2007, Theorem 1.7.5):

Proposition 2.10 The elements {dr }r≥1 are central, algebraically independent, and
generate the center ZY rtt

�
(gln) of Y

rtt
�
(gln). In other words, we have a C[�]-algebra

isomorphism ZY rtt
�
(gln) � C[�][d1, d2, . . .].

2.3 The RTT Evaluation Homomorphism evrtt

Definition 2.11 Let U (gln) be the universal enveloping algebra of gln over C[�].
Recall the following two standard relations between Y rtt

�
(gln) and U (gln):

Lemma 2.12 (a) The assignment Ei j �→ t (1)i j gives rise to a C[�]-algebra embedding

ι : U (gln) ↪→ Y rtt
�
(gln).

(b) The assignment t (r)i j �→ δr ,1Ei j gives rise to a C[�]-algebra epimorphism

evrtt : Y rtt
�
(gln) � U (gln).

The homomorphism evrtt is called the RTT evaluation homomorphism.

Remark 2.13 (a) The composition evrtt ◦ ι is the identity endomorphism of U (gln).
(b) Define T :=∑i, j Ei j ⊗ Ei j ∈ U (gln)⊗ End C

n . Then evrtt : T (z) �→ 1+ �

z T .

Let U(gln) be the C[�]-subalgebra of U (gln) generated by {�x}x∈gln . It is isomor-
phic to the �-deformed universal enveloping algebra:

U(gln) � T (gln)/(〈{xy − yx − �[x, y]}x,y∈gln 〉),

where T (gln) denotes the tensor algebra of gln over C[�]. We note that the homomor-
phisms ι and evrtt of Lemma 2.12 give rise to C[�]-algebra homomorphisms

ι : U(gln) ↪→ Yrtt
�
(gln) and evrtt : Yrtt

�
(gln) � U(gln). (2.7)
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The PBW theorems for Y rtt
�
(gln) (see Proposition A.9, cf. (Molev 2007, Theorem

1.4.1)) and U (gln) imply the following simple result:

Lemma 2.14 Ker(evrtt : Y rtt
�
(gln) → U (gln)) is the 2-sided ideal generated by

{t (r)i j }r≥21≤i, j≤n.

However,wewill need an alternative descriptionof this kernelKer(evrtt), essentially
due to (Brundan and Kleshchev 2006, Section 6) (by taking further Rees algebras).

Theorem 2.15 Let I denote the 2-sided ideal of Y rtt
�
(gln) generated by {t (r)11 }r≥2. Then

Ker(evrtt : Y rtt
�
(gln)→ U (gln)) = I .

Proof Recall that (2.3) is equivalent to

(z − w)[ti j (z), tkl(w)] = �(tk j (z)til(w)− tk j (w)til(z))

for any 1 ≤ i, j, k, l ≤ n, which in turn is equivalent to (cf. (Molev 2007, Proposition
1.1.2))

[t (r)i j , t (s)kl ] = �

min(r ,s)
∑

a=1

(

t (a−1)k j t (r+s−a)il − t (r+s−a)k j t (a−1)il

)

, (2.8)

where we set t (0)i j := �
−1δi j .

• Set i = j = k = 1, l > 1, s = 1 in (2.8) to get [t (r)11 , t (1)1l ] = t (r)1l . Hence

{t (r)1l }r≥2l>1 ⊂ I .

• Set i = j = l = 1, k > 1, s = 1 in (2.8) to get [t (r)11 , t (1)k1 ] = −t (r)k1 . Hence

{t (r)k1 }r≥2k>1 ⊂ I .

• Set i = l = 1, j = k = 2, s = 1 in (2.8) to get [t (r)12 , t (1)21 ] = t (r)11 − t (r)22 . Hence

{t (r)22 }r≥2 ⊂ I .

One can now apply the above three verifications with all lower indices increased
by 1. Proceeding further step by step, we obtain {t (r)i j }r≥21≤i, j≤n ⊂ I .

This completes our proof of Theorem 2.15. ��
Likewise, the PBW theorems for U(gln) and Yrtt

�
(gln) [see Theorem A.10, cf.

(Molev 2007, Theorem 1.4.1)] imply the following result:

Lemma 2.16 Ker(evrtt : Yrtt
�
(gln) → U(gln)) is the 2-sided ideal generated by

{�t (r)i j }r≥21≤i, j≤n.
The following alternative description follows immediately from Theorem 2.15:

Theorem 2.17 Ker(evrtt : Yrtt
�
(gln)→ U(gln)) = Yrtt

�
(gln) ∩ I .

2.4 The Drinfeld Yangian of gln and sln

Following Drinfeld (1988) [cf. Iohara (1996), Molev (2007)], define the Yan-
gian of gln , denoted by Y�(gln), to be the associative C[�]-algebra generated by
{e(r)i , f (r)i , ζ

(r)
j }r≥01≤i<n,1≤ j≤n with the following defining relations:
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[

ζ
(r)
j , ζ

(s)
j ′
]

= 0,
[

e(r+1)i , e(s)i ′
]

−
[

e(r)i , e(s+1)i ′
]

= cii ′�

2

(

e(r)i e(s)i ′ + e(s)i ′ e
(r)
i

)

,

[

f (r+1)i , f (s)i ′
]

−
[

f (r)i , f (s+1)i ′
]

= −cii ′�

2

(

f (r)i f (s)i ′ + f (s)i ′ f (r)i

)

,

[

ζ
(0)
j , e(r)i

]

= (−δ j i + δ j,i+1)e(r)i ,
[

ζ
(0)
j , f (r)i

]

= (δ j i − δ j,i+1) f (r)i ,
[

ζ
(s+1)
j , e(r)i

]

−
[

ζ
(s)
j , e(r+1)i

]

=� ·
(

−δ j iζ (s)
j e(r)i +δ j,i+1/2 · (ζ (s)

j e(r)i +e(r)i ζ
(s)
j )
)

,
[

ζ
(s+1)
j , f (r)i

]

−
[

ζ
(s)
j , f (r+1)i

]

=� ·
(

δ j iζ
(s)
j f (r)i −δ j,i+1/2 · (ζ (s)

j f (r)i + f (r)i ζ
(s)
j )
)

,
[

e(r)i , f (s)i ′
]

= δi i ′h
(r+s)
i ,

[

e(r)i , e(s)i ′
]

= 0 and
[

f (r)i , f (s)i ′
]

= 0 if cii ′ = 0,
[

e(r1)i ,
[

e(r2)i , e(s)i ′
]]

+
[

e(r2)i ,
[

e(r1)i , e(s)i ′
]]

= 0 if cii ′ = −1,
[

f (r1)i ,
[

f (r2)i , f (s)i ′
]]

+
[

f (r2)i ,
[

f (r1)i , f (s)i ′
]]

= 0 if cii ′ = −1,
(2.9)

where (cii ′)
n−1
i,i ′=1 denotes the Cartan matrix of sln and {h(r)i }r∈N1≤i<n are the coefficients

of the generating series hi (z) = 1 + �
∑

r≥0 h
(r)
i z−r−1 determined via hi (z) :=

(ζi (z))−1ζi+1(z − �/2). Here the generating series ei (z), fi (z) (1 ≤ i < n) and
ζ j (z) (1 ≤ j ≤ n) are defined via

ei (z) := �

∑

r≥0
e(r)i z−r−1, fi (z) := �

∑

r≥0
f (r)i z−r−1, ζ j (z) := 1+ �

∑

r≥0
ζ
(r)
j z−r−1.

The C[�]-subalgebra of Y�(gln) generated by {e(r)i , f (r)i , h(r)i }r≥01≤i<n is isomorphic
to the Yangian of sln , denoted by Y�(sln). To be more precise, this recovers the new
Drinfeld realization of Y�(sln), see Drinfeld (1988). The latter also admits the original
J -presentationwith generators {x, J (x)}x∈sln and a certain list of the defining relations
which we shall skip, see Drinfeld (1985).

To relate Y rtt
�
(gln) and Y�(gln), consider the Gauss decomposition of T (z) of

Sect. 2.1:

T (z) = F(z) · G(z) · E(z).

Here F(z),G(z), E(z) are the series in z−1 with coefficients in the algebraYrtt
�
(gln)⊗

End C
n which are of the form

F(z) =
∑

i

Eii +
∑

i> j

fi j (z) · Ei j , G(z) =
∑

i

gi (z) · Eii ,

E(z) =
∑

i

Eii +
∑

i< j

ei j (z) · Ei j .
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Theorem 2.18 (Iohara 1996; cf. Ding and Frenkel 1993) There is a unique C[�]-
algebra isomorphism

ϒ : Y�(gln)
∼−→ Y rtt

�
(gln)

defined by

ei (z) �→ ei,i+1(z+i�/2), fi (z) �→ fi+1,i (z+i�/2), ζ j (z) �→ g j (z+ j�/2). (2.10)

As an immediate corollary,Yrtt
�
(gln) is realized as aC[�]-subalgebra of Y�(gln). To

describe this subalgebra explicitly, define the elements {E (r)
α∨ , F

(r)
α∨ }r≥0α∨∈�+ of Y�(gln)

via
E (r)
α∨j+α∨j+1+···+α∨i :=

[

· · ·
[

e(r)j, , e
(0)
j+1
]

, · · · , e(0)i

]

,

F (r)
α∨j+α∨j+1+···+α∨i :=

[

f (0)i , · · · ,
[

f (0)j+1, f
(r)
j

]

· · ·
]

.
(2.11)

Here {α∨i }n−1i=1 are the standard simple roots of sln , and �+ denotes the set of positive
roots, �+ = {α∨j + α∨j+1 + · · · + α∨i }1≤ j≤i≤n−1.

Definition 2.19 (a) Let Y�(gln) be the C[�]-subalgebra of Y�(gln) generated by

{

�E (r)
α∨ , �F (r)

α∨
}r≥0
α∨∈�+ ∪

{

�ζ
(r)
j

}r≥0
1≤ j≤n . (2.12)

(b) Let Y�(sln) be the C[�]-subalgebra of Y�(sln) generated by

{

�E (r)
α∨ , �F (r)

α∨
}r≥0
α∨∈�+ ∪

{

�h(r)i

}r≥0
1≤i<n

. (2.13)

Remark 2.20 The subalgebra Y�(gln) is free over C[�] and the ordered PBW
monomials in the generators (2.12) form its basis. This can be derived similarly to The-
orem 3.24, cf. (Tsymbaliuk 2018, Theorem 6.8). An alternative proof (valid for all
Yangians) is provided in Appendix A, see Theorem A.7.

Proposition 2.21 Y�(gln) = ϒ−1(Yrtt
�
(gln)).

The proof of Proposition 2.21 follows immediately from Proposition 2.22 and
Corollary 2.23 below. To state those, let us express the matrix coefficients of
F(z),G(z), E(z) as series in z−1 with coefficients in Y rtt

�
(gln):

ei j (z) = �

∑

r≥1
e(r)i j z

−r , fi j (z) = �

∑

r≥1
f (r)i j z−r , gi (z) = 1+ �

∑

r≥1
g(r)i z−r .

(2.14)
The proof of the following result is analogous to that of Proposition 3.21 (actually

it is much simpler), and we leave details to the interested reader:
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Proposition 2.22 For any 1 ≤ j < i < n, the following equalities hold in Y rtt
�
(gln):

e j,i+1(z) =
[

e ji (z), e
(1)
i,i+1

]

, fi+1, j (z) =
[

f (1)i+1,i , fi j (z)
]

. (2.15)

Corollary 2.23 For any 1 ≤ j ≤ i < n and r ≥ 1, the following equalities hold:

e(r)j,i+1 =
[

· · ·
[

e(r)j, j+1, e
(1)
j+1, j+2

]

, · · · , e(1)i,i+1
]

,

f (r)i+1, j =
[

f (1)i+1,i , · · · ,
[

f (1)j+2, j+1, f
(r)
j+1, j

]

· · ·
]

.
(2.16)

Remark 2.24 A more conceptual and computation-free proof of Proposition 2.21 is
provided in the end of Appendix A.6.

2.5 The Drinfeld Evaluation Homomorphism ev

While the universal enveloping algebra (over C[�])U (g) is always embedded into the
Yangian Y�(g), in type A there also exists a C[�]-algebra epimorphism

ev : Y�(sln) � U (sln)

discovered in (Drinfeld 1985, Theorem 9). This homomorphism is given in the J -
presentation ofY�(sln).We shall skip explicit formulas, referring the reader toDrinfeld
(1985) and (Chari and Pressley 1994, Proposition 12.1.15).

Define si ∈ Y�(sln) via

si := h(1)i −
�

2
(h(0)i )2, (2.17)

so that

[si , e(r)i ′ ] = cii ′e
(r+1)
i ′ , [si , f (r)i ′ ] = −cii ′ f (r+1)i ′ .

As a result, Y�(sln) is generated by {e(0)i , f (0)i , s1}n−1i=1 . We will need the following
explicit formulas:

ev(e(0)i ) = Ei,i+1, ev( f (0)i ) = Ei+1,i , ev(s1) = �

2
(ω2h1 − E12E21 − E21E12),

(2.18)
where h1 = E11 − E22, ω2 = E11 + E22 − 2

n In, In = E11 + · · · + Enn . The last
equality of (2.18) is verified by a straightforward computation (sketched in Appel and
Gautam 2017, §5.7).

Let γ̃ : U (gln) � U (sln) be the C[�]-algebra epimorphism defined by
γ̃ (X) = X − tr(X)

n · In for X ∈ gln . We also define a C[�]-algebra embedding
˜ϒ : Y�(sln) ↪→ Y rtt

�
(gln) as a composition of an automorphism of Y�(sln) defined by

ei (z) �→ ei (z − �), fi (z) �→ fi (z − �), hi (z) �→ hi (z − �), a natural embedding
Y�(sln) ↪→ Y�(gln), and the isomorphismϒ : Y�(gln)

∼−→ Y rtt
�
(gln) of Theorem2.18.
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The key result of this subsection establishes the relation between the evaluation
homomorphism ev and the RTT evaluation homomorphism evrtt of Lemma 2.12(b):

Theorem 2.25 The following diagram is commutative:

Y�(sln)
˜ϒ−−−−→ Y rtt

�
(gln)

⏐

⏐

�
ev evrtt

⏐

⏐

�

U (sln)
γ̃←−−−− U (gln)

(2.19)

Proof It suffices to verify γ̃ (evrtt(˜ϒ(X))) = ev(X) for all X ∈ {e(0)i , f (0)i , s1}n−1i=1 .
This equality is obvious for e(0)i , f (0)i , hence, it remains to verify it for X = s1.

Note that ˜ϒ(h1(z)) = g1(z − �/2)−1g2(z − �/2). Using the notations of (2.14),
this implies

˜ϒ(h(0)1 ) = g(1)2 − g(1)1 ,

˜ϒ(h(1)1 ) = �

(

(g(1)1 )2 − g(1)1 g(1)2 +
g(1)2 − g(1)1

2

)

+
(

g(2)2 − g(2)1

)

,

so that

˜ϒ(s1) = �

2

(

(g(1)1 )2 − (g(1)2 )2 + g(1)2 − g(1)1

)

+
(

g(2)2 − g(2)1

)

.

On the other hand, considering theGauss decomposition of thematrix 1+�T z−1 =
evrtt(T (z)) of Remark 2.13(b), we find evrtt : g(1)1 �→ E11, g(2)1 �→ 0, g(1)2 �→
E22, g(2)2 �→ −�E21E12. Therefore, we obtain

evrtt(˜ϒ(s1)) = �

2
(E2

11 − E2
22 + E22 − E11 − 2E21E12)

= �

2
(E2

11 − E2
22 − E12E21 − E21E12).

Applying γ̃ , we finally get

γ̃ (evrtt(˜ϒ(s1))) = �

2
(ω2h1 − E12E21 − E21E12) = ev(s1),

due to the last formula of (2.18).
This completes our proof of Theorem 2.25. ��

2.6 The Shifted Yangian, Construction I

In this subsection, we recall the notion of shifted Yangians following (Braverman et al.
2016, Appendix B).
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First, recall that given a C-algebra A with an algebra filtration F•A = · · · ⊆
F−1A ⊆ F0A ⊆ F1A ⊆ · · · which is separated and exhaustive (that is, ∩k Fk A = 0
and ∪k Fk A = A), we define the Rees algebra of A to be the graded C[�]-algebra
ReesF

•
A :=⊕k �

k Fk A, viewed as a subalgebra of A[�, �
−1].

Following (Braverman et al. 2016, Definition B.1), define the Cartan doubled Yan-
gian Y∞ = Y∞(sln) to be the C-algebra generated by {E (r)

i , F (r)
i , H (s)

i }r≥1,s∈Z1≤i≤n−1 with
the following defining relations:

[

H (s)
i , H (s′)

j

]

= 0,
[

E (r)
i , F (r ′)

j

]

= δi j H
(r+r ′−1)
i ,

[

H (s+1)
i , E (r)

j

]

−
[

H (s)
i , E (r+1)

j

]

= ci j
2

(

H (s)
i E (r)

j + E (r)
j H (s)

i

)

,

[

H (s+1)
i , F (r)

j

]

−
[

H (s)
i , F (r+1)

j

]

= −ci j
2

(

H (s)
i F (r)

j + F (r)
j H (s)

i

)

,

[

E (r+1)
i , E (r ′)

j

]

−
[

E (r)
i , E (r ′+1)

j

]

= ci j
2

(E (r)
i E (r ′)

j + E (r ′)
j E (r)

i ),

[

F (r+1)
i , F (r ′)

j

]

−
[

F (r)
i , F (r ′+1)

j

]

= −ci j
2

(

F (r)
i F (r ′)

j + F (r ′)
j F (r)

i

)

,

[

E (r)
i , E (r ′)

j

]

= 0 and
[

F (r)
i , F (r ′)

j

]

= 0 if ci j = 0,
[

E (r1)
i ,

[

E (r2)
i , E (r ′)

j

]]

+
[

E (r2)
i ,

[

E (r1)
i , E (r ′)

j

]]

= 0 if ci j = −1,
[

F (r1)
i ,

[

F (r2)
i , F (r ′)

j

]]

+
[

F (r2)
i ,

[

F (r1)
i , F (r ′)

j

]]

= 0 if ci j = −1.

(2.20)

Fix a coweight μ of sln and set bi := α∨i (μ). Following (Braverman et al. 2016,

Definition B.2), define Yμ = Yμ(sln) as the quotient of Y∞ by the relations H (r)
i = 0

for r < −bi and H (−bi )
i = 1.

Analogously to (2.11), define the elements {E (r)
α∨ , F

(r)
α∨ }r≥1α∨∈�+ of Yμ via

E (r)
α∨j+α∨j+1+···+α∨i :=

[

· · ·
[

E (r)
j , E (1)

j+1
]

, · · · , E (1)
i

]

,

F (r)
α∨j+α∨j+1+···+α∨i :=

[

F (1)
i , · · · ,

[

F (1)
j+1, F

(r)
j

]

· · ·
]

.
(2.21)

Choose any total ordering on the following set of PBW generators:

{

E (r)
α∨
}r≥1
α∨∈�+ ∪

{

F (r)
α∨
}r≥1
α∨∈�+ ∪

{

H (r)
i

}r>−bi
1≤i≤n−1 . (2.22)

The following PBW property of Yμ was established in (Finkelberg et al. 2018, Corol-
lary 3.15):

Theorem 2.26 (Finkelberg et al. 2018) For an arbitrary coweightμ, the ordered PBW
monomials in the generators (2.22) form a C-basis of Yμ.
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Fix a pair of coweights μ1, μ2 such that μ1+μ2 = μ. Following (Finkelberg et al.
2018, §5.4), consider the filtration F•μ1,μ2

Yμ of Yμ by defining degrees of the PBW
generators as follows:

deg E (r)
α∨ = α∨(μ1)+ r , deg F (r)

α∨ = α∨(μ2)+ r , deg H (r)
i = α∨i (μ)+ r . (2.23)

More precisely, Fk
μ1,μ2

Yμ is defined as the span of all ordered PBWmonomials whose
total degree is at most k.

According to Finkelberg et al. (2018), this defines an algebra filtration and the Rees
algebras ReesF

•
μ1,μ2Yμ are canonically isomorphic for any choice of μ1, μ2 as above.

Definition 2.27 Define the shifted Yangian Yμ = Yμ(sln) via Yμ := ReesF
•
μ1,μ2Yμ.

2.7 The Shifted Yangian with a Dominant Shift, Construction II

Let us now recall an alternative (historically the first) definition of the dominantly
shifted Yangians proposed in Kamnitzer et al. (2014). Fix a dominant coweight μ of
sln and set bi := α∨i (μ) (the dominance condition on μ is equivalent to bi ≥ 0 for

all i). LetYμ,� be the associativeC[�]-algebra generated by {e(r)i , f (r)i , h(si )i }r≥0,si≥−bi1≤i≤n−1
with the following defining relations:

[

h(s)i , h(s
′)

j

]

= 0,

[

e(r)i , f (r
′)

j

]

=
{

h(r+r
′)

i , if i = j and r + r ′ ≥ −bi
0, otherwise

,

[

h(−bi )i , e(r)j

]

= ci j e
(r)
j ,

[

h(s+1)i , e(r)j

]

−
[

h(s)i , e(r+1)j

]

= ci j�

2

(

h(s)i e(r)j + e(r)j h(s)i

)

,

[

h(−bi )i , f (r)j

]

= −ci j f (r)j ,

[

h(s+1)i , f (r)j

]

−
[

h(s)i , f (r+1)j

]

= −ci j�

2

(

h(s)i f (r)j + f (r)j h(s)i

)

,

[

e(r+1)i , e(r
′)

j

]

−
[

e(r)i , e(r
′+1)

j

]

= ci j�

2

(

e(r)i e(r
′)

j + e(r
′)

j e(r)i

)

,

[

f (r+1)i , f (r
′)

j

]

−
[

f (r)i , f (r
′+1)

j

]

= −ci j�

2

(

f (r)i f (r
′)

j + f (r
′)

j f (r)i

)

,

[

e(r)i , e(r
′)

j

]

= 0 and
[

e(r)i , e(r
′)

j

]

= 0 if ci j = 0,
[

e(r1)i ,
[

e(r2)i , e(r
′)

j

]]

+
[

e(r2)i ,
[

e(r1)i , e(r
′)

j

]]

= 0 if ci j = −1,
[

f (r1)i ,
[

f (r2)i , f (r
′)

j

]]

+
[

f (r2)i ,
[

f (r1)i , f (r
′)

j

]]

= 0 if ci j = −1.

(2.24)
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Remark 2.28 The main differences between (2.24) and (2.20) are: (1) all indices r , s
are shifted by −1, (2) � appears in the right-hand sides to make the equations look
homogeneous.

Analogously to (2.11, 2.21), define the elements {e(r)
α∨ , f

(r)
α∨ }r≥0α∨∈�+ of Yμ,� via

e(r)
α∨j+α∨j+1+···+α∨i :=

[

· · ·
[

e(r)j , e(0)j+1
]

, · · · , e(0)i

]

,

f (r)
α∨j+α∨j+1+···+α∨i :=

[

f (0)i , · · · ,
[

f (0)j+1,, f
(r)
j

]

· · ·
]

.
(2.25)

Choose any total ordering on the following set of PBW generators:

{e(r)
α∨ }r≥0α∨∈�+ ∪ { f (r)α∨ }r≥0α∨∈�+ ∪ {h(si )i }si≥−bi1≤i≤n−1. (2.26)

The following is analogous to Theorem 2.26:

Theorem 2.29 For an arbitrary dominant coweight μ, the ordered PBW monomials
in the generators (2.26) form a basis of a free C[�]-module Yμ,�.

Proof Arguing as in Finkelberg et al. (2018, Proposition 3.13), it is easy to check
that Yμ,� is spanned by the ordered PBW monomials. To prove the linear inde-
pendence of the ordered PBW monomials, it suffices to verify that their images are
linearly independent when we specialize � to any nonzero complex number (cf. our
proof of Theorem A.9). The latter holds for � = 1 (and thus for any � �= 0, since
all such specializations are isomorphic), due to Theorem 2.26 and the isomorphism
Yμ,�/(�− 1) � Yμ. ��

Following Kamnitzer et al. (2014, §3D,3F),2 we introduce the following:

Definition 2.30 Let Y′μ be the C[�]-subalgebra of Yμ,� generated by

{

�e(r)
α∨
}r≥0
α∨∈�+ ∪

{

� f (r)
α∨
}r≥0
α∨∈�+ ∪

{

�h(si )i

}si≥−bi
1≤i≤n−1 .

The following is the main result of this subsection:

Theorem 2.31 For any dominant coweight μ, there is a canonical C[�]-algebra iso-
morphism

Yμ � Y′μ.

This provides an identification of two different approaches towards the dominantly
shifted Yangians (which was missing in the literature, to our surprise). A proof of this
result, generalized to any semisimple Lie algebra g, is presented in Appendix A.7, see
Theorem A.12.

2 Let us emphasize that (Kamnitzer et al. 2014, Theorem 3.5) is wrong, as pointed out in Braverman et al.
(2016). That is, it does not include a complete set of relations, except when g = sl2.
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2.8 Homomorphism8�
�

Let us recall the construction of (Braverman et al. 2016, Appendix B) for the type
An−1 Dynkin diagram with arrows pointing i → i + 1 for 1 ≤ i ≤ n − 2. We fix
a dominant coweight λ and a coweight μ of sln , such that λ − μ = ∑n−1

i=1 aiαi with
ai ∈ N, where {αi }n−1i=1 are the simple coroots of sln . We set a0 := 0, an := 0. We also

fix a sequence λ = (ωi1 , . . . , ωiN ) of fundamental coweights, such that
∑N

s=1 ωis = λ.
Consider the C-algebra

˜A = C[z1, . . . , zN ]〈wi,r , u
±1
i,r , (wi,r − wi,s + m)−1〉1≤r �=s≤ai1≤i≤n−1,m∈Z

with the defining relations [u±1i,r , w j,s] = ±δi jδrsu±1i,r . Define W0(z) := 1,Wn(z) :=
1, and

Zi (z) :=
is=i
∏

1≤s≤N
(z− zs−1/2), Wi (z) :=

ai
∏

r=1
(z−wi,r ), Wi,r (z) :=

s �=r
∏

1≤s≤ai
(z−wi,s).

(2.27)
We define a filtration on ˜A by setting deg(zs) = 1, deg(wi,r ) = 1, deg((wi,r −

wi,s + m)−1) = −1, deg(u±1i,r ) = 0, and set ˜A� := Rees ˜A. Explicitly, we have

˜A� � C[�][z1, . . . , zN ]〈wi,r , u
±1
i,r , �

−1, (wi,r − wi,s + m�)−1〉1≤r �=s≤ai1≤i≤n−1,m∈Z

with the defining relations [u±1i,r , w j,s] = ±�δi jδrsu
±1
i,r .

Remark 2.32 By abuse of notation, for a generator x which lives in a filtered degree k
(but not in a filtered degree k−1) we write x for the element �k x in the corresponding
Rees algebra.

We also need the larger algebra Yμ[z1, . . . , zN ] := Yμ ⊗C C[z1, . . . , zN ]. Define
new Cartan generators {A(r)

i }r≥11≤i<n via

Hi (z) = Zi (z) ·
∏

j−i (z − 1/2)a j

zai (z − 1)ai
·
∏

j−i A j (z − 1/2)

Ai (z)Ai (z − 1)
, (2.28)

where Hi (z) := zbi +∑r>−bi H
(r)
i z−r and Ai (z) := 1 +∑r≥1 A

(r)
i z−r . The gen-

erating series Ei (z), Fi (z) are defined via Ei (z) := ∑

r≥1 E
(r)
i z−r and Fi (z) :=

∑

r≥1 F
(r)
i z−r .

The following result is due to (Braverman et al. 2016, Theorem B.15) (for earlier
results in this direction see Gerasimov et al. 2005; Kamnitzer et al. 2014):

Theorem 2.33 (Braverman et al. 2016) There exists a unique homomorphism

�
λ
μ : Yμ[z1, . . . , zN ] −→ ˜A
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of filtered C-algebras, such that

Ai (z) �→ z−ai Wi (z),

Ei (z) �→ −
ai
∑

r=1

Zi (wi,r )Wi−1(wi,r − 1/2)

(z − wi,r )Wi,r (wi,r )
u−1i,r ,

Fi (z) �→
ai
∑

r=1

Wi+1(wi,r + 1/2)

(z − wi,r − 1)Wi,r (wi,r )
ui,r .

We extend the filtration F•μ1,μ2
on Yμ to Yμ[z1, . . . , zN ] by setting deg(zs) = 1,

and define Yμ[z1, . . . , zN ] := ReesF
•
μ1,μ2Yμ[z1, . . . , zN ] (which is independent of

the choice of μ1, μ2 up to a canonical isomorphism). Applying the Rees functor to
Theorem 2.33, we obtain

Theorem 2.34 (Bravermanet al. 2016)There exists a uniquegradedC[�][z1, . . . , zN ]-
algebra homomorphism

�
λ
μ : Yμ[z1, . . . , zN ] −→ ˜A�,

such that

Ai (z) �→ z−ai Wi (z),

Ei (z) �→ −
ai
∑

r=1

Zi (wi,r )Wi−1(wi,r − �/2)

(z − wi,r )Wi,r (wi,r )
u−1i,r ,

Fi (z) �→
ai
∑

r=1

Wi+1(wi,r + �/2)

(z − wi,r − �)Wi,r (wi,r )
ui,r .

Remark 2.35 Following Remark 2.32, we note that the defining formulas of Wi (z),
Wi,r (z) in ˜A� are given again by (2.27). In contrast, Zi (z) =∏is=i

1≤s≤N (z− zs − �/2),
cf. (2.27).

2.9 Coulomb Branch

Following Braverman et al. (2016, 2019), let A� denote the quantized Coulomb
branch.We choose a basisw1, . . . , wN inW =⊕n−1

i=1 Wi such thatws ∈ Wis , where is

are chosen as inSect. 2.8. ThenA� is defined asA� := H (GL(V )×TW )O�C
×

• (RGL(V ),N),
where RGL(V ),N is the variety of triples, TW is the maximal torus of GL(W ) =
∏n−1

i=1 GL(Wi ), and GL(V ) = ∏n−1
i=1 GL(Vi ). We identify H•TW (pt) = C[z1, . . . , zN ]

and H•
C×(pt) = C[�]. Recall a C[�][z1, . . . , zN ]-algebra embedding

z∗(ι∗)−1 : A� ↪→ ˜A�, which takes the homological grading on A� to the above
grading on ˜A�.
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According to Braverman et al. (2016, Theorem B.18), the homomorphism �
λ
μ :

Yμ[z1, . . . , zN ] → ˜A� factors through A�. In other words, there is a unique graded

C[�][z1, . . . , zN ]-algebra homomorphism�
λ

μ : Yμ[z1, . . . , zN ] → A�, such that the

composition Yμ[z1, . . . , zN ]
�

λ
μ−→ A�

z∗(ι∗)−1−−−−→ ˜A� coincides with �
λ
μ.

The following result is due to Kamnitzer et al. (2018b, Corollary 4.10) (see
Remark 4.16 for an alternative proof, based on the shuffle realizations of Y�(sln),
Y�(sln) of Tsymbaliuk (2018, §6)):

Proposition 2.36 (Kamnitzer et al. (2018b)) �
λ

μ : Yμ[z1, . . . , zN ] → A� is surjec-
tive.

Lemma 2.37 For any 1 ≤ j ≤ i < n and r ≥ 1, the following equalities hold:

�
λ
μ

(

E(r)
α∨j+α∨j+1+···+α∨i

)

= (−1)i− j+1

×
∑

1≤r j≤a j···
1≤ri≤ai

W j−1(w j ,r j − �

2 )
∏i−1

k= j Wk,rk (wk+1,rk+1 − �

2 )
∏i

k= j Wk,rk (wk,rk )
·

i
∏

k= j

Zk (wk,rk ) · wr−1
j,r j
·

i
∏

k= j

u−1k,rk
,

(2.29)

�
λ
μ

(

F(r)
α∨j+α∨j+1+···+α∨i

)

= (−1)i− j

×
∑

1≤r j≤a j···
1≤ri≤ai

∏i
k= j+1 Wk,rk (wk−1,rk−1 + �

2 )Wi+1(wi,ri + �

2 )
∏i

k= j Wk,rk (wk,rk )
· (w j,r j + �)r−1 ·

i
∏

k= j

uk,rk .

(2.30)

Proof Straightforward computation. ��

Remark 2.38 For 1 ≤ j ≤ i < n, we consider a coweight λ j i = (0, . . . , 0,� j,1, . . . ,

�i,1, 0, . . . , 0) (resp. λ∗j i = (0, . . . , 0,� ∗j,1, . . . ,� ∗i,1, 0, . . . , 0)) of GL(V ) =
GL(V1) × · · · × GL(Vn−1). The corresponding orbits Gr

λ j i

GL(V ),Gr
λ∗j i
GL(V ) ⊂ GrGL(V )

are closed, and letRλ j i ,Rλ∗j i denote their preimages in the variety of triplesRGL(V ),N.
Then, Lemma 2.37 implies

�
λ

μ

(

E (r)
α∨j+α∨j+1+···+α∨i

)

= (−1)
∑i

k= j ak (c1(S j )+ �)r−1 ∩ [Rλ∗j i ],

�
λ

μ

(

F (r)
α∨j+α∨j+1+···+α∨i

)

= (−1)
∑i+1

k= j+1 ak (c1(Q j )+ �)r−1 ∩ [Rλ j i ].
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2.10 Explicit Description for� = 0,� = n!n−1

Following Braverman et al. (2016), define the truncation ideal Iλμ as the 2-sided

ideal ofYμ[z1, . . . , zN ] generated overC[�][z1, . . . , zN ] by {A(r)
i }r>ai

1≤i≤n−1. This ideal
is discussed extensively in Kamnitzer et al. (2014). The inclusion I

λ
μ ⊂ Ker(�λ

μ)

is clear, while the opposite inclusion was conjectured in Braverman et al. (2016,
Remark B.21). This conjecture is proved for dominant μ in Kamnitzer et al. (2018a).

The goal of this subsection is to provide an alternative proof of a reduced version
of that equality in the particular case μ = 0, λ = nωn−1 (so that N = n and ai = i
for 1 ≤ i < n; recall that a0 = 0, an = 0). Here, a reduced version means that
we impose an extra relation

∑n
i=1 zi = 0 in all algebras. We use I

nωn−1
0 to denote

the reduced version of the corresponding truncation ideal, while �
nωn−1
0 denotes the

resulting homomorphism between the reduced algebras.
The forthcoming discussion is very close to Brundan and Kleshchev (2006) and

Webster et al. (2017), while we choose to present it in full details as it will be gener-
alized along the same lines to the trigonometric counterpart in Sect. 4.3.

Theorem 2.39 I
nωn−1
0 = Ker(�nωn−1

0 ).

Our proof of this result is based on the identification of the reduced truncation ideal
I
nωn−1
0 with the kernel of a certain version of the evaluation homomorphism ev, which
is of independent interest.

Recall the commutative diagram (2.19) of Theorem 2.25. Adjoining extra variables
{zi }ni=1 subject to

∑n
i=1 zi = 0, we obtain the following commutative diagram:

Y�(sln)[z1, . . . , zn]/(∑ zi )
ev−−−−→ U (sln)[z1, . . . , zn]/(∑ zi )

⏐

⏐

�
˜ϒ γ̃

�

⏐

⏐

Y rtt
�
(gln)[z1, . . . , zn]/(

∑

zi )
evrtt−−−−→ U (gln)[z1, . . . , zn]/(

∑

zi )

(2.31)

where U (gln)[z1, . . . , zn]/(
∑

zi ) := U (gln)⊗C[�] C[�][z1, . . . , zn]/(∑ zi ) and the
other three algebras are defined likewise.

Recall the isomorphism Y rtt
�
(gln) � Y rtt

�
(sln) ⊗C[�] ZY rtt

�
(gln) of (2.5), which

after adjoining extra variables {zi }ni=1 subject to
∑n

i=1 zi = 0 gives rise to an alge-
bra isomorphism Y rtt

�
(gln)[z1, . . . , zn]/(

∑

zi ) � Y rtt
�
(sln) ⊗C[�] ZY rtt

�
(gln) ⊗C[�]

C[�][z1, . . . , zn]/(∑ zi ). Let ˜�n(z) denote the quantum determinant of the matrix
zT (z), which is explicitly given by ˜�n(z) = z(z − �)(z − 2�) · · · (z − (n −
1)�) · qdet T (z). According to Proposition 2.10, the center ZY rtt

�
(gln) is a poly-

nomial algebra in {˜dr }∞r=1, where ˜dr are defined via z−n˜�n(z + n−1
2 �) = 1 +

�
∑

r≥1 ˜dr z−r . Let J be the 2-sided ideal of Y rtt
�
(gln)[z1, . . . , zn]/(

∑

zi ) gener-
ated by {˜dr }r>n ∪ {˜dr − �

−1er (−�z1, . . . ,−�zn)}nr=1, where er (•) denotes the
r -th elementary symmetric polynomial. The ideal J is chosen so that z−n˜�n(z +
n−1
2 �) − ∏n

s=1(1 − �zs
z ) ∈ J[[z−1]]. Let π : Y rtt

�
(gln)[z1, . . . , zn]/(

∑

zi ) �
Y rtt

�
(sln)[z1, . . . , zn]/(∑ zi ) be the natural projection along J. Set Xr := evrtt(˜dr )
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(note that Xr = 0 for r > n). Then, the center of U (gln)[z1, . . . , zn]/(
∑

zi ) is
isomorphic to C[�][z1 . . . , zn, X1, . . . , Xn]/(∑ zi ).

Recall the extended enveloping algebra ˜U (sln) of Beilinson and Ginzburg (1999),
defined as the central reduction of U (gln)[z1, . . . , zn]/(

∑

zi ) by the 2-sided ideal
generated by {Xr − �

−1er (−�z1, . . . ,−�zn)}nr=1 (the appearance of sln is due to
the fact that X1 = 0). By abuse of notation, we denote the corresponding projec-
tion U (gln)[z1, . . . , zn]/(

∑

zi ) � ˜U (sln) by π again. We denote the composition

Y rtt
�
(gln)[z1, . . . , zn]/(

∑

zi )
evrtt−−→ U (gln)[z1, . . . , zn]/(

∑

zi )
π−→ ˜U (sln) by evrtt. It

factors through π : Y rtt
�
(gln)[z1, . . . , zn]/(

∑

zi ) → Y rtt
�
(sln)[z1, . . . , zn]/(∑ zi ),

and we denote the corresponding homomorphism Y rtt
�
(sln)[z1, . . . , zn]/(∑ zi ) →

˜U (sln) by evrtt again. The algebra ˜U (sln) can be also realized as the central
reduction of U (sln)[z1, . . . , zn]/(∑ zi ) by the 2-sided ideal generated by {X̄r −
�
−1er (−�z1, . . . ,−�zn)}nr=2, where X̄r = γ̃ (Xr ), see Sect. 2.5. We denote the cor-

responding projection U (sln)[z1, . . . , zn]/(∑ zi ) � ˜U (sln) by π again. Finally, we

denote the compositionY�(sln)[z1, . . . , zn]/(∑ zi )
ev−→ U (sln)[z1, . . . , zn]/(∑ zi )

π−→
˜U (sln) by ev.

Summarizing all the above, we obtain the following commutative diagram:

Y�(sln)[z1, . . . , zn]/
(∑

zi
) ev−−−−→ ˜U (sln)

⏐

⏐

�
˜ϒ γ̃

�

⏐

⏐
�

Y rtt
�
(gln)[z1, . . . , zn]/(

∑

zi )
evrtt−−−−→ ˜U (sln)

⏐

⏐

�
π

∥

∥

∥

Y rtt
�
(sln)[z1, . . . , zn]/(∑ zi )

evrtt−−−−→ ˜U (sln)

(2.32)

We note that the vertical arrows on the right are isomorphisms, as well as the com-
position π ◦ ˜ϒ : Y�(sln)[z1, . . . , zn]/(∑ zi ) ∼−→ Y rtt

�
(sln)[z1, . . . , zn]/(∑ zi ) on the

left.
The commutative diagram (2.32) in turn gives rise to the following commutative

diagram:

Y�(sln)[z1, . . . , zn]/(∑ zi )
ev−−−−→ ˜U(sln)

⏐

⏐

�
˜ϒ γ̃

�

⏐

⏐
�

Yrtt
�
(gln)[z1, . . . , zn]/(

∑

zi )
evrtt−−−−→ ˜U(sln)

⏐

⏐

�
π

∥

∥

∥

Yrtt
�
(sln)[z1, . . . , zn]/(∑ zi )

evrtt−−−−→ ˜U(sln)

(2.33)

Here we use the following notations:
• ˜U(sln) denotes the reduced extended version of U(sln), or alternatively it can be
viewed as a C[�]-subalgebra of ˜U (sln) generated by {�x}x∈sln ∪ {�zi }ni=1.
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• Y�(sln)[z1, . . . , zn]/(∑ zi ) := Y�(sln)⊗C[�]C[�][z1, . . . , zn]/(∑ zi ), or alterna-
tively it can be viewed as a C[�]-subalgebra of Y�(sln)[z1, . . . , zn]/(∑ zi ) generated
by {�E (r)

α∨ , �F (r)
α∨ }r≥0α∨∈�+ ∪ {�h(r)i }r≥01≤i<n ∪ {�zi }ni=1. Following our conventions of

Remark 2.32, we shall denote �zi simply by zi .
• Yrtt

�
(gln)[z1, . . . , zn]/(

∑

zi ) := Yrtt
�
(gln)⊗C[�] C[�][z1, . . . , zn]/(∑ zi ), or alter-

natively it can be viewed as a C[�]-subalgebra of Y rtt
�
(gln)[z1, . . . , zn]/(

∑

zi )

generated by {�t (r)i j }r≥11≤i, j≤n ∪ {�zi }ni=1. Here we denote �zi simply by zi as above.

Remark 2.40 Note that ˜ϒ in (2.33) is well-defined, due to Proposition 2.21 (see also
our discussion in Appendix A.6).

Theorem 2.41 I
nωn−1
0 = Ker

(

ev : Y�(sln)[z1, . . . , zn]/(∑ zi )→ ˜U(sln)
)

.

Proof In the particular case μ = 0, λ = nωn−1, we note that Z1(z) = · · · =
Zn−2(z) = 1, Zn−1(z) = ∏n

s=1(z − �/2 − zs) and ak = k (1 ≤ k ≤ n − 1). Let
us introduce extra currents A0(z), An(z) via A0(z) := 1, An(z) := ∏n

s=1(1− zs/z).
Then, formula (2.28) relating the generating series {Hk(z)}n−1k=1 to {Ak(z)}n−1k=1 can be
uniformly written as

Hk(z) = (z − �

2 )
2k

zk(z − �)k
· Ak−1(z − �

2 )Ak+1(z − �

2 )

Ak(z)Ak(z − �)
for any 1 ≤ k ≤ n − 1. (2.34)

Let �k(z) denote the k-th principal quantum minor t1...k1...k (z) of T (z), see Defini-
tion 2.8. According to Molev (2007), the following equality holds:

ϒ(Hk(z)) = �k−1(z + k−1
2 �)�k+1(z + k+1

2 �)

�k(z + k−1
2 �)�k(z + k+1

2 �)
.

This immediately implies

˜ϒ(Hk(z)) = �k−1(z + k−3
2 �)�k+1(z + k−1

2 �)

�k(z + k−3
2 �)�k(z + k−1

2 �)
.

Generalizing ˜�n(z), define ˜�k(z) as the k-th principal quantum minor of the matrix
zT (z). Explicitly, we have ˜�k(z) = z(z− �) · · · (z− (k− 1)�) ·�k(z). Then, we get

˜ϒ(Hk(z)) =
˜�k−1(z + k−3

2 �)˜�k+1(z + k−1
2 �)

˜�k(z + k−3
2 �)˜�k(z + k−1

2 �)
.

Finally, define �̂k(z) := z−k˜�k(z + k−1
2 �). Then, the above formula reads as

˜ϒ(Hk(z)) = (z − �

2 )
2k

zk(z − �)k
· �̂k−1(z − �

2 )�̂k+1(z − �

2 )

�̂k(z)�̂k(z − �)
.
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By abuse of notation, let us denote the image π(�̂k(z)) by �̂k(z) again. Note that
�̂n(z) = An(z), due to our definition of π . Combining this with (2.34), we obtain the
following result:

Corollary 2.42 Under the isomorphism

π ◦ ˜ϒ : Y�(sln)[z1, . . . , zn]/(z1 + · · · + zn) ∼−→Yrtt
�
(sln)[z1, . . . , zn]/(z1 + · · · + zn),

the generating series Ak(z) are mapped into �̂k(z), that is, π ◦ ˜ϒ(Ak(z)) = �̂k(z).

Define T ∈ U (sln) ⊗ End(Cn) via T := (γ̃ ⊗ 1)(T ) with T = ∑i, j Ei j ⊗ Ei j ∈
U (gln) ⊗ End(Cn) as in Remark 2.13(b). Set T(z) := z In + �T. Denote the k-th

principal quantum minor of T(z) by T
1...k
1...k(z). The following is clear:

evrtt(�̂k(z)) = z−kT1...k1...k

(

z + k − 1

2
�

)

. (2.35)

Combining Corollary 2.42 with (2.35) and the commutativity of the diagram (2.33),
we get

Corollary 2.43 ev(A(r)
i ) = 0 for any 1 ≤ i ≤ n − 1, r > i . In particular, Inωn−1

0 ⊆
Ker(ev).

The opposite inclusion I
nωn−1
0 ⊇ Ker(ev) follows from Theorem 2.17 by noticing

that �̂1(z) = t11(z) and so (π ◦ ˜ϒ)−1(t (r)11 ) = A(r)
1 ∈ I

nωn−1
0 for r > 1.

This completes our proof of Theorem 2.41. ��
Now we are ready to present the proof of Theorem 2.39.

Proof of Theorem 2.39 Consider a subtorus T ′W = {g ∈ TW | det(g) = 1} of TW ,

and define A� := H
(GL(V )×T ′W )O�C

×
• (RGL(V ),N), so that A� � A�/(

∑

zi ). After
imposing

∑

zi = 0, the homomorphism �
nωn−1
0 : Y�(sln)[z1, . . . , zn]/(∑ zi ) →

˜A�/(
∑

zi ) is a composition of the surjective homomorphism �
nωn−1
0 : Y�(sln)[z1,

. . . , zn]/(∑ zi ) → A� (see Proposition 2.36) and an embedding z∗(ι∗)−1 : A� ↪→
˜A�/(

∑

zi ), so that Ker(�nωn−1
0 ) = Ker(�nωn−1

0 ). The homomorphism �
nωn−1
0 fac-

tors through φ : ˜U(sln) � A� (due to Theorem 2.41), and it remains to prove the
injectivity of φ. Note that φ is compatible with the gradings, and it is known to be an
isomorphism modulo the ideal generated by �, z1, . . . , zn , see e.g. (Braverman et al.
2017, Theorem 4.12): namely, both sides are isomorphic to the ring of functions on
the nilpotent cone N ⊂ sln . To prove the injectivity of φ it suffices to identify the
graded characters of the algebras in question. But both graded characters are equal to
char C[N] · char (C[�, z1, . . . , zn]/(∑ zi )

)

.
This completes our proof of Theorem 2.39. ��

Corollary 2.44 The reduced quantized Coulomb branchA� is explicitly given byA� �
˜U(sln).
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3 QuantumAlgebras

3.1 The RTT Integral Form of Quantum gln

Let v be a formal variable. Consider the R-matrix R = Rv given by

R = v−1
n
∑

i=1
Eii ⊗ Eii +

∑

i �= j

Eii ⊗ E j j + (v−1 − v)
∑

i> j

Ei j ⊗ E ji (3.1)

which is an element of C[v, v−1]⊗C (End C
n)⊗2. It satisfies the famous Yang-Baxter

equation

R12R13R23 = R23R13R12,

viewed as the equality in C[v, v−1] ⊗C (End C
n)⊗3.

Following Faddeev et al. (1989), define the RTT integral form of quantum gln ,
denotedbyUrtt

v (gln), to be the associativeC[v, v−1]-algebra generatedby {t+i j , t−i j }ni, j=1
with the following defining relations:

t±i i t
∓
i i = 1 for 1 ≤ i ≤ n,

t+i j = t−j i = 0 for 1 ≤ j < i ≤ n,

RT+1 T+2 = T+2 T+1 R, RT−1 T−2 = T−2 T−1 R, RT−1 T+2 = T+2 T−1 R.

(3.2)

Here T± are the elements of the algebra Urtt
v (gln) ⊗ End C

n , defined by T± =
∑

i, j t
±
i j ⊗ Ei j . Thus, the last three defining relations of (3.2) should be viewed as

equalities in Urtt
v (gln)⊗ (End C

n)⊗2.
For completeness of the picture, define ˜R ∈ C[v, v−1] ⊗C (End C

n)⊗2 via3

˜R = v

n
∑

i=1
Eii ⊗ Eii +

∑

i �= j

Eii ⊗ E j j + (v − v−1)
∑

i< j

Ei j ⊗ E ji . (3.3)

Lemma 3.1 The following equalities hold:

˜RT+1 T+2 = T+2 T+1 ˜R, ˜RT−1 T−2 = T−2 T−1 ˜R, ˜RT+1 T−2 = T−2 T+1 ˜R. (3.4)

Proof Multiplying the last equality of (3.2) by R−1 on the left and on the right, and
conjugating further by the permutation operator P =∑i, j Ei j ⊗ E ji ∈ (End C

n)⊗2,
we get

(PR−1P−1)T+1 T−2 = T−2 T+1 (PR−1P−1).

3 Let us note right away that this ˜R is denoted by R in Ding and Frenkel (1993, (2.2)) and Molev (2007,
§1.15.1).
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Since ˜R = PR−1P−1 (straightforward verification), we obtain the last equality
of (3.4).

The other two equalities of (3.4) are proved analogously. ��
Note that specializing v to 1, i.e. taking a quotient by (v− 1), Rv specializes to the

identity operator I =∑i, j Eii ⊗ E j j ∈ (End C
n)⊗2, hence, the specializations of the

generators t±i j pairwise commute. In other words, we get the following isomorphism:

Urtt
v (gln)/(v − 1)�C[t+i j , t−j i ]1≤i≤ j≤n/

(

〈

t±i i t
∓
i i − 1

〉n
i=1
)

. (3.5)

We also define the C(v)-counterpart U rtt
v (gln) := Urtt

v (gln)⊗C[v,v−1] C(v).

3.2 The RTT Integral Form of Quantum Affine gln

Consider the trigonometric R-matrix Rtrig(z, w) = Rv
trig(z, w) given by

Rtrig(z, w) := (vz − v−1w)

n
∑

i=1
Eii ⊗ Eii + (z − w)

∑

i �= j

Eii ⊗ E j j

+(v − v−1)z
∑

i< j

Ei j ⊗ E ji + (v − v−1)w
∑

i> j

Ei j ⊗ E ji (3.6)

which is an element of C[v, v−1]⊗C (End C
n)⊗2, cf. (Ding and Frenkel 1993, (3.7)).

It satisfies the famous Yang-Baxter equation with a spectral parameter:

Rtrig;12(u, v)Rtrig;13(u, w)Rtrig;23(v,w) = Rtrig;23(v,w)Rtrig;13(u, w)Rtrig;12(u, v).
(3.7)

Following Faddeev et al. (1989), Ding and Frenkel (1993), define the RTT integral
form of quantum loop gln , denoted by Urtt

v (Lgln), to be the associative C[v, v−1]-
algebra generated by {t±i j [±r ]}r∈N1≤i, j≤n with the following defining relations:

t±i i [0]t∓i i [0] = 1 for 1 ≤ i ≤ n,

t+i j [0] = t−j i [0] = 0 for 1 ≤ j < i ≤ n,

Rtrig(z, w)T+1 (z)T+2 (w) = T+2 (w)T+1 (z)Rtrig(z, w),

Rtrig(z, w)T−1 (z)T−2 (w) = T−2 (w)T−1 (z)Rtrig(z, w),

Rtrig(z, w)T−1 (z)T+2 (w) = T+2 (w)T−1 (z)Rtrig(z, w).

(3.8)

Here T±(z) are the series in z∓1 with coefficients in the algebra Urtt
v (Lgln)⊗End C

n ,
defined by T±(z) = ∑i, j t

±
i j (z) ⊗ Ei j with t±i j (z) :=

∑

r≥0 t
±
i j [±r ]z∓r . Thus, the

last three relations should be viewed as equalities of series in z, w with coefficients in
Urtt
v (Lgln)⊗ (End C

n)⊗2.
In contrast to Lemma 3.1, we have the following result (cf. (Gow and Molev 2010,

(2.45))):
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Lemma 3.2 For any ε, ε′ ∈ {±}, the following holds:

Rtrig(z, w)T ε
1 (z)T

ε′
2 (w) = T ε′

2 (w)T ε
1 (z)Rtrig(z, w). (3.9)

Proof Multiplying the last equality of (3.8) by R−1trig(z, w) on the left and on the
right, and conjugating further by the permutation operator P = ∑i, j Ei j ⊗ E ji ∈
(End C

n)⊗2, we get

(PR−1trig(z, w)P−1)T+1 (w)T−2 (z) = T−2 (z)T+1 (w)(PR−1trig(z, w)P−1).

Combining this with the equality

Rtrig(z, w) = (vz − v−1w)(vw − v−1z) · PR−1trig(w, z)P−1,

we derive the validity of (3.9) for the only remaining case ε = +, ε′ = −. ��
Note that specializing v to 1, i.e. taking a quotient by (v−1), Rv

trig(z, w) specializes

to (z − w)I = (z − w)
∑

i, j Eii ⊗ E j j ∈ (End C
n)⊗2, hence, the specializations

of the generators t±i j [±r ] pairwise commute. In other words, we get the following
isomorphism:

Urtt
v (Lgln)/(v−1) � C

[

t±j i [±r ]
]r≥0
1≤ j,i≤n /

(

〈t+i j [0], t−j i [0], t±kk[0]t∓kk[0] − 1〉1≤k≤n1≤ j<i≤n
)

.

(3.10)
We also define the C(v)-counterpart U rtt

v (Lgln) := Urtt
v (Lgln)⊗C[v,v−1] C(v).

3.3 The RTT Evaluation Homomorphism evrtt

Recall the following two standard relations between Urtt
v (Lgln) and Urtt

v (gln),
cf. Lemma 2.12.

Lemma 3.3 The assignment t±i j �→ t±i j [0] gives rise to aC[v, v−1]-algebra embedding

ι : Urtt
v (gln) ↪→ Urtt

v (Lgln).

Proof The above assignment is compatible with defining relations (3.2), hence, it gives
rise to a C[v, v−1]-algebra homomorphism ι : Urtt

v (gln)→ Urtt
v (Lgln). The injectivity

of ι follows from the PBW theorems for Urtt
v (gln) and Urtt

v (Lgln) of (Gow and Molev
2010, Proposition 2.1, Theorem 2.11). ��
Lemma 3.4 For a ∈ C

×, the assignment T+(z) �→ T+ − aT−z−1, T−(z) �→ T− −
a−1T+z gives rise to a C[v, v−1]-algebra epimorphism

evrtta : Urtt
v (Lgln) � Urtt

v (gln).
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Proof The above assignment is compatible with defining relations (3.8), due
to (3.2), (3.4), and the equality Rtrig(z, w) = (z − w)R + (v − v−1)zP relating
the two R-matrices, cf. (Hopkins 2007, Lemma 1.11). The resulting homomorphism
Urtt
v (Lgln)→ Urtt

v (gln) is clearly surjective. ��
We will denote the RTT evaluation homomorphism evrtt1 simply by evrtt.

Remark 3.5 (a) For any a ∈ C
×, the homomorphism evrtta equals the composition of

evrtt and the automorphism of Urtt
v (Lgln) given by T±(z) �→ T±(a−1z).

(b) The composition evrtta ◦ ι is the identity endomorphism of Urtt
v (gln) for any a ∈ C

×.

The PBW theorems for Urtt
v (gln) and Urtt

v (Lgln) of (Gow and Molev 2010, Propo-
sition 2.1, Theorem 2.11) imply the following simple result, cf. Lemma 2.14:

Lemma 3.6 The kernel of evrtt is the2-sided ideal generated by the following elements:

{

t+i j [r ], t+i i [s], t+j i [s], t−j i [−r ], t−i i [−s], t−i j [−s]
}
r≥1
s≥2
i< j

⋃
{

t+j i [1] + t−j i [0], t−i j [−1] + t+i j [0]
}

i≤ j
. (3.11)

However, we will need an alternative description of this kernel Ker(evrtt), cf. The-
orem 2.15:

Theorem 3.7 Ker(evrtt) = Urtt
v (Lgln) ∩ I , where I is the 2-sided ideal of U rtt

v (Lgln)
generated by {t+11[s], t−11[−s]}s≥2 ∪ {t+11[1] + t−11[0], t−11[−1] + t+11[0]}.
Proof Note that the ideal I is in the kernel ofC(v)-extended evaluation homomorphism
evrtt : U rtt

v (Lgln) → U rtt
v (gln), hence, the inclusion Urtt

v (Lgln) ∩ I ⊂ Ker(evrtt). To
prove the opposite inclusion Ker(evrtt) ⊂ Urtt

v (Lgln) ∩ I , it suffices to verify that all
elements of (3.11) belong to I . We write x ≡

I
y if x − y ∈ I .

• Verification of t+1 j [r ] ∈ I for all j > 1, r ≥ 1.
Comparing the matrix coefficients 〈v1⊗v1| · · · |v1⊗v j 〉 of both sides of the equal-

ity (3.9) with ε = ε′ = +, we get (vz− v−1w)t+11(z)t
+
1 j (w) = (z−w)t+1 j (w)t+11(z)+

(v − v−1)wt+11(w)t+1 j (z). Evaluating the coefficients of z−rw1 in both sides of this
equality, we find

−v−1t+11[r ]t+1 j [0] = −t+1 j [0]t+11[r ] + (v − v−1)t+11[0]t+1 j [r ]

�⇒ t+1 j [r ] =
t−11[0] · [t+1 j [0], t+11[r ]]v−1

v − v−1
.

Weclaim that [t+1 j [0], t+11[r ]]v−1 ∈ I . This is clear for r > 1 as t+11[r ] ∈ I . For r = 1,we

note that [t+1 j [0], t+11[1]]v−1 ≡I −[t
+
1 j [0], t−11[0]]v−1 = −(t+11[0])−1 · [t+11[0], t+1 j [0]]v−1 ·

(t+11[0])−1. Finally, comparing the coefficients of z1w0 (instead of z−rw1) in the above
equality, we immediately find [t+11[0], t+1 j [0]]v−1 = 0. This completes our proof of the

remaining inclusion t+1 j [1] ∈ I .
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• Verification of t+j1[s] ∈ I for all j > 1, s ≥ 2.
Comparing the matrix coefficients 〈v1⊗v j | · · · |v1⊗v1〉 of both sides of the equal-

ity (3.9) with ε = ε′ = +, we get (z − w)t+11(z)t
+
j1(w) + (v − v−1)zt+j1(z)t

+
11(w) =

(vz − v−1w)t+j1(w)t+11(z). Evaluating the coefficients of z−rw0 in both sides of this
equality, we find

−t+11[r ]t+j1[1] + (v − v−1)t+j1[r + 1]t+11[0] = −v−1t+j1[1]t+11[r ]

⇒ t+j1[r + 1] = [t
+
11[r ], t+j1[1]]v−1 · t−11[0]

v − v−1
.

We claim that [t+11[r ], t+j1[1]]v−1 ∈ I for r = s − 1 ≥ 1. This is clear for r > 1

as t+11[r ] ∈ I . For r = 1, we note that [t+11[1], t+j1[1]]v−1 ≡I −[t
−
11[0], t+j1[1]]v−1 =

−(t+11[0])−1 ·[t+j1[1], t+11[0]]v−1 ·(t+11[0])−1. Finally, comparing the coefficients of z0w0

(instead of z−rw0) in the above equality, we immediately find [t+j1[1], t+11[0]]v−1 = 0.

This implies the remaining inclusion t+j1[2] ∈ I .

• Verification of t+22[s] ∈ I for all s ≥ 2.
Comparing the matrix coefficients 〈v2⊗v1| · · · |v1⊗v2〉 of both sides of the equal-

ity (3.9) with ε = ε′ = +, we get

(z − w)t+21(z)t
+
12(w)+ (v − v−1)wt+11(z)t

+
22(w)

= (z − w)t+12(w)t+21(z)+ (v − v−1)wt+11(w)t+22(z).

Evaluating the coefficients of z−sw1 in both sides of this equality, we find

−t+21[s]t+12[0] + (v − v−1)t+11[s]t+22[0]
= −t+12[0]t+21[s] + (v − v−1)t+11[0]t+22[s].

Since t+11[s], t+21[s] ∈ I for s ≥ 2 by above, we immediately get the inclusion t+22[s] ∈
I .
• Verification of t+22[1] + t−22[0] ∈ I .

Comparing the matrix coefficients 〈v2⊗v1| · · · |v1⊗v2〉 of both sides of the equal-
ity (3.9) with ε = −, ε′ = +, we get

(z − w)t−21(z)t
+
12(w)+ (v − v−1)wt−11(z)t

+
22(w)

= (z − w)t+12(w)t−21(z)+ (v − v−1)wt+11(w)t−22(z).

Evaluating the coefficients of z0w0 in both sides of this equality, we find

−t−21[0]t+12[1] + (v − v−1)t−11[0]t+22[1]
= −t+12[1]t−21[0] + (v − v−1)t+11[1]t−22[0].

Since t+12[1], t+11[1]+ t−11[0] ∈ I , we immediately get the inclusion t+22[1]+ t−22[0] ∈ I .
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• Verification of t+j1[1] + t−j1[0] ∈ I for all j > 1.
Comparing the matrix coefficients 〈v1⊗v j | · · · |v1⊗v1〉 of both sides of the equal-

ity (3.9) with ε = +, ε′ = −, we get

(z − w)t+11(z)t
−
j1(w)+ (v − v−1)zt+j1(z)t

−
11(w) = (vz − v−1w)t−j1(w)t+11(z).

Evaluating the coefficients of z0w0 in both sides of this equality, we find

t+11[1]t−j1[0] + (v − v−1)t+j1[1]t−11[0] = vt−j1[0]t+11[1].

Since t+11[1] + t−11[0] ∈ I , we get t+j1[1] ≡I
[t−11[0],t−j1[0]]v ·t+11[0]

v−v−1 . On the other hand,

comparing the matrix coefficients 〈v1 ⊗ v j | · · · |v1 ⊗ v1〉 of both sides of the equal-
ity (3.9) with ε = ε′ = −, we get (z − w)t−11(z)t

−
j1(w) + (v − v−1)zt−j1(z)t

−
11(w) =

(vz − v−1w)t−j1(w)t−11(z). Evaluating the coefficients of z1w0 in both sides of this
equality, we find

t−11[0]t−j1[0] + (v − v−1)t−j1[0]t−11[0] = vt−j1[0]t−11[0]

�⇒ t−j1[0] = −
[t−11[0], t−j1[0]]v · t+11[0]

v − v−1
.

Hence, the inclusion t+j1[1] + t−j1[0] ∈ I .
One can now apply the above five verifications with all lower indices increased

by 1 to prove the inclusions t+2 j [r ], t+j2[s], t+33[s], t+33[1] + t−33[0], t+j2[1] + t−j2[0] ∈ I
for any j > 2, r ≥ 1, s ≥ 2. Proceeding further step by step, we obtain
{t+i j [r ], t+i i [s], t+j i [s]}r≥1,s≥2i< j ∪ {t+j i [1] + t−j i [0]}i≤ j ⊂ I . The proof of the remaining

inclusion {t−j i [−r ], t−i i [−s], t−i j [−s]}r≥1,s≥2i< j ∪ {t−i j [−1] + t+i j [0]}i≤ j ⊂ I is analogous
and we leave details to the interested reader.

This completes our proof of Theorem 3.7. ��

3.4 The Drinfeld–Jimbo Quantum gln and sln

Following Jimbo (1986), define the quantum gln , denoted by Uv(gln), to be the asso-
ciative C(v)-algebra generated by {Ei , Fi , t j , t

−1
j }1≤ j≤n

1≤i<n with the following defining
relations:

t j t
−1
j = t−1j t j = 1, t j t j ′ = t j ′ t j ,

t j Ei = v−δ j i+δ j,i+1Ei t j , t j Fi = vδ j i−δ j,i+1Fi t j ,

Ei Fi ′ − Fi ′Ei = δi i ′
Ki − K−1i

v − v−1
,

Ei Ei ′ = Ei ′Ei and Fi Fi ′ = Fi ′Fi if cii ′ = 0,

E2
i Ei ′ − (v + v−1)Ei Ei ′Ei + Ei ′E

2
i = 0 if cii ′ = −1,

F2
i Fi ′ − (v + v−1)Fi Fi ′Fi + Fi ′F

2
i = 0 if cii ′ = −1,

(3.12)
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where Ki := t−1i ti+1 and (cii ′)
n−1
i,i ′=1 denotes the Cartan matrix of sln .

Remark 3.8 We note that our generators Ei , Fi , t
±1
j correspond to the generators

fi , ei , v±Hj of Ding and Frenkel (1993, Definition 2.3), respectively.

The C(v)-subalgebra of Uv(gln) generated by {Ei , Fi , K
±1
i }n−1i=1 is isomorphic to

the Drinfeld-Jimbo quantum sln , denoted by Uv(sln), see Drinfeld (1985), Jimbo
(1986).

The following well-known result was conjectured in Faddeev et al. (1989) and
proved in Ding and Frenkel (1993, Theorem 2.1):

Theorem 3.9 (Ding and Frenkel 1993) There is a unique C(v)-algebra isomorphism

ϒ : Uv(gln)
∼−→U rtt

v (gln)

defined by

t±1j �→ t±j j , Ei �→
t−i i t
+
i,i+1

v − v−1
, Fi �→

t−i+1,i t
+
i i

v−1 − v
. (3.13)

As an immediate corollary, Urtt
v (gln) is realized as a C[v, v−1]-subalgebra

of Uv(gln). To describe this subalgebra explicitly, define the elements {E j,i+1,
Fi+1, j }1≤ j≤i<n of Uv(gln) via

E j,i+1 := (v − v−1)[Ei , · · · , [E j+1, E j ]v−1 · · · ]v−1 ,
Fi+1, j := (v−1 − v)[· · · [Fj , Fj+1]v, · · · , Fi ]v,

(3.14)

where [a, b]x := ab − x · ba. In particular, Ei,i+1 = (v − v−1)Ei and Fi+1,i =
(v−1 − v)Fi .

Definition 3.10 (a) Let Uv(gln) be the C[v, v−1]-subalgebra of Uv(gln) generated by

{E j,i+1, Fi+1, j }1≤ j≤i<n ∪ {t±1j }1≤ j≤n . (3.15)

(b) Let Uv(sln) be the C[v, v−1]-subalgebra of Uv(sln) generated by

{E j,i+1, Fi+1, j }1≤ j≤i<n ∪ {K±1i }1≤i<n . (3.16)

Proposition 3.11 Uv(gln) = ϒ−1(Urtt
v (gln)).

This result follows immediately from Proposition 3.12 and Corollary 3.13 below.
To state those, define the elements {ẽ j,i+1, f̃i+1, j }1≤ j≤i<n of Urtt

v (gln) via

ẽ j,i+1 := t−j j t
+
j,i+1, f̃i+1, j := t−i+1, j t

+
j j . (3.17)
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Proposition 3.12 For any 1 ≤ j < i < n, the following equalities hold in U rtt
v (gln):

ẽ j,i+1 = [ẽi,i+1, ẽ j i ]v−1
v − v−1

, f̃i+1, j = [ f̃i j , f̃i+1,i ]v
v−1 − v

.

The proof of this result is analogous to that of Proposition 3.21 below (and actually
it can be deduced from the latter by using the embedding ι : Urtt

v (gln) ↪→ Urtt
v (Lgln)

of Lemma 3.3).

Corollary 3.13 E j,i+1 =ϒ−1(ẽ j,i+1), Fi+1, j = ϒ−1( f̃i+1, j ) for any 1≤ j ≤ i < n.

Proof For a fixed 1 ≤ i < n, this follows by a decreasing induction in j . The base of the
induction j = i is due to (3.13),while the induction step follows fromProposition 3.12.

��
We order {E j,i+1}1≤ j≤i<n in the following way: E j,i+1 ≤ E j ′,i ′+1 if j < j ′,

or j = j ′, i ≤ i ′. Likewise, we order {Fi+1, j }1≤ j≤i<n so that Fi+1, j ≥ Fi ′+1, j ′
if j < j ′, or j = j ′, i ≤ i ′. Finally, we choose any total ordering of the Cartan
generators {t j }1≤ j≤n of Uv(gln) (or {Ki }1≤i<n of Uv(sln)). Having specified these
three total orderings, elements F · H · E with F, E, H being ordered monomials in
{Fi+1, j }1≤ j≤i<n , {E j,i+1}1≤ j≤i<n , and the Cartan generators {t±1j }1≤ j≤n of Uv(gln)

(or {K±1i }1≤i<n of Uv(sln)), respectively, are called the ordered PBW monomials (in
the corresponding generators). The proof of the following result is analogous to that of
Theorem 3.24 below and is based on Proposition 3.11, we leave details to the interested
reader.

Theorem 3.14 (a) The ordered PBWmonomials in {Fi+1, j , t±1k , E j,i+1}1≤k≤n1≤ j≤i<n form

a basis of a free C[v, v−1]-module Uv(gln).
(b) The ordered PBW monomials in {Fi+1, j , K±1k , E j,i+1}1≤k<n

1≤ j≤i<n form a basis of a

free C[v, v−1]-module Uv(sln).

Remark 3.15 We note that Uv(gln) � Urtt
v (gln) quantizes the algebra of functions on

the big Bruhat cell in GL(n), that is Uv(gln)/(v− 1) � C[N−T N+], due to (3.5) and
the PBW theorem of (Gow and Molev 2010, Proposition 2.1). Here N− (resp. N+)
denotes the subgroup of strictly lower (resp. strictly upper) triangular matrices, and T
denotes the diagonal torus of GL(n).

Remark 3.16 For a complete picture, let us recall in which sense Uv(gln) is usually
treated as a quantization of the universal enveloping algebra U (gln). Let Uv(gln)
be the C[v, v−1]-subalgebra of Uv(gln) generated by {t±1j }nj=1 and the divided

powers {E (m)
i , F (m)

i }m≥11≤i<n . According to Lusztig (1990b, Proposition 2.3(a)) (cf.
Jimbo (1986)), the subalgebra U<

v (gln) (resp. U>
v (gln)) of Uv(gln) generated by

{F (m)
i }m≥11≤i<n (resp. {E (m)

i }m≥11≤i<n) is a free C[v, v−1]-module with a basis consist-
ing of the ordered products of the divided powers of the root generators F ′i+1, j :=
[· · · [Fj , Fj+1]v, . . . , Fi ]v (resp. E ′j,i+1 := [Ei , . . . , [E j+1, E j ]v−1 . . . ]v−1 ). Spe-
cializing v to 1, we have t2j = 1 in a C-algebra U1(gln) := Uv(gln)/(v − 1).
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Specializing further t j to 1, we get a C-algebra isomorphism U1(gln)/(〈t j −1〉nj=1) �
U (gln), under which E ′j,i+1 �→ (−1)i− j E j,i+1, F ′i+1, j �→ (−1)i− j Ei+1, j .

3.5 The Drinfeld Quantum Affine gln and sln

Following Drinfeld (1988), define the quantum loop gln , denoted by Uv(Lgln), to be
the associativeC(v)-algebra generated by {ei,r , fi,r , ϕ+j,s, ϕ−j,−s}r∈Z,s∈N

1≤i<n,1≤ j≤n with the
following defining relations (cf. (Ding and Frenkel 1993, Definition 3.1)):

[ϕε
j (z), ϕ

ε′
j ′ (w)] = 0, ϕ±j,0 · ϕ∓j,0 = 1,

(z − vcii ′w)ei (z)ei ′(w) = (vcii ′ z − w)ei ′(w)ei (z),

(vcii ′ z − w) fi (z) fi ′(w) = (z − vcii ′w) fi ′(w) fi (z),

(vz − v−1w)δ j i (z − vw)δ j,i+1ϕε
j (z)ei (w) = (z − w)δ j i (vz − w)δ j,i+1ei (w)ϕε

j (z),

(z − w)δ j i (vz − w)δ j,i+1ϕε
j (z) fi (w) = (vz − v−1w)δ j i (z − vw)δ j,i+1 fi (w)ϕε

j (z),

[ei (z), fi ′(w)] = δi i ′

v − v−1
δ
( z

w

)

(

ψ+i (z)− ψ−i (z)
)

,

ei (z)ei ′(w) = ei ′(w)ei (z) and fi (z) fi ′(w) = fi ′(w) fi (z) if cii ′ = 0,

[ei (z1), [ei (z2), ei ′(w)]v−1]v + [ei (z2), [ei (z1), ei ′(w)]v−1 ]v = 0 if cii ′ = −1,
[ fi (z1), [ fi (z2), fi ′(w)]v−1 ]v + [ fi (z2), [ fi (z1), fi ′(w)]v−1 ]v = 0 if cii ′ = −1,

(3.18)
where the generating series are defined as follows:

ei (z) :=
∑

r∈Z
ei,r z

−r , fi (z) :=
∑

r∈Z
fi,r z

−r , ϕ±i (z) :=
∑

s≥0
ϕ±i,±s z

∓s , δ(z) :=
∑

r∈Z
zr ,

and ψ±i (z) = ∑s≥0 ψ
±
i,±s z∓s is determined via ψ±i (z) := (ϕ±i (z))−1ϕ±i+1(v−1z).

We will also need Drinfeld half-currents e±i (z), f ±i (z) defined via

e+i (z) :=
∑

r≥0
ei,r z

−r , e−i (z) := −
∑

r<0

ei,r z
−r , f +i (z) :=

∑

r>0

fi,r z
−r , f −i (z) := −

∑

r≤0
fi,r z

−r ,

so that ei (z) = e+i (z)− e−i (z), fi (z) = f +i (z)− f −i (z).

TheC(v)-subalgebra ofUv(Lgln) generated by {ei,r , fi,r , ψ±i,±s}r∈Z,s∈N
1≤i<n is isomor-

phic to the quantum loop sln , denoted by Uv(Lsln). To be more precise, this recovers
the new Drinfeld realization of Uv(Lsln), see Drinfeld (1988). The latter also admits
the original Drinfeld-Jimbo realization with the generators {Ei , Fi , K

±1
i }i∈[n] (here[n] := {0, 1, . . . , n − 1} viewed as mod n residues) and with the defining relations

exactly as in (3.12), but with (cii ′)i,i ′∈[n] denoting the Cartan matrix of̂sln . We prefer
to keep the same notationUv(Lsln) for these two realizations. However, we will need
an explicit identification which expresses the Drinfeld-Jimbo generators in terms of
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the “loop” generators (featuring in the new Drinfeld realization), see Drinfeld (1988),
Jing (1998):

Ei �→ ei,0, Fi �→ fi,0, K±1i �→ ψ±i,0 for i ∈ [n]\{0},
K±10 �→ ψ∓1,0 · · ·ψ∓n−1,0,
E0 �→ (−v)−n+2 · [· · · [ f1,1, f2,0]v, · · · , fn−1,0]v · ψ−1,0 · · ·ψ−n−1,0,
F0 �→ (−v)n · [en−1,0, · · · , [e2,0, e1,−1]v−1 · · · ]v−1 · ψ+1,0 · · ·ψ+n−1,0.

(3.19)

The relation between the algebras Uv(Lgln) and U rtt
v (Lgln) was conjectured in

Faddeev et al. (1989) and proved in Ding and Frenkel (1993, Main Theorem). To state
the result, consider the Gauss decomposition of the matrices T±(z) of Sect. 3.2:

T±(z) = ˜F±(z) · ˜G±(z) · ˜E±(z).

Here ˜F±(z), ˜G±(z), ˜E±(z) are the series in z∓1 with coefficients in the algebra
Urtt
v (Lgln)⊗ End C

n which are of the form

˜F±(z) =
∑

i

Eii +
∑

i> j

f̃ ±i j (z) · Ei j , ˜G
±(z) =

∑

i

g̃±i (z) · Eii ,

˜E±(z) =
∑

i

Eii +
∑

i< j

ẽ±i j (z) · Ei j .

Theorem 3.17 (Ding and Frenkel 1993) There is a uniqueC(v)-algebra isomorphism

ϒ : Uv(Lgln)
∼−→U rtt

v (Lgln)

defined by

e±i (z) �→ ẽ±i,i+1(vi z)
v − v−1

, f ±i (z) �→ f̃ ±i+1,i (vi z)
v − v−1

, ϕ±j (z) �→ g̃±j (v
j z). (3.20)

Remark 3.18 To compare with the notations of Ding and Frenkel (1993), we
note that our generating series ei (z), fi (z), ϕ

±
j (z) of Uv(Lgln) correspond to

X−i (vi z)
v−1−v ,

X+i (vi z)
v−1−v , k∓j (v j z) of Ding and Frenkel (1993, Definition 3.1), respectively.

Likewise, our matrices T+(z) and T−(z) of Sect. 3.2 correspond to L−(z) and L+(z)
of Ding and Frenkel (1993, Definition 3.2), respectively. After these identifications,
we see that Theorem 3.17 is just Ding and Frenkel (1993, Main Theorem) (for the
trivial central charge).

As an immediate corollary, Urtt
v (Lgln) is realized as a C[v, v−1]-subalgebra

of Uv(Lgln). To describe this subalgebra explicitly, define the elements {E (r)
j,i+1,
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F (r)
i+1, j }r∈Z1≤ j≤i<n of Uv(Lgln) via

E (r)
j,i+1 := (v − v−1)[ei,0, · · · , [e j+1,0, e j,r ]v−1 · · · ]v−1 ,

F (r)
i+1, j := (v−1 − v)[· · · [ f j,r , f j+1,0]v, · · · , fi,0]v.

(3.21)

These elementswith r = 0,±1 played an important role in Finkelberg andTsymbaliuk
(2017, Section 10, Appendix G). We also note that E (r)

i,i+1 = (v − v−1)ei,r and

F (r)
i+1,i = (v−1 − v) fi,r .

Definition 3.19 (a) Let Uv(Lgln) be the C[v, v−1]-subalgebra ofUv(Lgln) generated
by

{E (r)
j,i+1, F

(r)
i+1, j }r∈Z1≤ j≤i<n ∪ {ϕ±j,±s}s∈N1≤ j≤n . (3.22)

(b) Let Uv(Lsln) be the C[v, v−1]-subalgebra of Uv(Lsln) generated by

{E (r)
j,i+1, F

(r)
i+1, j }r∈Z1≤ j≤i<n ∪ {ψ±i,±s}s∈N1≤i<n . (3.23)

The following result can be viewed as a trigonometric counterpart of Proposi-
tion 2.21:

Proposition 3.20 Uv(Lgln) = ϒ−1(Urtt
v (Lgln)).

The proof of Proposition 3.20 follows immediately from Proposition 3.21 and
Corollary 3.23 below. To state those, let us express the matrix coefficients of
˜F±(z), ˜G±(z), ˜E±(z) as series in z∓1 with coefficients in Urtt

v (Lgln):

ẽ+i j (z) =
∑

r≥0
ẽ(r)i j z

−r , ẽ−i j (z) =
∑

r<0

ẽ(r)i j z
−r ,

f̃ +i j (z) =
∑

r>0

f̃ (r)i j z−r , f̃ −i j (z) =
∑

r≤0
f̃ (r)i j z−r ,

g̃±i (z) = g̃±i +
∑

r>0

g̃(±r)i z∓r .

The following result generalizes (Finkelberg and Tsymbaliuk 2017, Proposi-
tion G.9):

Proposition 3.21 For any 1 ≤ j < i < n, the following equalities hold in U rtt
v (Lgln):

ẽ+j,i+1(z) =
[ẽ(0)i,i+1, ẽ

+
j i (z)]v−1

v − v−1
, ẽ−j,i+1(z) =

[ẽ(0)i,i+1, ẽ
−
j i (z)]v−1

v − v−1
, (3.24)

f̃ +i+1, j (z) =
[ f̃ +i j (z), f̃ (0)i+1,i ]v

v−1 − v
, f̃ −i+1, j (z) =

[ f̃ −i j (z), f̃ (0)i+1,i ]v
v−1 − v

. (3.25)
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Proof For any 1 ≤ i < n, we proceed by an increasing induction in j .

• Verification of the first formula in (3.24).
Comparing the matrix coefficients 〈v j ⊗ vi | · · · |vi ⊗ vi+1〉 of both sides of the

equality (3.9) with ε = ε′ = +, we get

(z − w)t+j i (z)t
+
i,i+1(w)+ (v − v−1)zt+i i (z)t

+
j,i+1(w)

= (z − w)t+i,i+1(w)t+j i (z)+ (v − v−1)wt+i i (w)t+j,i+1(z).

Evaluating the terms with w1 in both sides of this equality, we find

−t+j i (z)t+i,i+1[0] = −t+i,i+1[0]t+j i (z)+ (v − v−1)t+i i [0]t+j,i+1(z).

Note that t+j i (z)t
+
i i [0] = v−1t+i i [0]t+j i (z). To see the latter, we compare the matrix

coefficients 〈v j ⊗ vi | · · · |vi ⊗ vi 〉 of both sides of the equality (3.9) with ε = ε′ =
+, and then evaluate the terms with w1 as above. Combining this with t+i,i+1[0] =
g̃+i ẽ

(0)
i,i+1 = t+i i [0]ẽ(0)i,i+1, we deduce

t+j,i+1(z) =
[ẽ(0)i,i+1, t

+
j i (z)]v−1

v − v−1
. (3.26)

Recall that

t+j i (z) = g̃+j (z)ẽ
+
j i (z)+

∑

1≤k≤ j−1
f̃ +jk(z)g̃

+
k (z)ẽ+ki (z),

t+j,i+1(z) = g̃+j (z)ẽ
+
j,i+1(z)+

∑

1≤k≤ j−1
f̃ +jk(z)g̃

+
k (z)ẽ+k,i+1(z).

Let us further note that ẽ(0)i,i+1 commuteswith f̃ +jk(z) (since by the induction assumption

the latter can be expressed via f̃ (•)s,s−1 which clearly commute with ẽ(0)i,i+1 for s ≤ j)

and with g̃+k (z) for k ≤ j . By the induction assumption
[ẽ(0)i,i+1,ẽ

+
ki (z)]v−1

v−v−1 = ẽ+k,i+1(z)
for k < j . Hence, we get

g̃+j (z)ẽ
+
j,i+1(z)+

j−1
∑

k=1
f̃ +jk(z)g̃

+
k (z)ẽ+k,i+1(z)

= g̃+j (z)[ẽ(0)i,i+1, ẽ
+
j i (z)]v−1

v − v−1
+

j−1
∑

k=1
f̃ +jk(z)g̃

+
k (z)ẽ+k,i+1(z),

which implies the first equality in (3.24).
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• Verification of the second formula in (3.24).
Comparing the matrix coefficients 〈v j ⊗ vi | · · · |vi ⊗ vi+1〉 of both sides of the

equality (3.9) with ε = −, ε′ = +, we get

(z − w)t−j i (z)t
+
i,i+1(w)+ (v − v−1)zt−i i (z)t

+
j,i+1(w)

= (z − w)t+i,i+1(w)t−j i (z)+ (v − v−1)wt+i i (w)t−j,i+1(z).

Evaluating the terms with w1 in both sides of this equality, we find

−t−j i (z)t+i,i+1[0] = −t+i,i+1[0]t−j i (z)+ (v − v−1)t+i i [0]t−j,i+1(z).

Note that t−j i (z)t
+
i i [0] = v−1t+i i [0]t−j i (z) (which follows by comparing the matrix coef-

ficients 〈v j ⊗ vi | · · · |vi ⊗ vi 〉 of both sides of the equality (3.9) with ε = −, ε′ = +,
and then evaluating the terms with w1 as above). Combining this with t+i,i+1[0] =
g̃+i ẽ

(0)
i,i+1 = t+i i [0]ẽ(0)i,i+1, we obtain

t−j,i+1(z) =
[ẽ(0)i,i+1, t

−
j i (z)]v−1

v − v−1
. (3.27)

This implies the second equality in (3.24) via the same inductive arguments as above.
• Verification of the first formula in (3.25).

Comparing the matrix coefficients 〈vi+1 ⊗ vi | · · · |vi ⊗ v j 〉 of both sides of the
equality (3.9) with ε = −, ε′ = +, we get

(z − w)t−i+1,i (z)t
+
i j (w)+ (v − v−1)wt−i i (z)t

+
i+1, j (w)

= (z − w)t+i j (w)t−i+1,i (z)+ (v − v−1)zt+i i (w)t−i+1, j (z).

Evaluating the terms with z0 in both sides of this equality, we find

−t−i+1,i [0]t+i j (w)+ (v − v−1)t−i i [0]t+i+1, j (w) = −t+i j (w)t−i+1,i [0].

Note that t−i i [0]t+i+1, j (z) = t+i+1, j (z)t
−
i i [0] and t−i i [0]t+i j (z) = vt+i j (z)t

−
i i [0]. To see

these equalities, we compare the matrix coefficients 〈vi+1 ⊗ vi | · · · |v j ⊗ vi 〉 and
〈vi ⊗ vi | · · · |v j ⊗ vi 〉 of both sides of the equality (3.9) with ε = +, ε′ = −, and then
evaluate the terms with w0 as above. Combining this with t−i+1,i [0] = f̃ (0)i+1,i g̃

−
i =

f̃ (0)i+1,i t
−
i i [0], we deduce

t+i+1, j (w) = [t
+
i j (w), f̃ (0)i+1,i ]v
v−1 − v

. (3.28)
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Recall that

t+i j (w) = f̃ +i j (w)g̃+j (w)+
∑

1≤k≤ j−1
f̃ +ik (w)g̃+k (w)ẽ+k j (w),

t+i+1, j (w) = f̃ +i+1, j (w)g̃+j (w)+
∑

1≤k≤ j−1
f̃ +i+1,k(w)g̃+k (w)ẽ+k j (w).

We further note that f̃ (0)i+1,i commutes with ẽ+k j (z) (since by the induction assumption

the latter can be expressed via ẽ(•)s−1,s which clearly commute with f̃ (0)i+1,i for s ≤ j)

and with g̃+k (w) for k ≤ j . By the induction assumption
[ f̃ +ik (w), f̃ (0)i+1,i ]v

v−1−v = f̃ +i+1,k(w)

for k < j . Hence, we finally get

f̃ +i+1, j (w)g̃+j (w)+
∑

1≤k≤ j−1
f̃ +i+1,k(w)g̃+k (w)ẽ+k j (w)

= [ f̃
+
i j (w), f̃ (0)i+1,i ]v · g̃+j (w)

v−1 − v
+

∑

1≤k≤ j−1
f̃ +i+1,k(w)g̃+k (w)ẽ+k j (w),

which implies the first equality in (3.25).
• Verification of the second formula in (3.25).

Comparing the matrix coefficients 〈vi+1 ⊗ vi | · · · |vi ⊗ v j 〉 of both sides of the
equality (3.9) with ε = ε′ = −, we get

(z − w)t−i+1,i (z)t
−
i j (w)+ (v − v−1)wt−i i (z)t

−
i+1, j (w)

= (z − w)t−i j (w)t−i+1,i (z)+ (v − v−1)zt−i i (w)t−i+1, j (z).

Evaluating the terms with z0 in both sides of this equality, we find

−t−i+1,i [0]t−i j (w)+ (v − v−1)t−i i [0]t−i+1, j (w) = −t−i j (w)t−i+1,i [0].

Note that t−i i [0]t−i+1, j (z) = t−i+1, j (z)t
−
i i [0] and t−i i [0]t−i j (z) = vt−i j (z)t

−
i i [0]. To see

these equalities, we compare the matrix coefficients 〈vi+1 ⊗ vi | · · · |v j ⊗ vi 〉 and
〈vi ⊗ vi | · · · |v j ⊗ vi 〉 of both sides of the equality (3.9) with ε = ε′ = −, and then

evaluate the terms with w0 as above. Combining this with t−i+1,i [0] = f̃ (0)i+1,i g̃
−
i =

f̃ (0)i+1,i t
−
i i [0], we obtain

t−i+1, j (w) = [t
−
i j (w), f̃ (0)i+1,i ]v
v−1 − v

. (3.29)

This implies the second equality in (3.25) via the same inductive arguments as above.
This completes our proof of Proposition 3.21. ��
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Corollary 3.22 For any 1 ≤ j ≤ i < n and r ∈ Z, the following equalities hold:

ẽ(r)j,i+1 := (v − v−1) j−i [ẽ(0)i,i+1, · · · , [ẽ(0)j+1, j+2, ẽ
(r)
j, j+1]v−1 · · · ]v−1 ,

f̃ (r)i+1, j := (v−1 − v) j−i [· · · [ f̃ (r)j+1, j , f̃
(0)
j+2, j+1]v, · · · , f̃ (0)i+1,i ]v.

(3.30)

Combining these explicit formulas with (3.20), we obtain

Corollary 3.23 For any 1 ≤ j ≤ i < n and r ∈ Z, we have the following equalities:

E (r)
j,i+1 = (−1)δr<0v− jr ·ϒ−1(ẽ(r)j,i+1), F (r)

i+1, j = (−1)δr>0v− jr ·ϒ−1( f̃ (r)i+1, j ). (3.31)

We now apply Proposition 3.20 to construct bases of Uv(Lgln) and Uv(Lsln). It

will be convenient to relabel the Cartan generators via ϕi,r :=
{

ϕ+i,r , if r ≥ 0

ϕ−i,r , if r < 0
,

ψi,r :=
{

ψ+i,r , if r ≥ 0

ψ−i,r , if r < 0
, so that (ϕi,0)−1 = ϕ−i,0, (ψi,0)

−1 = ψ−i,0. We order the

elements {E (r)
j,i+1}r∈Z1≤ j≤i<n in the following way: E (r)

j,i+1 ≤ E (r ′)
j ′,i ′+1 if j < j ′, or

j = j ′, i < i ′, or j = j ′, i = i ′, r ≤ r ′. Likewise, we order {F (r)
i+1, j }r∈Z1≤ j≤i<n so

that F (r)
i+1, j ≥ F (r ′)

i ′+1, j ′ if j < j ′, or j = j ′, i < i ′, or j = j ′, i = i ′, r ≤ r ′.
Finally, we choose any total ordering of the Cartan generators {ϕ j,s}s∈Z1≤ j≤n ofUv(Lgln)

(or {ψi,s}s∈Z1≤i<n of Uv(Lsln)). Having specified these three total orderings, elements

F ·H ·E with F, E, H being orderedmonomials in {F (r)
i+1, j }r∈Z1≤ j≤i<n , {E (r)

j,i+1}r∈Z1≤ j≤i<n ,

and the Cartan generators {ϕ j,s}s∈Z1≤ j≤n of Uv(Lgln) (or {ψi,s}s∈Z1≤i<n of Uv(Lsln)),
respectively, are called the ordered PBWD monomials (in the corresponding genera-
tors).

Theorem 3.24 (a) The ordered PBWD monomials in {F (r)
i+1, j , ϕk,s,

E (r)
j,i+1}r ,s∈Z1≤ j≤i<n,1≤k≤n form a basis of a free C[v, v−1]-module Uv(Lgln).

(b) The ordered PBWD monomials in {F (r)
i+1, j , ψk,s, E

(r)
j,i+1}r ,s∈Z1≤ j≤i<n,1≤k<n form a

basis of a free C[v, v−1]-module Uv(Lsln).

This result generalizes (and its proof is actually based on) (Tsymbaliuk 2018, The-
orems 2.15, 2.17, 2.19). To recall these theorems in the full generality (which is
needed for the further use), let us generalize the elements {E (r)

j,i+1, F
(r)
i+1, j }r∈Z1≤ j≤i<n

first. For every pair 1 ≤ j ≤ i < n and any r ∈ Z, we choose a decomposition
r = (r j , . . . , ri ) ∈ Z

i− j+1 such that r = r j + r j+1 + · · · + ri . We define

E j,i+1(r) := (v − v−1)[ei,ri , · · · , [e j+1,r j+1 , e j,r j ]v−1 · · · ]v−1 ,
Fi+1, j (r) := (v−1 − v)[· · · [ f j,r j , f j+1,r j+1 ]v, · · · , fi,ri ]v.

(3.32)

In the particular case r j = r , r j+1 = · · · = ri = 0, we recover E (r)
j,i+1, F

(r)
i+1, j

of (3.21).
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Let U<
v (Lgln) and U>

v (Lgln) be the C(v)-subalgebras of Uv(Lgln) generated
by { fi,r }r∈Z1≤i<n and {ei,r }r∈Z1≤i<n , respectively. Let U

<
v (Lgln) and U>

v (Lgln) be the

C[v, v−1]-subalgebras of Uv(Lgln) generated by {F (r)
i+1, j }r∈Z1≤ j≤i<n and

{E (r)
j,i+1}r∈Z1≤ j≤i<n , respectively.

Theorem 3.25 (Tsymbaliuk 2018) For any 1 ≤ j ≤ i < n and r ∈ Z, choose a
decomposition r as above.
(a) The ordered PBWD monomials in {E j,i+1(r)}r∈Z1≤ j≤i<n form a basis of a free

C[v, v−1]-module U>
v (Lgln).

(b) The ordered PBWD monomials in {E j,i+1(r)}r∈Z1≤ j≤i<n form a basis of a C(v)-
vector space U>

v (Lgln).
(c) The ordered PBWD monomials in {Fi+1, j (r)}r∈Z1≤ j≤i<n form a basis of a free

C[v, v−1]-module U<
v (Lgln).

(d) The orderedPBWDmonomials in {Fi+1, j (r)}r∈Z1≤ j≤i<n formabasis of aC(v)-vector
space U<

v (Lgln).

(e) The orderedPBWDmonomials in {F (r)
i+1, j , ϕk,s, E

(r)
j,i+1}r ,s∈Z1≤ j≤i<n,1≤k≤n formabasis

of the quantum loop algebra Uv(Lgln).

Proof of Theorem 3.24 Due to Theorem 3.25, it suffices to verify that all unordered
products E (r)

j,i+1ϕ
±
j ′,±s, ϕ

±
j ′,±s F

(r)
i+1, j , E

(r)
j,i+1F

(s)
i ′+1, j ′ are equal to C[v, v−1]-linear

combinations of the ordered PBWD monomials. The verification for the first two
cases is simple. Indeed, we can always move ϕ±j ′,0 to the left or to the right acquir-
ing an appropriate power of v. As for the other Cartan generators, it is more
convenient to work with another choice of Cartan generators h j ′,±s defined via
ϕ±j ′ (z) = ϕ±j ′,0 exp(

∑

s>0 h j ′,s z∓s). These generators satisfy simple commutation
relations: [h j ′,s, ei,r ] = c(i, j ′, r , s)ei,r+s, [h j ′,s, fi,r ] = −c(i, j ′, r , s) fi,r+s for

certain c(i, j ′, r , s) ∈ C[v, v−1]. Therefore, E (r)
j,i+1h j ′,s − h j ′,s E

(r)
j,i+1 is a C[v, v−1]-

linear combination of the terms of the form E j,i+1(r + s) for various decompositions

of r + s into the sum of i − j + 1 integers, hence, the claim for E (r)
j,i+1h j ′,s . The case

of h j ′,s F
(r)
i+1, j is analogous.

Thus, it remains to verify that E (r)
j,i F

(s)
i ′, j ′ is a C[v, v−1]-linear combination of the

ordered PBWDmonomials. First, let us note that if j ≥ i ′ or j ′ ≥ i , then E (r)
j,i F

(s)
i ′, j ′ =

F (s)
i ′, j ′E

(r)
j,i and the latter is already an ordered PBWD monomial. Hence, from now on

we shall assume i ′ > j, i > j ′. There are four cases to consider: (1) r ≥ 0, s > 0,
(2) r < 0, s > 0, (3) r ≥ 0, s ≤ 0, (4) r < 0, s ≤ 0. For simplicity of the current
exposition, we shall treat only the first case, while the proof is similar in the remaining
three cases. Thus, we assume r ≥ 0, s > 0 from now on. The proof will proceed by
an increasing induction in r + s, then by an increasing induction in j ′, and finally by
an increasing induction in r .

Our proof is based on Proposition 3.20. In particular, applying Corollary 3.23 to
E (r)

j,i F
(s)
i ′, j ′ , the question is reduced to the proof of the fact that ẽ

(r)
j i f̃ (s)i ′ j ′ is a C[v, v−1]-

linear combination of monomials in the generators {ẽ(•)•,•, f̃ (•)•,• , g̃±• , g̃(•)• } (ordered
accordingly).
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Recall that t+j i (z) = g̃+j (z)ẽ
+
j i (z) +

∑ j−1
k=1 f̃ +jk(z)g̃

+
k (z)ẽ+ki (z), which immediately

implies

t+j i [r ] = g̃+j ẽ
(r)
j i +

∑

0≤r ′<r

g̃(r−r
′)

j ẽ(r
′)

j i +
j−1
∑

k=1

r1+r2+r3=r
∑

r1>0,r2≥0,r3≥0
f̃ (r1)jk g̃(r2)k ẽ(r3)ki , (3.33)

where g̃(0)k denotes g̃+k . Likewise,

t+i ′ j ′(w) = f̃ +i ′ j ′(w)g̃+j ′(w)+
j ′−1
∑

k′=1
f̃ +i ′k′(w)g̃+k′ (w)ẽ+k′ j ′(w)

implies

t+i ′ j ′ [s] = f̃ (s)i ′ j ′ g̃
+
j ′ +

∑

0<s′<s

f̃ (s
′)

i ′ j ′ g̃
(s−s′)
j ′ +

j ′−1
∑

k′=1

s1+s2+s3=s
∑

s1>0,s2≥0,s3≥0
f̃ (s1)i ′k′ g̃

(s2)
k′ ẽ(s3)k′ j ′ . (3.34)

Applying formulas (3.33, 3.34), let us now evaluate the product t+j i [r ]t+i ′ j ′ [s] and
consider the corresponding unordered terms (we shall be ignoring the Cartan gener-
ators g̃±• , g̃

(•)• since they can be moved to any side harmlessly as explained above).
Besides for ẽ(r)j i f̃ (s)i ′ j ′ , all other terms will be either of the form ẽ(r)j i f̃ (s)i ′k′ with k

′ < j ′ or
of the form ẽ(r

′)•,• f̃ (s
′)•,• with r ′+s′ < r+s. By the induction assumption, the latter terms

are C[v, v−1]-linear combinations of the ordered monomials. Therefore, it suffices to
prove that so is t+j i [r ]t+i ′ j ′ [s].

To verify the latter, we start by comparing the matrix coefficients
〈v j ⊗ vi ′ | · · · |vi ⊗ v j ′ 〉 of both sides of the equality (3.9) with ε = ε′ = +:

(z − w)t+j i (z)t
+
i ′ j ′(w)+ (v − v−1)zt+i ′i (z)t

+
j j ′(w)

= (z − w)t+i ′ j ′(w)t+j i (z)+ (v − v−1)zt+i ′i (w)t+j j ′(z).

Evaluating the coefficients of z1−rw−s in both sides of this equality, we obtain

t+j i [r ]t+i ′ j ′ [s] = (v − v−1)t+i ′i [s]t+j j ′ [r ] − (v − v−1)t+i ′i [r ]t+j j ′ [s]
+t+j i [r − 1]t+i ′ j ′ [s + 1] + t+i ′ j ′ [s]t+j i [r ] − t+i ′ j ′ [s + 1]t+j i [r − 1].

(3.35)

Let us now consider the unordered monomials appearing in each summand of the
right-hand side of (3.35). First, we note that all the unordered monomials appearing

in the last three summands are of the form ẽ(r
′)•,• f̃ (s

′)•,• with either r ′ = r − 1, s′ = s+ 1
or with r ′ + s′ < r + s, hence, they are C[v, v−1]-linear combinations of the ordered
monomials by the induction assumption. Let us now consider the unordered terms
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appearing in t+i ′i [r ]t+j j ′ [s]. If i ′ ≥ i , then clearly all the unordered terms are of the form

ẽ(r
′)•,• f̃ (s

′)•,• with r ′ + s′ < r + s, to which the induction assumption applies. If i ′ < i ,
then all the unordered terms in t+i ′i [r ]t+j j ′ [s] are either as above (to which the induction
assumption applies) or of the form ẽ(r)i ′i f̃ (s)jk with k < j . As i ≥ i ′ > j > k, we have

ẽ(r)i ′i f̃ (s)jk = f̃ (s)jk ẽ
(r)
i ′i (for any k < j) which is an ordered monomial. Therefore, we have

eventually proved that t+i ′i [r ]t+j j ′ [s] is a C[v, v−1]-linear combination of the ordered

monomials. Swapping r and s, we obtain the same result for t+i ′i [s]t+j j ′ [r ].
Combining all the above, we see that ẽ(r)j i f̃ (s)i ′ j ′ is a C[v, v−1]-linear combination

of the ordered monomials, hence, E (r)
j,i F

(s)
i ′, j ′ is a C[v, v−1]-linear combination of the

ordered PBWD monomials.
This completes our proof of Theorem 3.24. ��

Remark 3.26 We note that Uv(Lgln) � Urtt
v (Lgln) quantizes the algebra of func-

tions on the thick slice †W0 of (Finkelberg and Tsymbaliuk 2017, 4(viii)), that is,
Uv(Lgln)/(v − 1) � C[†W0].

Remark 3.27 For a complete picture, recall thatUv(Lsln) is usually treated as a quan-
tization of the universal enveloping algebra U (Lsln), cf. Remark 3.16. Let Uv(Lsln)
be the C[v, v−1]-subalgebra of Uv(Lsln) generated by {K±1j } j∈[n] and the divided

powers {E (m)
i , F (m)

i }m≥1i∈[n]. Specializing v to 1, we have K 2
j = 1 in a C-algebra

U1(Lsln) := Uv(Lsln)/(v − 1). Specializing further K j to 1, we get an algebra
isomorphism U1(Lsln)/(〈K j − 1〉 j∈[n]) � U (Lsln). However, we are not aware of
the description of Uv(Lsln) in the new Drinfeld realization. In particular, it would be
interesting to find an explicit basis of Uv(Lsln) similar to that of Theorem 3.24.

3.6 Shuffle Algebra and its Integral Form

In this section, we recall the shuffle realizations of U>
v (Lgln),U

>
v (Lgln) established

in Tsymbaliuk (2018). Set �(k1,...,kn−1) := �k1 × · · · × �kn−1 for k1, . . . , kn−1 ∈ N.

Consider an N
n−1-graded C(v)-vector space S

(n) =⊕k=(k1,...,kn−1)∈Nn−1 S
(n)
k , where

S
(n)
k consists of�k-symmetric rational functions in the variables {xi,r }1≤r≤ki1≤i<n . We also

fix a matrix of rational functions (ζi, j (z))
n−1
i, j=1 by setting ζi, j (z) = z−v−ci j

z−1 . Let us

now introduce the bilinear shuffle product � on S
(n): given F ∈ S

(n)
k and G ∈ S

(n)
� ,

define F�G ∈ S
(n)
k+� via

(F�G)(x1,1, . . . , x1,k1+�1; . . . ; xn−1,1, . . . , xn−1,kn−1+�n−1) := k! · �!×

Sym�k+�

⎛

⎝F
(

{xi,r }1≤r≤ki1≤i<n

)

G
(

{xi ′,r ′ }ki ′<r ′≤ki ′+�i ′
1≤i ′<n

)

·
1≤i ′<n
∏

1≤i<n

r ′>ki ′
∏

r≤ki
ζi,i ′(xi,r/xi ′,r ′)

⎞

⎠ .

(3.36)
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Here k! := ∏n−1
i=1 ki !, while for f ∈ C({xi,1, . . . , xi,mi }1≤i<n) we define its sym-

metrization via

Sym�m
( f ) := 1

m! ·
∑

(σ1,...,σn−1)∈�m

f
({xi,σi (1), . . . , xi,σi (mi )}1≤i<n

)

.

This endows S
(n) with a structure of an associative C(v)-algebra with the unit 1 ∈

S
(n)
(0,...,0).

We will be interested only in a certain C(v)-subspace of S
(n), defined by the pole

and wheel conditions:
•We say that F ∈ S

(n)
k satisfies the pole conditions if

F = f (x1,1, . . . , xn−1,kn−1)
∏n−2

i=1
∏r ′≤ki+1

r≤ki (xi,r − xi+1,r ′)
, where f ∈

(

C(v)
[

{x±1i,r }1≤r≤ki1≤i<n

])�k
. (3.37)

•We say that F ∈ S
(n)
k satisfies the wheel conditions if

F({xi,r }) = 0 once xi,r1 = vxi+ε,s = v2xi,r2 for some ε, i, r1, r2, s, (3.38)

where ε ∈ {±1}, 1 ≤ i, i + ε < n, 1 ≤ r1, r2 ≤ ki , 1 ≤ s ≤ ki+ε .
Let S(n)k ⊂ S

(n)
k denote the C(v)-subspace of all elements F satisfying these two

conditions and set S(n) :=⊕k∈Nn−1 S
(n)
k . It is straightforward to check that the C(v)-

subspace S(n) ⊂ S
(n) is �-closed. The resulting associative C(v)-algebra

(

S(n), �
)

is
called the shuffle algebra. It is related to U>

v (Lgln) � U>
v (Lsln) via (Tsymbaliuk

2018, Theorem 3.5), (cf. (Negut 2013, Theorem 1.1)):

Theorem 3.28 (Tsymbaliuk 2018) The assignment ei,r �→ xri,1 (1 ≤ i < n, r ∈ Z)

gives rise to a C(v)-algebra isomorphism � : U>
v (Lgln)

∼−→ S(n).

For any k ∈ N
n−1, consider a C[v, v−1]-submodule S(n)

k ⊂ S(n)k consisting of all

integral elements, see Tsymbaliuk (2018, Definition 3.31). SetS(n) :=⊕k∈Nn−1 S
(n)
k

(it is a C[v, v−1]-subalgebra of S(n) as follows from Theorem 3.30 below). While we
skip an explicit definition of S(n) as it is quite involved, let us recall its relevant
properties that were established in Tsymbaliuk (2018, Proposition 3.36):

Proposition 3.29 (a) For any 1 ≤ � < n, consider the linear map ι′� : S(n) → S(n)

given by

ι′�(F)
(

{xi,r }1≤r≤ki1≤i<n

)

:=
k�
∏

r=1

(

1− x−1�,r

)

· F
(

{xi,r }1≤r≤ki1≤i<n

)

for F ∈ S(n)k , k ∈ N
n−1.

(3.39)
Then

F ∈ S(n) ⇐⇒ ι′�(F) ∈ S(n). (3.40)
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(b) For any k ∈ N
n−1 and a collection gi ({xi,r }kir=1) ∈ C[v, v−1][{x±1i,r }kir=1]�ki

(1 ≤ i < n), set

F := (v−v−1)k1+···+kn−1 ·
∏n−1

i=1
∏

1≤r �=r ′≤ki (xi,r − v−2xi,r ′) ·∏n−1
i=1 gi

(

{xi,r }kir=1
)

∏n−2
i=1

∏1≤r ′≤ki+1
1≤r≤ki (xi,r − xi+1,r ′)

.

(3.41)
Then F ∈ S

(n)
k .

According to Tsymbaliuk (2018, Theorem 3.34), the isomorphism � of Theo-
rem 3.28 identifies the integral forms U>

v (Lgln) ⊂ U>
v (Lgln) and S(n) ⊂ S(n):

Theorem 3.30 (Tsymbaliuk 2018) The C(v)-algebra isomorphism
� : U>

v (Lgln)
∼−→ S(n) gives rise to a C[v, v−1]-algebra isomorphism

� : U>
v (Lgln)

∼−→S(n).

We will crucially use this result in our proofs of Theorems 4.4, 4.15, 4.23.

Remark 3.31 For an algebra A, let Aop denote the opposite algebra. The assign-
ment fi,r �→ ei,r (1 ≤ i < n, r ∈ Z) gives rise to a C(v)-algebra
isomorphism U<

v (Lgln)
∼−→U>

v (Lgln)
op and a C[v, v−1]-algebra isomorphism

U<
v (Lgln)

∼−→U>
v (Lgln)

op. Hence, Theorems 3.28 and 3.30 give rise to a C(v)-

algebra isomorphism� : U<
v (Lgln)

∼−→ S(n),op and aC[v, v−1]-algebra isomorphism

� : U<
v (Lgln)

∼−→S(n),op (by abuse of notation, we still denote them by �).

3.7 The Jimbo Evaluation Homomorphism ev

While the quantum group Uv(g) is always embedded into the quantum loop algebra
Uv(Lg), in type A there also exist homomorphismsUv(Lsln)→ Uv(gln), discovered
in Jimbo (1986). These homomorphisms are given in the Drinfeld-Jimbo realization
of Uv(Lsln).

Theorem 3.32 (Jimbo 1986) For any a ∈ C
×, there is a unique C(v)-algebra homo-

morphism

eva : Uv(Lsln)→ Uv(gln)

defined by

Ei �→ Ei , Fi �→ Fi , K±1i �→ K±1i for i ∈ [n]\{0},
K±10 �→ K∓11 · · · K∓1n−1,
E0 �→ (−1)nv−n+1a · [· · · [F1, F2]v, · · · , Fn−1]v · t−11 t−1n ,

F0 �→ (−1)nvn−1a−1 · [En−1, · · · , [E2, E1]v−1 · · · ]v−1 · t1tn .

(3.42)

The key result of this subsection identifies the evaluation homomorphism eva with
the restriction of C(v)-extended evaluation homomorphism evrtta of Lemma 3.4.
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Theorem 3.33 The following diagram is commutative:

Uv(Lsln)
ϒ−−−−→ U rtt

v (Lgln)
⏐

⏐

�
eva evrtta

⏐

⏐

�

Uv(gln)
∼−−−−→
ϒ

U rtt
v (gln)

(3.43)

Proof It suffices to verify ϒ−1(evrtta (ϒ(X))) = eva(X) for all X ∈ {Ei , Fi , Ki }i∈[n].
The only nontrivial cases are X = E0 or F0, the verification for which is presented
below.

• Verification of ϒ−1(evrtta (ϒ(E0))) = eva(E0).
According to (3.31), we have

ϒ([· · · [ f1,1, f2,0]v, · · · , fn−1,0]v) = ϒ(F (1)
n1 )

v−1 − v
= f̃ (1)n1

v(v − v−1)
.

On the other hand, we have t+n1[1] = f̃ (1)n1 g̃+1 = f̃ (1)n1 · t+11[0], so that evrtta ( f̃ (1)n1 ) =
−a · t−n1(t+11)−1. Note that ϒ−1((t+kk)−1) = t−1k , while ϒ−1(t−n1) = (v−1 − v) ·
[· · · [F1, F2]v, · · · , Fn−1]v · t−11 , due to Corollary 3.13. Combining all the above
with (3.19), we finally obtain

ϒ−1(evrtta (ϒ(E0)))=(−1)nv−n+1a · [· · · [F1, F2]v, · · · , Fn−1]v · t−11 t−1n =eva(E0).

• Verification of ϒ−1(evrtta (ϒ(F0))) = eva(F0).
According to (3.31), we have

ϒ([en−1,0, · · · , [e2,0, e1,−1]v−1 · · · ]v−1) =
ϒ(E (−1)

1n )

v − v−1
= − vẽ(−1)1n

v − v−1
.

On the other hand, t−1n[−1] = g̃−1 ẽ
(−1)
1n = t−11[0]ẽ(−1)1n , so that evrtta (ẽ(−1)1n ) =

−a−1 · (t−11)−1t+1n . Note that ϒ−1((t−kk)−1) = tk , while ϒ−1(t+1n) = (v − v−1)t1 ·
[En−1, · · · , [E2, E1]v−1 · · · ]v−1 , due to Corollary 3.13. Combining all the above
with (3.19), we finally obtain

ϒ−1(evrtta (ϒ(F0)))

= (−1)nvn+1a−1 · t21 · [En−1, · · · , [E2, E1]v−1 · · · ]v−1 · t−11 tn = eva(F0).

This completes our proof of Theorem 3.33. ��

We will denote the evaluation homomorphism ev1 simply by ev.
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3.8 QuantumMinors of T±(z)

We recall the notion of quantum minors of T±(z) following Molev (2007, §1.15.6)
and Hopkins (2007, Chapter 5) (though a slight change in our formulas is due to a
different choice of the R-matrix). For 1 < r ≤ n, define R(z1, . . . , zr ) ∈ (End C

n)⊗r
via

R(z1, . . . , zr ) := (Rr−1,r )(Rr−2,r Rr−2,r−1) · · · (R1r · · · R12) with

Ri j := Rtrig;i j (zi , z j ).

The following is implied by the Yang–Baxter Eqs. (3.7) and (3.9):

Lemma 3.34 R(z1, . . . , zr )T
±
1 (z1) · · · T±r (zr ) = T±r (zr ) · · · T±1 (z1)R(z1, . . . , zr ).

Consider the v-permutation operator Pv ∈ End(Cn ⊗ C
n) given by

Pv =
∑

i

Eii ⊗ Eii + v
∑

i> j

Ei j ⊗ E ji + v−1
∑

i< j

Ei j ⊗ E ji .

It gives rise to the action of the symmetric group �r on (Cn)⊗r with transpositions
(i, i + 1) acting via Pv

i,i+1 (the operator Pv acting on the i-th and (i + 1)-st factors
of C

n). Define the v-antisymmetrizer Av
r ∈ (End C

n)⊗r as the image of the anti-
symmetrizer

∑

σ∈�r
(−1)σ · σ ∈ C[�r ] under this action of �r on (Cn)⊗r . Recall

the following classical observation [(cf. (Molev 2007, §1.15.6) and (Hopkins 2007,
Lemma 5.5)]:

Theorem 3.35 R(z, v2z, . . . , v2(r−1)z) =∏0≤i< j≤r−1(v2i − v2 j )z
r(r−1)

2 Av
r .

Combining Lemma 3.34 and Theorem 3.35, we obtain the following

Corollary 3.36 We have

Av
r T
±
1 (z)T±2 (v2z) · · · T±r (v2(r−1)z) = T±r (v2(r−1)z) · · · T±2 (v2z)T±1 (z)Av

r .

(3.44)

The operator of (3.44) can be written as
∑

ta1...ar ;±b1...br
(z)⊗ Ea1,b1⊗· · ·⊗ Ear ,br with

ta1...ar ;±b1...br
(z) ∈ Urtt

v (Lgln)[[z∓1]] and the sum taken over all a1, . . . , ar , b1, . . . , br ∈
{1, . . . , n}.

Definition 3.37 The coefficients ta1...ar ;±b1...br
(z) are called the quantum minors of T±(z).

In the particular case r = n, the image of the operator Av
n acting on (Cn)⊗n is 1-

dimensional. Hence Av
nT
±
1 (z) · · · T±n (v2(n−1)z) = Av

n ·qdet T±(z)with qdet T±(z) ∈
Urtt
v (Lgln)[[z∓1]]. We note that qdet T±(z) = t1...n;±1...n (z) in the above notations.

123



244 M. Finkelberg, A. Tsymbaliuk

Definition 3.38 qdet T±(z) is called the quantum determinant of T±(z).

Define d±±r ∈ Urtt
v (Lgln) via qdet T

±(z) = ∑r≥0 d
±±r z∓r . The following result is

a trigonometric counterpart of Proposition 2.10:

Proposition 3.39 The elements {d±±r }r≥0 are central, subject to the only defining rela-
tion d+0 d

−
0 = 1, and generate the center ZUrtt

v (Lgln) of U
rtt
v (Lgln). In other words,

we have a C[v, v−1]-algebra isomorphism

ZUrtt
v (Lgln) � C[v, v−1][{d±±r }r≥0]/(d+0 d−0 − 1).

3.9 Enhanced Algebras

In this section,we slightly generalize the algebras of the previous subsections aswell as
various relations between them. This is needed mostly for our discussions in Sect. 4.3.

• Let Urtt,′
v (gln) be a C[v, v−1]-algebra obtained from Urtt

v (gln) by formally adjoin-
ing n-th roots of its central element t := t+11 . . . t+nn = (t−11 . . . t−nn)−1, that is,
Urtt,′
v (gln) = Urtt

v (gln)[t±1/n]. Its C(v)-counterpart is denoted byU rtt,′
v (gln). Like-

wise, let U
′
v(gln) be a C(v)-algebra obtained from Uv(gln) by formally adjoining

n-th roots of its central element t := t1 . . . tn , that is, U
′
v(gln) = Uv(gln)[t±1/n].

Then the isomorphism of Theorem 3.9 gives rise to a C(v)-algebra isomorphism
ϒ : U ′v(gln) ∼−→U rtt,′

v (gln).

• Let Urtt,′
v (Lgln) be a C[v, v−1]-algebra obtained from Urtt

v (Lgln) by formally
adjoining n-th roots of its central element t[0] := t+11[0] . . . t+nn[0] = (t−11[0] . . .
t−nn[0])−1, that is, Urtt,′

v (Lgln) = Urtt
v (Lgln)[(t[0])±1/n]. Its C(v)-counterpart

is denoted by U rtt,′
v (Lgln). Likewise, let U

′
v(Lgln) be a C(v)-algebra obtained

from Uv(Lgln) by formally adjoining n-th roots of its central element ϕ :=
ϕ+1,0 . . . ϕ

+
n,0 = (ϕ−1,0 . . . ϕ

−
n,0)
−1, that is, U ′v(Lgln) = Uv(Lgln)[ϕ±1/n]. Then

the isomorphism of Theorem 3.17 gives rise to an algebra isomorphism
ϒ : U ′v(Lgln) ∼−→U rtt,′

v (Lgln).
• Let U ad

v (sln) be a C(v)-algebra obtained from Uv(sln) by adding extra gen-
erators {φ±1i }n−1i=1 subject to Ki = ∏n−1

j=1 φ
c ji
j , φi E j = vδi j E jφi , φi Fj =

v−δi j Fjφi , φiφ j = φ jφi . Then, the natural embedding Uv(sln) ↪→ Uv(gln) gives
rise to aC(v)-algebra embeddingU ad

v (sln) ↪→ U
′
v(gln) via φi �→ t−11 . . . t−1i ·t i/n .

• Likewise, letU ad
v (Lsln) be aC(v)-algebra obtained fromUv(Lsln) by adding extra

generators {φ±1i }n−1i=1 subject to ψ+i,0 =
∏n−1

j=1 φ
c ji
j , φiψ

±
j (z) = ψ±j (z)φi , φi e j (z)

= vδi j e j (z)φi , φi f j (z) = v−δi j f j (z)φi , φiφ j = φ jφi . Then, the natural
embedding Uv(Lsln) ↪→ Uv(Lgln) gives rise to a C(v)-algebra embedding
U ad
v (Lsln) ↪→ U

′
v(Lgln) via φi �→ ϕ−1,0 . . . ϕ

−
i,0 · ϕi/n .

• The homomorphisms evrtt, ev of Sects. 3.3, 3.7 extend to the homomorphisms of
the corresponding enhanced algebras, so that (3.43) gives rise to the commutative
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diagram
U ad
v (Lsln)

ev−−−−→ U
′
v(gln)

⏐

⏐

�ϒ ϒ

⏐

⏐

�
�

U rtt,′
v (Lgln)

evrtt−−−−→ U rtt,′
v (gln)

(3.45)

• Let Urtt
v (Lsln) (resp. U

rtt,′
v (Lsln)) be the quotient of Urtt

v (Lgln) (resp. U
rtt,′
v (Lgln))

by the relations qdet T±(z) = 1 (resp. qdet T±(z) = 1, (t[0])1/n = 1). We
denote itsC(v)-counterpart byU rtt

v (Lsln) (resp.U
rtt,′
v (Lsln)). ClearlyUrtt

v (Lsln) �
Urtt,′
v (Lsln), U rtt

v (Lsln) � U rtt,′
v (Lsln).

• The composition

U ad
v (Lsln) ↪→ U

′
v(Lgln)

∼−→U rtt,′
v (Lgln) � U rtt,′

v (Lsln) (3.46)

is a C(v)-algebra isomorphism.
• Analogously to Definition 3.19, let Uad

v (Lsln) be the C[v, v−1]-subalgebra of

U ad
v (Lsln) generated by {E (r)

j,i+1, F
(r)
i+1, j }r∈Z1≤ j≤i<n∪{ψ±i,±s}s>0

1≤i<n∪{φ±1i }n−1i=1 . Then
the C(v)-algebra isomorphism (3.46) gives rise to a C[v, v−1]-algebra isomor-
phism

Uad
v (Lsln) ∼−→Urtt,′

v (Lsln). (3.47)

• Define the generating series ϕ±(z) = ϕ± +∑r≥1 ϕ±r z∓r with coefficients in the
algebraUv(Lgln) (orU

′
v(Lgln)) via ϕ

±(z) :=∏n
i=1 ϕ

±
i (vi z) (so that ϕ± = ϕ±1).

It is straightforward to check that all ϕ±r are central elements of Uv(Lgln) (or
U
′
v(Lgln)). Moreover, it is known that the center ZU

′
v(Lgln) of U

′
v(Lgln) is a

polynomial algebra in {ϕ±r , ϕ±1/n}r≥1 and

U
′
v(Lgln) � U ad

v (Lsln)⊗C(v) ZU
′
v(Lgln).

The latter in turn gives rise to a trigonometric counterpart of (2.5):

U rtt,′
v (Lgln) � U rtt,′

v (Lsln)⊗C(v) ZU
rtt,′
v (Lgln), (3.48)

whereU rtt,′
v (Lsln) is viewed as a subalgebra ofU

rtt,′
v (Lgln) (rather than a quotient)

via (3.46).

4 K -Theoretic Coulomb Branch of Type AQuiver Gauge Theory

4.1 Homomorphism ˜8�
�

Let us recall the construction of Finkelberg and Tsymbaliuk (2017, §7) for the type
An−1 Dynkin diagram with arrows pointing i → i + 1 for 1 ≤ i ≤ n − 2. We use the
same notations λ,μ, λ, N , ai as in Sect. 2.8 (in particular, we set a0 := 0, an := 0).
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Consider the associativeC[v, v−1]-algebra Âv generated by {D±1i,r ,w
±1/2
i,r }1≤r≤ai1≤i≤n−1

such that Di,rw
1/2
i,r = vw1/2

i,r Di,r , while all other generators pairwise com-

mute. Let ˜Av be the localization of Âv by the multiplicative set generated by
{wi,r − vmwi,s}1≤r �=s≤ai1≤i<n,m∈Z ∪ {1 − vm}m∈Z\{0}. We define their C(v)-counterparts

Âv
frac := Âv ⊗C[v,v−1] C(v) and ˜Av

frac := ˜Av ⊗C[v,v−1] C(v). We also need the

larger algebras ˜Av[z±11 , . . . , z±1N ] := ˜Av ⊗C[v,v−1] C[v, v−1][z±11 , . . . , z±1N ] and
˜Av
frac[z±11 , . . . , z±1N ] := ˜Av

frac ⊗C(v) C(v)[z±11 , . . . , z±1N ]. Define
W0(z) :=1,Wn(z) :=1, and

Zi (z) :=
is=i
∏

1≤s≤N

(

1− vzs
z

)

, Wi (z) :=
ai
∏

r=1

(

1− wi,r

z

)

,

Wi,r (z) :=
s �=r
∏

1≤s≤ai

(

1− wi,s

z

)

.

To state (Finkelberg and Tsymbaliuk 2017, Theorem 7.1), we need the follow-
ing modifications of Uv(Lsln). First, recall the simply-connected version of shifted
quantum affine algebra U sc,μ

v introduced in Finkelberg and Tsymbaliuk (2017,
§5(i)), which is a C(v)-algebra generated by {ei,r , fi,r , ψ+i,s+i , ψ

−
i,−s−i

, (ψ+i,0)−1,

(ψ−i,bi )
−1}r∈Z,s+i ≥0,s−i ≥−bi

1≤i≤n−1 , where bi = α∨i (μ) as in Sect. 2.6 with {α∨i }n−1i=1 denot-

ing the simple positive roots of sln . Finally, we define U ad,μ
v [z±11 , . . . , z±1N ] as

a C(v)[z±11 , . . . , z±1N ]-algebra obtained from U sc,μ
v [z±11 , . . . , z±1N ] := U sc,μ

v ⊗C(v)

C(v)[z±11 , . . . , z±1N ] by adding generators {(φ+i )±1, (φ−i )±1}n−1i=1 subject to the follow-
ing extra relations:

ψ+i,0 = (φ+i )2 ·
∏

j−i
(φ+j )

−1, (−v)−bi
is=i
∏

1≤s≤N
z−1s · ψ−i,bi = (φ−i )2 ·

∏

j−i
(φ−j )

−1,

[φε
i , φ

ε′
i ′ ] = 0, φε

i ψ
ε′
i ′ (z) = ψε′

i ′ (z)φ
ε
i , φε

i ei ′(z) = vεδi i ′ ei ′(z)φ
ε
i ,

φε
i fi ′(z) = v−εδi i ′ fi ′(z)φε

i (4.1)

for any 1 ≤ i, i ′ ≤ n − 1 and ε, ε′ ∈ {±}.
Theorem 4.1 (Finkelberg and Tsymbaliuk 2017) There exists a unique
C(v)[z±11 , . . . , z±1N ]-algebra homomorphism

˜�
λ
μ : U ad,μ

v

[

z±11 , . . . , z±1N
]

−→ ˜Av
frac

[

z±11 , . . . , z±1N
]

,

such that

ei (z) �→ 1

v − v−1
ai
∏

t=1
wi,t

ai−1
∏

t=1
w−1/2i−1,t ·

ai
∑

r=1
δ

(

wi,r

z

)

Zi (wi,r )

Wi,r (wi,r )
Wi−1(v−1wi,r )D

−1
i,r ,
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fi (z) �→ 1

1− v2

ai+1
∏

t=1
w−1/2i+1,t ·

ai
∑

r=1
δ

(

v2wi,r

z

)

1

Wi,r (wi,r )
Wi+1(vwi,r )Di,r ,

ψ±i (z) �→
ai
∏

t=1
wi,t

ai−1
∏

t=1
w−1/2i−1,t

ai+1
∏

t=1
w−1/2i+1,t ·

(

Zi (z)
Wi−1(v−1z)Wi+1(v−1z)

Wi (z)Wi (v−2z)

)±
,

(φ+i )±1 �→
ai
∏

t=1
w±1/2i,t , (φ−i )±1 �→

ai
∏

t=1
w∓1/2i,t .

We write γ (z)± for the expansion of a rational function γ (z) in z∓1, respectively.

Remark 4.2 We note that the algebras U sc,μ
v and U ad,μ

v [z±11 , . . . , z±1N ] were denoted
by Usc

0,μ and Uad
0,μ[z±11 , . . . , z±1N ] in Finkelberg and Tsymbaliuk (2017). Moreover, we

used a slightly different renormalization of φ−i in loc.cit.

In analogy with Definition 3.19, let us introduce integral forms of the shifted quan-
tum affine algebras U sc,μ

v and U ad,μ
v [z±11 , . . . , z±1N ].

Definition 4.3 (a) Let Usc,μ
v be the C[v, v−1]-subalgebra of U sc,μ

v generated by

{

E (r)
j,i+1, F

(r)
i+1, j

}r∈Z
1≤ j≤i<n

∪
{

ψ+
i,s+i

, ψ−
i,−s−i

, (ψ+i,0)
−1, (ψ−i,bi )

−1
}r∈Z,s+i ≥0,s−i ≥−bi

1≤i≤n−1
.

(4.2)

(b) Let U
ad,μ
v [z±11 , . . . , z±1N ] be the C[v, v−1][z±11 , . . . , z±1N ]-subalgebra of

U ad,μ
v [z±11 , . . . , z±1N ] generated by

{

E (r)
j,i+1, F

(r)
i+1, j

}r∈Z
1≤ j≤i<n

∪
{

ψ+
i,s+i

, ψ−
i,−s−i

}s+i >0,s−i >−bi

1≤i≤n−1
∪
{

(φ+i )±1, (φ−i )±1
}n−1
i=1 .

(4.3)

Here the elements E (r)
j,i+1, F

(r)
i+1, j are defined via (3.21). Recall the total orderings

on the collections {E (r)
j,i+1}r∈Z1≤ j≤i<n and {F (r)

i+1, j }r∈Z1≤ j≤i<n which were introduced right
before Theorem 3.24, and choose any total ordering on the corresponding Cartan gen-
erators.We introduce the ordered PBWDmonomials (in the corresponding generators)
accordingly. The following result generalizes Theorem 3.24 to the shifted setting.

Theorem 4.4 (a) The ordered PBWD monomials in the elements (4.2) form a basis of
a free C[v, v−1]-module Usc,μ

v .
(b) The ordered PBWD monomials in the elements (4.3) form a basis of a free
C[v, v−1][z±11 , . . . , z±1N ]-module Uad,μ

v [z±11 , . . . , z±1N ].
Proof We will provide the proof only of part (a), since part (b) is proved analogously.

Following Finkelberg and Tsymbaliuk (2017, §5(i)), consider theC(v)-subalgebras
U sc,μ;>
v and U sc,μ;<

v of U sc,μ
v generated by {ei,r }r∈Z1≤i≤n−1 and { fi,r }r∈Z1≤i≤n−1, respec-

tively, and let U sc,μ;0
v be the C(v)-subalgebra of U sc,μ

v generated by the Cartan
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generators. According to Finkelberg and Tsymbaliuk (2017, Proposition 5.1), the
multiplication map m : U sc,μ;<

v ⊗ U sc,μ;0
v ⊗ U sc,μ;>

v → U sc,μ
v is an isomor-

phism of C(v)-vector spaces, and the subalgebras U sc,μ;<
v ,U sc,μ;>

v are isomorphic
to U<

v (Lsln) � U<
v (Lgln),U

>
v (Lsln) � U>

v (Lgln), respectively. Combining this
with Theorem 3.25(b,d), we immediately see that the ordered PBWD monomials in
the elements (4.2) form a basis of a C(v)-vector space U sc,μ

v .
Therefore, as noted in the very beginning of our proof of Theorem 3.24, it suffices

to verify that all unordered products E (r)
j,i+1ψ

±
j ′,±s, ψ

±
j ′,±s F

(r)
i+1, j , E

(r)
j,i+1F

(s)
i ′+1, j ′ are

equal to C[v, v−1]-linear combinations of the ordered PBWD monomials. The first
two cases are treated exactly as in our proof of Theorem 3.24. Hence, it remains to
prove the following result:

Proposition 4.5 All unordered products E (r)
j,i+1F

(s)
i ′+1, j ′ are equal to C[v, v−1]-linear

combinations of the ordered PBWD monomials in the algebra U sc,μ
v .

The proof of Proposition 4.5 proceeds in four steps and is reminiscent of Finkelberg
and Tsymbaliuk (2017, Appendix E).

Step 1: Case μ = 0.
The fact that E (r)

j,i+1F
(s)
i ′+1, j ′ equals a C[v, v−1]-linear combination of the ordered

PBWDmonomials inU sc,0
v follows essentially fromTheorem3.24.Tobemore precise,

recall the “extended” algebra Urtt,ext
v (Lgln) of (Gow and Molev 2010, (2.15)): it is

defined similarly toUrtt
v (Lgln), but we add extra generators {(t±i i [0])−1}ni=1 and replace

the first defining relation of (3.8) by

t+i i [0]t−i i [0] = t−i i [0]t+i i [0], t±i i [0](t±i i [0])−1 = (t±i i [0])−1t±i i [0] = 1.

Set U rtt,ext
v (Lgln) := Urtt,ext

v (Lgln) ⊗C[v,v−1] C(v). Likewise, let U sc,0
v (Lgln) be a

C(v)-algebra obtained from Uv(Lgln) by formally adding generators (ϕ±j,0)−1 and

ignoring ϕ±j,0ϕ
∓
j,0 = 1. Then, the isomorphism ϒ of Theorem 3.17 gives rise to the

C(v)-algebra isomorphism

ϒext : U sc,0
v (Lgln)

∼−→U rtt,ext
v (Lgln).

Hence, the arguments from our proof of Theorem 3.24 can be applied without any
changes to prove Proposition 4.5 for μ = 0.

Step 2: Reduction to Ŭ sc,μ
v .

Consider the associativeC(v)-algebra Ŭ sc,μ
v (resp. itsC[v, v−1]-subalgebra Ŭsc,μ

v ),
defined in the same way as U sc,μ

v (resp. as U
sc,μ
v ) but without the generators

{(ψ+i,0)−1, (ψ−i,bi )−1}n−1i=1 , so thatU
sc,μ
v is the localization of Ŭ sc,μ

v by themultiplicative

set S generated by {ψ+i,0, ψ−i,bi }n−1i=1 .Hence, Proposition 4.5 follows from its counterpart

for Ŭ sc,μ
v :

Proposition 4.6 All unordered products E (r)
j,i+1F

(s)
i ′+1, j ′ are equal to C[v, v−1]-linear

combinations of the ordered PBWD monomials in the algebra Ŭ sc,μ
v
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We define the C(v)-subalgebras Ŭ sc,μ;>
v , Ŭ sc,μ;<

v , Ŭ sc,μ;0
v of Ŭ sc,μ

v accordingly.
Analogously to Finkelberg and Tsymbaliuk (2017, Proposition 5.1), the multi-
plication map m : Ŭ sc,μ;<

v ⊗ Ŭ sc,μ;0
v ⊗ Ŭ sc,μ;>

v → Ŭ sc,μ
v is an isomorphism

of C(v)-vector spaces, and the subalgebras Ŭ sc,μ;<
v , Ŭ sc,μ;>

v are isomorphic to
U<
v (Lsln) � U<

v (Lgln),U
>
v (Lsln) � U>

v (Lgln), respectively. Combining this with
Theorem 3.25(b,d), we see that the ordered PBWDmonomials form a basis of aC(v)-
vector space Ŭ sc,μ

v . The following result generalizes the key verification in our proof
of Theorem 3.24:

Lemma 4.7 Proposition 4.6 holds for μ = 0.

Proof According to Step 1, E (r)
j,i+1F

(s)
i ′+1, j ′ ∈ U sc,0

v equals a C[v, v−1]-linear combi-

nation of the ordered PBWDmonomials inU sc,0
v . Hence, it suffices to show that none

of these ordered monomials contains negative powers of either ψ+i,0 or ψ
−
i,0. Assume

the contrary. For 1 ≤ i < n and ε ∈ {±}, choose N ε
i ∈ N so that −N ε

i is the minimal
of the negative powers of ψε

i,0 among the corresponding summands. Without loss of

generality, we may assume that N−1 > 0. Set ψ := ∏n−1
i=1

(

(ψ+i,0)
N+i (ψ−i,0)

N−i
)

∈ S.

Multiplying the equality inU sc,0
v expressing E (r)

j,i+1F
(s)
i ′+1, j ′ as aC[v, v−1]-linear com-

bination of the ordered PBWD monomials by ψ , we obtain an equality in Ŭ sc,0
v .

Specializing further ψ−1,0 to 0, gives rise to an equality in Ŭ sc,−ω1
v (as before, ω1

denotes the first fundamental coweight). As N−1 > 0, the left-hand side specializes to
zero. Meanwhile, every summand of the right-hand side specializes either to zero or to
an ordered PBWDmonomial in Ŭ sc,−ω1

v . Note that there is at least one summandwhich
does not specialize to zero, and the images of all those are pairwise distinct ordered
PBWDmonomials. This contradicts the fact (pointed out right before Lemma 4.7) that
the ordered PBWD monomials form a basis of a C(v)-vector space Ŭ sc,−ω1

v . Hence,
the contradiction.

This completes our proof of Lemma 4.7. ��
Step 3: Case of antidominant μ.

For an antidominant μ, consider a C(v)-algebra epimorphism πμ : Ŭ sc,0
v � Ŭ sc,μ

v

defined by

ei,r �→ ei,r , fi,r �→ fi,r , ψ+i,s �→ ψ+i,s,

ψ−i,−s �→
{

ψ−i,−s, if s ≥ −bi
0, if otherwise

for 1 ≤ i < n, r ∈ Z, s ∈ N.

Using Lemma 4.7, let us express E (r)
j,i+1F

(s)
i ′+1, j ′ as a C[v, v−1]-linear combination

of the ordered PBWD monomials in Ŭ sc,0
v , and apply πμ to the resulting equality

in Ŭ sc,0
v . Since πμ(E

(r)
j,i+1F

(s)
i ′+1, j ′) = E (r)

j,i+1F
(s)
i ′+1, j ′ and πμ maps ordered PBWD

monomial in Ŭ sc,0
v either to the ordered PBWD monomial in Ŭ sc,μ

v or to zero, we see
that Proposition 4.6 holds for antidominant μ.

Step 4: General case.
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Since Proposition 4.6 holds for antidominant μ (Step 3) and any coweight can be
written as a sum of an antidominant coweight and several fundamental coweights ω�,
it suffices to prove the following result:

Lemma 4.8 If Proposition 4.6 holds for a coweight μ, then it also holds for the
coweights μ+ ω� (1 ≤ � ≤ n − 1).

Proof Recall the shift homomorphism ῐμ+ω�,−ω�,0 : Ŭ sc,μ+ω�
v → Ŭ sc,μ

v [cf. (Finkel-
berg and Tsymbaliuk 2017, Lemma 10.24, Appendix E)] defined explicitly via

ei,r �→ ei,r − δi,�ei,r−1, fi,r �→ fi,r , ψ+i,s �→ ψ+i,s − δi,�ψ
+
i,s−1,

ψ−i,s �→ ψ−i,s − δi,�ψ
−
i,s−1,

where we set ψ+�,−1 := 0 and ψ−�,b�+1 := 0 in the right-hand sides.

First, we note that ῐμ+ω�,−ω�,0(Ŭ
sc,μ+ω�
v ) ⊂ Ŭ

sc,μ
v . Indeed, F (r)

i+1, j is clearly

fixed by ῐμ+ω�,−ω�,0, while E (r)
j,i+1 is either fixed (if � < j or � > i) or is

mapped to E (r)
j,i+1 − E j,i+1(r − 1) for a certain decomposition of r − 1 (cf. for-

mula (3.32) and the discussion preceding it), and is therefore still an element of
Ŭ
sc,μ
v , due to Theorem 3.25(a). Hence, applying our assumption to Ŭ sc,μ

v , we see
that ῐμ+ω�,−ω�,0(E

(r)
j,i+1F

(s)
i ′+1, j ′) equals a C[v, v−1]-linear combination of the ordered

PBWD monomials in Ŭ sc,μ
v . On the other hand, let us write E (r)

j,i+1F
(s)
i ′+1, j ′ as a C(v)-

linear combination of the ordered PBWDmonomials in Ŭ sc,μ+ω�
v (such a presentation

exists and is unique as the ordered PBWD monomials form a basis of a C(v)-vector
space Ŭ sc,μ+ω�

v ):

E (r)
j,i+1F

(s)
i ′+1, j ′ =

∑

α,β+,β−
Fαψ

+
β+ψ

−
β−E(α, β+, β−), (4.4)

where Fα, ψ
+
β+ , ψ

−
β− range over all ordered monomials in {F (•)•,• }, {ψ+•,•}, {ψ−•,•},

respectively, while E(α, β+, β−) are elements of Ŭ sc,μ+ω�;>
v and only finitely many

of them are nonzero. From now on, we identify Ŭ sc,μ+ω�;>
v � U>

v (Lsln) �
Ŭ sc,μ;>
v , Ŭ

sc,μ+ω�;>
v � U>

v (Lsln) � Ŭ
sc,μ;>
v . Thus, it remains to verify the inclu-

sions
E(α, β+, β−) ∈ U>

v (Lsln) for all α, β+, β−. (4.5)

The proof of (4.5) utilizes the shuffle interpretations of both the subalgebras
U>
v (Lsln), U>

v (Lsln) and the restriction of the shift homomorphism ῐμ+ω�,−ω�,0 :
Ŭ sc,μ+ω�;>
v → Ŭ sc,μ;>

v . Recall theC(v)-algebra isomorphism� : U>
v (Lsln) ∼−→ S(n)

of Theorem 3.28, which gives rise to a C[v, v−1]-algebra isomorphism
� : U>

v (Lgln)
∼−→S(n), see Theorem 3.30. By the above discussion, applying

ῐμ+ω�,−ω�,0 to the right-hand side of (4.4), we get a C[v, v−1]-linear combination
of the ordered PBWD monomials. Recall that ῐμ+ω�,−ω�,0 fixes all Fα , maps ψ+

β+
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to itself plus some smaller terms (wrt the ordering) and maps ψ−
β− to itself (with the

indices ofψ−�,• shifted by−1) plus some smaller terms (wrt the ordering). Furthermore,
according to Finkelberg and Tsymbaliuk (2017, Proposition I.4), the homomorphism
ῐμ+ω�,−ω�,0 : Ŭ sc,μ+ω�;>

v → Ŭ sc,μ;>
v is intertwined (under the above identifications

of Ŭ sc,μ+ω�;>
v , Ŭ sc,μ;>

v with U>
v (Lsln) � S(n)) with the graded C(v)-algebra homo-

morphism ι′� : S(n) → S(n) of (3.39). According to Proposition 3.29(a), f ∈ S(n) if
and only if ι′�( f ) ∈ S(n). Hence, a simple inductive argument (for every α, we use a
descending induction in β+, and then a descending induction in β−) implies (4.5).

This implies the validity of Proposition 4.6 for the coweightμ+ω� (1 ≤ � ≤ n−1).
��

This completes our proof of Theorem 4.4. ��

4.2 K-theoretic Coulomb Branch

Following Braverman et al. (2016, 2019) and using our notations of Sect. 2.9,
consider the (extended) quantized K -theoretic Coulomb branch Av =
K (˜GL(V )×TW )O�˜C

×
(RGL(V ),N).

Here ˜GL(V ) is a certain 2n−1-cover of GL(V ) and ˜C× is a two-fold cover of C
×,

as defined in Finkelberg and Tsymbaliuk (2017, §8(i)) . We identify KTW (pt) =
C[z±11 , . . . , z±1N ] and K

˜C×(pt) = C[v, v−1]. Recall a C[v, v−1][z±11 , . . . , z±1N ]-
algebra embedding z∗(ι∗)−1 : Av ↪→ ˜Av[z±11 , . . . , z±1N ] of Finkelberg and Tsym-
baliuk (2017, §8(i)).

Set Av
frac := Av ⊗C[v,v−1] C(v). According to Finkelberg and Tsymbaliuk (2017,

Theorem 8.5), the homomorphism ˜�λ
μ : U ad,μ

v [z±11 , . . . , z±1N ] → ˜Av
frac[z±11 , . . . , z±1N ]

factors through Av
frac (embedded via z∗(ι∗)−1). In other words, there is a unique

homomorphism �
λ

μ : U ad,μ
v [z±11 , . . . , z±1N ] → Av

frac, such that the composition

U ad,μ
v [z±11 , . . . , z±1N ]

�
λ
μ−→ Av

frac
z∗(ι∗)−1−−−−→ ˜Av

frac[z±11 , . . . , z±1N ] coincides with ˜�λ
μ.

Our next result establishes a certain integrality property of the homomorphism�
λ

μ:

Proposition 4.9 �
λ

μ(U
ad,μ
v [z±11 , . . . , z±1N ])) ⊂ Av .

As the first ingredient of the proof, let us find explicit formulas for ˜�λ
μ(E

(r)
j,i+1),

˜�
λ
μ(F

(r)
i+1, j ).

Lemma 4.10 For any 1 ≤ j ≤ i < n and r ∈ Z, the following equalities hold:

˜�
λ
μ(E

(r)
j,i+1) = (−1)i− j ·

ai
∏

t=1
wi,t

i−1
∏

k= j

ak
∏

t=1
w1/2
k,t

a j−1
∏

t=1
w−1/2j−1,t

×
∑

1≤r j≤a j···
1≤ri≤ai

W j−1(v−1w j ,r j )
∏i−1

k= j Wk,rk (v
−1wk+1,rk+1 )

∏i
k= j Wk,rk (wk,rk )

·
i
∏

k= j

Zk (wk,rk ) ·
w1+r
j,r j

wi,ri
·

i
∏

k= j

D−1k,rk
,

(4.6)
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˜�
λ
μ(F

(r)
i+1, j ) = (−1)i− j v j−1−i+2r ·

i+1
∏

k= j+1

ak
∏

t=1
w−1/2k,t

×
∑

1≤r j≤a j···
1≤ri≤ai

∏i
k= j+1Wk,rk (vwk−1,rk−1 )Wi+1(vwi,ri )

∏i
k= j Wk,rk (wk,rk )

· wi,ri

w1−r
j ,r j

·
i
∏

k= j

Dk,rk . (4.7)

Proof Straightforward computation. ��

This lemma may be viewed as a trigonometric counterpart of Lemma 2.37.

Proof of Proposition 4.9 By explicit formulas of Theorem 4.1, we clearly have

�
λ

μ((φ
ε
i )
±1) ∈ Av for ε = ±. Since ˜�λ

μ(ψ
±
j,±s) are Laurent polynomials in

{w1/2
i,t }1≤t≤ai1≤i≤n−1 with coefficients in C[v, v−1][z±11 , . . . , z±1N ] and are symmetric in

each family {w1/2
i,t }ait=1 (1 ≤ i < n), we immediately get �

λ

μ(ψ
±
j,±s) ∈ Av . Hence, it

remains to verify the inclusions�
λ

μ(E
(r)
j,i+1),�

λ

μ(F
(r)
i+1, j ) ∈ Av for all 1 ≤ j ≤ i < n

and r ∈ Z.
Recall the setup of (Finkelberg and Tsymbaliuk 2017, §8(i)). For 1≤ j ≤ i < n,

we consider a coweight λ j i = (0, . . . , 0,� j,1, . . . ,�i,1, 0, . . . , 0) (resp. λ∗j i =
(0, . . . , 0,� ∗j,1, . . . ,� ∗i,1, 0, . . . , 0)) of GL(V ) = GL(V1) × · · · × GL(Vn−1). The

corresponding orbits Gr
λ j i

GL(V ),Gr
λ∗j i
GL(V ) ⊂ GrGL(V ) are closed (they are products of

the minuscule orbits, isomorphic to P
a j−1 × · · · × P

ai−1). Their preimages in the
variety of triples RGL(V ),N are denoted by Rλ j i ,Rλ∗j i , respectively.

Then the right-hand side of (4.6) equals

z∗(ι∗)−1
(

(−1)i− jdet−1/2j−1 · det1/2j · . . . · det1/2i−1 · deti · O� ∗j,1(−r − 1) � O� ∗i,1(1)
)

,

(4.8)
while the right-hand side of (4.7) equals

z∗(ι∗)−1
(

(−1)i− jv j−1−i+2rdet−1/2j+1 · . . . · det−1/2i+1 · O� j,1(r − 1) � O�i,1(1)
)

.

(4.9)
Here detk stands for the determinant character of GL(Vk), while O�k,1(s) stands for
the class of the line bundle O(s) on Gr�k,1 � P

ak−1, and everything is pulled back to
Rλ j i (similarly for O� ∗k,1(s)). ��

To prove the main result of this subsection, let us obtain shuffle descrip-
tions of the restrictions ˜�λ

μ : U ad,μ;>
v [z±11 , . . . , z±1N ] → ˜Av

frac[z±11 , . . . , z±1N ] and
˜�

λ
μ : U ad,μ;<

v [z±11 , . . . , z±1N ] → ˜Av
frac[z±11 , . . . , z±1N ]. In other words, evoking

the isomorphism � : U>
v (Lgln)

∼−→ S(n) of Theorem 3.28 and the isomorphism

� : U<
v (Lgln)

∼−→ S(n),op of Remark 3.31, we compute the resulting homomorphisms
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˜�
λ
μ : S(n)[z±11 , . . . , z±1N ] � U ad,μ;>

v [z±11 , . . . , z±1N ] −→ ˜Av
frac[z±11 , . . . , z±1N ]

(4.10)

and

˜�
λ
μ : S(n),op[z±11 , . . . , z±1N ] � U ad,μ;<

v [z±11 , . . . , z±1N ] −→ ˜Av
frac[z±11 , . . . , z±1N ].

(4.11)

For any 1 ≤ i < n and 1 ≤ r ≤ ai , we define Yi,r (z) := Zi (z)Wi−1(v−1z)
Wi,r (z)

,Y ′i,r (z) :=
Wi+1(vz)
Wi,r (z)

. We also recall the functions ζi, j (z) = z−v−ci j
z−1 of Sect. 3.6.

Theorem 4.11 (a) For any E ∈ S(n)k [z±11 , . . . , z±1N ], its image under the homomor-

phism ˜�λ
μ of (4.10) equals

˜�
λ
μ(E) = v−

∑n−1
i=1 ki (ki−1)(v − v−1)−

∑n−1
i=1 ki

n−1
∏

i=1

ai
∏

r=1
w
ki− 1

2 ki+1
i,r

×
m(i)
r ∈N
∑

m(1)
1 +···+m(1)

a1 =k1···
m(n−1)
1 +···+m(n−1)

an−1 =kn−1

⎛

⎜

⎝

n−1
∏

i=1

ai
∏

r=1

m(i)
r
∏

p=1
Yi,r (v

−2(p−1)wi,r ) · E
⎛

⎜

⎝
{v−2(p−1)wi,r } 1≤i<n

1≤r≤ai
1≤p≤m(i)

r

⎞

⎟

⎠

×
n−1
∏

i=1

ai
∏

r=1

∏

1≤p1<p2≤m(i)
r

ζ−1i,i (v
−2(p1−1)wi,r , v

−2(p2−1)wi,r )

×
n−1
∏

i=1

∏

1≤r1 �=r2≤ai

1≤p2≤m(i)
r2

∏

1≤p1≤m(i)
r1

ζ−1i,i (v
−2(p1−1)wi,r1 , v

−2(p2−1)wi,r2 )

×
n−2
∏

i=1

1≤r2≤ai
∏

1≤r1≤ai+1

1≤p2≤m(i)
r2

∏

1≤p1≤m(i+1)
r1

ζ−1i+1,i (v
−2(p1−1)wi+1,r1 , v−2(p2−1)wi,r2 ) ·

n−1
∏

i=1

ai
∏

r=1
D−m

(i)
r

i,r

⎞

⎟

⎠
.

(4.12)

(b) For any F ∈ S(n),opk [z±11 , . . . , z±1N ], its image under the homomorphism ˜�
λ
μ

of (4.11) equals

˜�
λ
μ(F) = (1− v2)−

∑n−1
i=1 ki

n−1
∏

i=1

ai
∏

r=1
w
− 1

2 ki−1
i,r

×
m(i)
r ∈N
∑

m(1)
1 +···+m(1)

a1 =k1···
m(n−1)
1 +···+m(n−1)

an−1 =kn−1

⎛

⎜

⎝

n−1
∏

i=1

ai
∏

r=1

m(i)
r
∏

p=1
Y ′i,r (v2(p−1)wi,r ) · F

⎛

⎜

⎝
{v2pwi,r } 1≤i<n

1≤r≤ai
1≤p≤m(i)

r

⎞

⎟

⎠
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×
n−1
∏

i=1

ai
∏

r=1

∏

1≤p1<p2≤m(i)
r

ζ−1i,i (v
2(p2−1)wi,r , v

2(p1−1)wi,r )

×
n−1
∏

i=1

∏

1≤r1 �=r2≤ai

1≤p2≤m(i)
r2

∏

1≤p1≤m(i)
r1

(

v−1 · ζ−1i,i (v
2(p2−1)wi,r2 , v

2(p1−1)wi,r1)
)

×
n−2
∏

i=1

1≤r2≤ai
∏

1≤r1≤ai+1

1≤p2≤m(i)
r2

∏

1≤p1≤m(i+1)
r1

ζ−1i+1,i (v
2(p1−1)wi+1,r1 , v2(p2−1)wi,r2) ·

n−1
∏

i=1

ai
∏

r=1
Dm(i)

r
i,r

⎞

⎟

⎠
.

(4.13)

Proof (a) Let us denote the right-hand side of (4.12) by �(E). A tedious straightfor-
ward verification proves�(E�E ′) = �(E)�(E ′), that is,� is aC(v)[z±11 , . . . , z±1N ]-
algebra homomorphism. On the other hand, S(n)[z±11 , . . . , z±1N ] is generated over

C(v)[z±11 , . . . , z±1N ] by its components {S(n)1i
}n−1i=1 with 1i = (0, . . . , 0, 1, 0, . . . , 0) ∈

N
n−1 (here 1 stays at the i-th coordinate), due to the isomorphism

� : U>
v (Lgln)

∼−→ S(n). Comparing (4.12) with the formulas of Theorem 4.1, we

immediately get �(E) = ˜�
λ
μ(E) for E ∈ S(n)1i

(1 ≤ i < n). Hence, we have

�(E) = ˜�λ
μ(E) for any E ∈ S(n)[z±11 , . . . , z±1N ]. This completes our proof of Theo-

rem 4.11(a).
(b) The proof of Theorem 4.11(b) is completely analogous. ��

For any 1 ≤ j ≤ i < n, a vector k = (0, . . . , 0, k j , . . . , ki , 0, . . . , 0) ∈ N
n−1 with

1 ≤ k� ≤ a� ( j ≤ � ≤ i), a collection of integers γ� ∈ Z ( j ≤ � ≤ i), and a col-
lection of symmetric Laurent polynomials g�({x�,r }k�r=1) ∈ C[v, v−1][{x±1�,r }k�r=1]�k�

( j ≤ � ≤ i), consider shuffle elements ˜E ∈ S(n)k and ˜F ∈ S(n),opk given by:

˜E := (−1)
∑i−1

�= j k�k�+1v
∑i

�= j k�(k�−1)(v − v−1)
∑i

�= j k�

×
∏i

�= j
∏

1≤r1 �=r2≤k�
(

x�,r1 − v−2x�,r2
) ·∏i

�= j
∏k�

r=1 x
γ�+1+k�−1−k�
�,r ·∏ j

�= j g�
(

{x�,r }k�r=1
)

∏i−1
�= j

∏1≤r2≤k�+1
1≤r1≤k�

(

x�,r1 − x�+1,r2
)

(4.14)
and

˜F := (−1)
∑i

�= j k�v
∑i

�= j k�(k�+k�+1−2γ�)(v − v−1)
∑i

�= j k�

×
∏i

�= j
∏

1≤r1 �=r2≤k� (x�,r1 − v−2x�,r2 ) ·
∏i

�= j
∏k�

r=1 x
γ�+1+k�+1−k�
�,r ·∏ j

�= j g�({v−2x�,r }k�r=1)
∏i−1

�= j

∏1≤r2≤k�+1
1≤r1≤k� (x�,r1 − x�+1,r2 )

.

(4.15)
These elements obviously satisfy the pole conditions (3.37) as well as the wheel

conditions (3.38), due to the presence of the factor
∏i

�= j
∏

1≤r1 �=r2≤k� (x�,r1−v−2x�,r2)
in the right-hand sides of (4.14, 4.15). Moreover, ˜E ∈ S

(n)
k and ˜F ∈ S

(n),op
k , due to
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Proposition 3.29(b). These elements are of crucial importance due to Proposition 4.12
and Remark 4.14, which play the key role in our proof of Theorem 4.15 below.

Proposition 4.12 (a) For ˜E ∈ S
(n)
k given by (4.14), we have

˜�
λ
μ(˜E) =

i
∏

�= j−1

a�
∏

r=1
w
k�− 1

2 k�+1
�,r

×
∑

J j⊂{1,...,a j }:|J j |=k j···
Ji⊂{1,...,ai }:|Ji |=ki

⎛

⎝

∏1≤s≤a j−1
r∈J j

(

1− w j−1,s
v−1w j,r

)

·∏i−1
�= j

∏s /∈J�
r∈J�+1

(

1− w�,s

v−1w�+1,r

)

∏i
�= j
∏s /∈J�

r∈J� (1−
w�,s
w�,r

)

×
i
∏

�= j

∏

r∈J�
Z�(w�,r ) ·

i
∏

�= j

∏

r∈J�
wγ�

�,r ·
i
∏

�= j

g�
({w�,r }r∈J�

) ·
i
∏

�= j

∏

r∈J�
D−1�,r

⎞

⎠ .

(4.16)
(b) For ˜F ∈ S

(n),op
k given by (4.15), we have

˜�
λ
μ(˜F) =

i+1
∏

�= j+1

a�
∏

r=1
w
− 1

2 k�−1
�,r

×
∑

J j⊂{1,...,a j }:|J j |=k j···
Ji⊂{1,...,ai }:|Ji |=ki

⎛

⎝

∏1≤s≤ai+1
r∈Ji

(

1− wi+1,s
vwi,r

)

·∏i
�= j+1

∏s /∈J�
r∈J�−1

(

1− w�,s
vw�−1,r

)

∏i
�= j
∏s /∈J�

r∈J�
(

1− w�,s
w�,r

)

×
i
∏

�= j

∏

r∈J�
wγ�

�,r ·
i
∏

�= j

g�
({w�,r }r∈J�

) ·
i
∏

�= j

∏

r∈J�
D�,r

⎞

⎠ .

(4.17)

Proof The proof is straightforward and is based on (4.12, 4.13). Due to the presence
of the factor

∏i
�= j
∏

1≤r1 �=r2≤k� (x�,r1 − v−2x�,r2) in (4.14, 4.15), all the summands

of (4.12, 4.13) with at least one index m(�)
r > 1 actually vanish. This explains why the

summations over all partitions of k� into the sum of a� nonnegative integers in (4.12,
4.13) are replaced by the summations over all subsets of {1, . . . , a�} of cardinality k�
in (4.16, 4.17). ��
Remark 4.13 In the particular case k� = 1, γ� = (r + 1)δ�, j − δ�,i , g� = 1 for

j ≤ � ≤ i , the element ˜E of (4.14) coincides with �((−1)i− j E (r)
j,i+1). Likewise, in

the particular case k� = 1, γ� = (r − 1)δ�, j + δ�,i , g� = 1 for j ≤ � ≤ i , the element
˜F of (4.15) coincides with �((−1)i− jvi+1− j−2r F (r)

i+1, j ). Hence, Proposition 4.12
generalizes Lemma 4.10.

Remark 4.14 For any 1 ≤ j ≤ i < n and k ∈ N
n−1 as above, we consider a coweight

κ j i = (0, . . . , 0,� j,k j , . . . ,�i,ki , 0, . . . , 0) (resp.κ
∗
j i = (0, . . . , 0,� ∗j,k j , . . . ,�

∗
i,ki

,
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0, . . . , 0)) of GL(V ), generalizing a coweight λ j i (resp. λ∗j i ) from our proof of

Proposition 4.9. The preimages of the corresponding orbits Gr
κ j i

GL(V ),Gr
κ∗j i
GL(V ) in the

variety of triples RGL(V ),N are denoted by Rκ j i ,Rκ∗j i , respectively. Similarly to (4.8,

4.9), the right-hand sides of (4.16, 4.17) equal z∗(ι∗)−1 of the appropriate classes in
K (˜GL(V )×TW )O�˜C

×
(Rκ∗j i ), K (˜GL(V )×TW )O�˜C

×
(Rκ j i ). Moreover, any classes in these

equivariant K -groups can be obtained this way for an appropriate choice of symmetric
Laurent polynomials g�.

Our next result may be viewed as a trigonometric/K -theoretic counterpart of
Proposition 2.36 as well as a generalization of Finkelberg and Tsymbaliuk (2017,
Theorem 9.2) and Cautis and Williams (2018, Corollary 2.21):

Theorem 4.15 �
λ

μ : Uad,μ
v [z±11 , . . . , z±1N ] → Av is surjective.

Proof We need to prove that K(˜GL(V )×TW )O�˜C×(pt) together with RHS of (4.8,

4.9) generate K (˜GL(V )×TW )O�˜C
×
(RGL(V ),N). Recall the filtration by support on

K (˜GL(V )×TW )O�˜C
×
(RGL(V ),N) defined in Braverman et al. (Braverman et al. 2019,

§6(i)) (strictly speaking, it is defined on the equivariant Borel–Moore homology
H (˜GL(V )×TW )O�˜C

×
(RGL(V ),N), but the definition works word-for-word in

the case of K -theory). It suffices to prove that the associated graded
gr K (˜GL(V )×TW )O�˜C

×
(RGL(V ),N) = ⊕λ K

(˜GL(V )×TW )O�˜C
×
(Rλ) is generated by the

right-hand sides of (4.16, 4.17) together with K(˜GL(V )×TW )O�˜C×(pt). Now the cone
of dominant coweights of GL(V ) is subdivided into chambers by the generalized root
hyperplanes (Braverman et al. 2019, §5(i)). Recall that the generalized roots are either
the roots wi,r − wi,s (1 ≤ i < n, 1 ≤ r �= s ≤ ai ) of gl(V ) or the nonzero weights
wi,r , wi,r − wi+1,s (1 ≤ i < n, 1 ≤ r ≤ ai , 1 ≤ s ≤ ai+1) of its module N. Hence
a chamber is cut out by the following conditions:

(a) For any pair of adjacent vertices i, j , we fix a shuffle, i.e. a permutation σ

of {1, . . . , ai , ai + 1, . . . , ai + a j } such that σ(b) < σ(c) if 1 ≤ b < c ≤ ai or

ai < b < c ≤ ai + a j . Then we require λ
(i)
b ≤ λ

( j)
b′ if σ(b) > σ(ai + b′), and

λ
(i)
b ≥ λ

( j)
b′ if σ(b) < σ(ai + b′).

(b) For any vertex i we fix a number 0 ≤ di ≤ ai and require λ
(i)
b ≥ 0 for

1 ≤ b ≤ di , and λ
(i)
b ≤ 0 for di < b ≤ ai .

So the chambers are numbered by the choices of shuffles for all the adjacent pairs
(i, j = i ± 1) of vertices and the choices of numbers di for all the vertices. The
intersection of a chamber C with the lattice of integral coweights is generated by the
collections of fundamental coweights (�

(i)
bi

) and the collections of dual coweights

(�
(i)∗
ci ) (we allow 0 ≤ bi , ci ≤ ai ) such that
(a) for any pair of adjacent vertices (i, j) and the corresponding shuffle σ , we

have σ(b) > σ(c) for any 1 ≤ b ≤ bi , ai + b j < c ≤ ai + a j as well as for any
1 ≤ b ≤ ai − ci , ai + a j − c j < c ≤ ai + a j .

(b) For any vertex i and the corresponding number di , we have bi ≤ di < ai − ci .
For any interval [ j, i] = { j, j + 1, . . . , i} ⊂ {1, . . . , n − 1}, we con-

sider collections of coweights κ j i = (0, . . . , 0,� j,k j , . . . ,�i,ki , 0, . . . , 0) and
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κ∗j i = (0, . . . , 0,� ∗j,k j , . . . ,�
∗
i,ki

, 0, . . . , 0). According to Remark 4.14, any

class in K (˜GL(V )×TW )O�˜C
×
(Rκ∗j i ), K (˜GL(V )×TW )O�˜C

×
(Rκ j i ) lies in the image of

U
ad,μ
v [z±11 , . . . , z±1N ] under�λ

μ. According to the previous paragraph, for any chamber

C , the equivariant K -groups K (˜GL(V )×TW )O�˜C
×
(Rκ∗j i ) and K (˜GL(V )×TW )O�˜C

×
(Rκ j i )

(we take all the collections κ j i , κ
∗
j i generating C) generate the subring

⊕

λ∈C K (˜GL(V )×TW )O�˜C
×
(Rλ) of gr K (˜GL(V )×TW )O�˜C

×
(RGL(V ),N). Indeed, if λ,μ

lie in the same chamber C , then (π∗cλ) ∗ (π∗cμ) = π∗(cλ ∗ cμ) (as in (Braver-
man et al. 2019, §6(i)), π stands for the projection Rλ → GrλGL(V )) for any classes

cλ ∈ K (˜GL(V )×TW )O�˜C
×
(GrλGL(V )), cμ ∈ K (˜GL(V )×TW )O�˜C

×
(GrμGL(V )). And the

equivariant K -theory of GrGL(V ) is generated by the equivariant K -groups of prod-
ucts of fundamental orbits by the argument in the beginning of the proof of Cautis and
Williams (2018, Corollary 2.21). Hence, the appropriate classes in (4.16, 4.17) gener-
ate the entire associated graded ring gr K (˜GL(V )×TW )O�˜C

×
(RGL(V ),N) (cf. (Bullimore

et al. 2017, §6.3), especially the last paragraph).
This completes our proof of Theorem 4.15. ��

Remark 4.16 The above proof of Theorem 4.15 follows the one of Cautis andWilliams
(2018, Corollary 2.21), but crucially relies on the construction of certain elements of
the integral formU

ad,μ
v [z±11 , . . . , z±1N ]whose shuffle realization is given by explicit for-

mulas (4.14, 4.15) (let us emphasize that the explicit formulas for �−1(˜E),�−1(˜F)

are not known). The same argument can be used to obtain a new proof of Propo-
sition 2.36. To this end, let W (n) ⊃ W(n) be the rational shuffle algebra and its
integral form of Tsymbaliuk (2018, §6). Similar to Theorems 3.28, 3.30, there is a
C[�]-algebra isomorphism� : Y>

�
(sln)

∼−→W (n), which gives rise to a C[�]-algebra
isomorphism � : Y>

�
(sln)

∼−→W(n), see Tsymbaliuk (2018, Theorems 6.20, 6.27).
Then, for any 1 ≤ j ≤ i < n, a vector k = (0, . . . , 0, k j , . . . , ki , 0, . . . , 0) ∈ N

n−1
with 1 ≤ k� ≤ a� ( j ≤ � ≤ i), and a collection of symmetric polynomials
g�({x�,r }k�r=1) ∈ C[�][{x�,r }k�r=1]�k� ( j ≤ � ≤ i), consider shuffle elements ˜E ∈W

(n)
k

and ˜F ∈W
(n),op
k given by:

˜E := �

∑i
�= j k� ·

∏i
�= j
∏

1≤r1 �=r2≤k� (x�,r1 − x�,r2 + �) ·∏ j
�= j g�({x�,r }k�r=1)

∏i−1
�= j

∏1≤r2≤k�+1
1≤r1≤k� (x�,r1 − x�+1,r2)

(4.18)

and

˜F := �

∑i
�= j k� ·

∏i
�= j
∏

1≤r1 �=r2≤k� (x�,r1 − x�,r2 + �) ·∏ j
�= j g�({v−2x�,r }k�r=1)

∏i−1
�= j

∏1≤r2≤k�+1
1≤r1≤k� (x�,r1 − x�+1,r2)

.

(4.19)
These are the rational counterparts of the elements in (4.14, 4.15). Similar to Propo-
sition 4.12, we have the following explicit formulas (generalizing Lemma 2.37,
cf. Remark 4.13):
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�
λ
μ(�

−1(˜E)) = (−1)
∑i

�= j k�+
∑i−1

�= j k�k�+1

×
∑

J j⊂{1,...,a j }:|J j |=k j···
Ji⊂{1,...,ai }:|Ji |=ki

⎛

⎝

∏1≤s≤a j−1
r∈J j (w j,r − w j−1,s − �

2 ) ·
∏i−1

�= j

∏s /∈J�
r∈J�+1 (w�+1,r − w�,s − �

2 )

∏i
�= j
∏s /∈J�

r∈J� (w�,r − w�,s)

×
i
∏

�= j

∏

r∈J�
Z�(w�,r ) ·

i
∏

�= j

g�({w�,r }r∈J� ) ·
i
∏

�= j

∏

r∈J�
u−1�,r

⎞

⎠

(4.20)
and

�
λ
μ(�

−1(˜F))

=
∑

J j⊂{1,...,a j }:|J j |=k j···
Ji⊂{1,...,ai }:|Ji |=ki

⎛

⎝

∏1≤s≤ai+1
r∈Ji (wi,r − wi+1,s + �

2 ) ·
∏i

�= j+1
∏s /∈J�

r∈J�−1 (w�−1,r − w�,s + �

2 )
∏i

�= j
∏s /∈J�

r∈J� (w�,r − w�,s )

×
i
∏

�= j

g�({w�,r }r∈J� ) ·
i
∏

�= j

∏

r∈J�
u�,r

⎞

⎠ .

(4.21)

4.3 Explicit Description for� = 0,� = n!n−1

Following Finkelberg and Tsymbaliuk (2017, §7(ii)), consider new Cartan generators
{A±i,±r }r≥01≤i<n of U ad,μ

v [z±11 , . . . , z±1N ] which are uniquely characterized by A±i,0 :=
(φ±i )−1 and

ψ+i (z) =
(

Zi (z)

∏

j−i A
+
j (v
−1z)

A+i (z)A
+
i (v
−2z)

)+
,

ψ−i (z) =
(

Ẑi (z)
∏is=i

1≤s≤N zs

(−z/v)α∨i (μ)
·
∏

j−i A
−
j (v
−1z)

A−i (z)A
−
i (v
−2z)

)−
, (4.22)

where we set A±i (z) :=
∑

r≥0 A
±
i,±r z∓r and Ẑi (z) :=∏is=i

1≤s≤N (1− z
vzs

).
Following Finkelberg and Tsymbaliuk (2017, §8(iii)), define the truncation ideal

I
λ
μ as the 2-sided ideal ofU ad,μ

v [z±11 , . . . , z±1N ] generated over C(v)[z±11 , . . . , z±1N ] by
the following elements:

A±i,0A
±
i,±ai − (−1)ai , A±i,±s, A+i,ai−r − (−1)ai A−i,−r (0 ≤ r ≤ ai < s). (4.23)

For any λ,μ, we have ˜�λ
μ : A+i (z) �→

∏ai
r=1w

−1/2
i,r ·Wi (z), A−i (z) �→

∏ai
r=1w

1/2
i,t ·

∏ai
r=1(1 − z

wi,r
). Hence I

λ
μ ⊂ Ker(˜�λ

μ). The opposite inclusion is the subject of
Finkelberg and Tsymbaliuk (2017, Conjecture 8.14).
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Let us now formulate an integral version of this conjecture. Define the 2-sided ideal
I
λ
μ of Uad,μ

v [z±11 , . . . , z±1N ] as the intersection I
λ
μ := I

λ
μ ∩ U

ad,μ
v [z±11 , . . . , z±1N ]. We

also note that ˜�λ
μ(U

ad,μ
v [z±11 , . . . , z±1N ]) ⊂ ˜Av[z±11 , . . . , z±1N ], due to Proposition 4.9

and the inclusion z∗(ι∗)−1(Av) ⊂ ˜Av[z±11 , . . . , z±1N ].

Conjecture 4.17 I
λ
μ = Ker

(

˜�
λ
μ : Uad,μ

v [z±11 , . . . , z±1N ] → ˜Av[z±11 , . . . , z±1N ]
)

for all

λ,μ.

The goal of this subsection is to prove a reduced version of this equality in the
particular case μ = 0, λ = nωn−1 (so that N = n and ai = i for 1 ≤ i < n; recall
that a0 = 0, an = 0). Here, a reduced version means that we impose an extra relation
∏n

i=1 zi = 1 in all our algebras. We use Inωn−1
0 to denote the reduced version of the

corresponding truncation ideal, while ˜�nωn−1
0 denotes the resulting homomorphism

between the reduced algebras.

Theorem 4.18 I
nωn−1
0 = Ker(˜�nωn−1

0 ).

Our proof of this result is based on the identification of the reduced truncation ideal
I
nωn−1
0 with the kernel of a certain version of the evaluation homomorphism ev, which

is of independent interest.
Recall the commutative diagram (3.45). Adjoining extra variables {z±1i }ni=1 subject

to
∏n

i=1 zi = 1, we obtain the following commutative diagram:

U ad
v (Lsln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
ev−−−−→ U

′
v(gln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
⏐

⏐

�ϒ ϒ

⏐

⏐

�
�

U rtt,′
v (Lgln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
evrtt−−−−→ U rtt,′

v (gln)[z±11 , . . . , z±1n ]/(
∏

zi − 1)
(4.24)

where

U
′
v(gln)[z±11 , . . . , z±1n ]/(

∏

zi − 1) :=U ′v(gln)⊗C(v) C(v)[z±11 , . . . , z±1n ]/(
n
∏

i=1
zi − 1)

and the other three algebras are defined likewise.
Recall the isomorphism U rtt,′

v (Lgln) � U rtt,′
v (Lsln)⊗C(v) ZU

rtt,′
v (Lgln) of (3.48),

which after adjoining extra variables {z±1i }ni=1 subject to
∏n

i=1 zi = 1 gives rise to an
algebra isomorphism

U rtt,′
v (Lgln)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1) �

U rtt,′
v (Lsln)⊗C(v) ZU

rtt,′
v (Lgln)⊗C(v) C(v)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1),

where ZU rtt,′
v (Lgln) denotes the center of U

rtt,′
v (Lgln).
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Let �±n (z) denote the quantum determinant qdet T±(z) of Definition 3.38, and

set �̂±n (z) := �(v1−nz). According to Proposition 3.39, the center ZU rtt,′
v (Lgln)

is isomorphic to the quotient of the polynomial algebra in {(d̂±0 )1/n, d̂±±r }r≥1 by the
relation (d̂+0 )1/n(d̂−0 )1/n = 1, that is,

ZU rtt,′
v (Lgln) � C(v)[{(d̂±0 )1/n, d̂±±r }r≥1]/((d̂+0 )1/n(d̂−0 )1/n − 1),

where d̂±±r are defined via �̂±n (z) =
∑

r≥0 d̂
±±r z∓r and (d̂±0 )1/n = (t[0])±1/n . Let J be

the 2-sided ideal ofU rtt,′
v (Lgln)[z±11 , . . . , z±1n ]/(

∏

zi −1) generated by the following
elements:

d̂±±s, (d̂±0 )1/n − 1 (s > n),

d̂+r − (−1)r er (z1, . . . , zn), d̂−−r − (−1)rz1 . . . zner (z−11 , . . . , z−1n ) (1 ≤ r ≤ n),

where er (•) denotes the r -th elementary symmetric polynomial. The ideal J is chosen
so that �̂+n (z)−

∏n
s=1(1− zs/z) ∈ J[[z−1]] and �̂−n (z)−

∏n
s=1(zs − z) ∈ J[[z]]. Let

π : U rtt,′
v (Lgln)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1) �

U rtt,′
v (Lsln)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1)

be thenatural projection alongJ. Set X1/n
0 := evrtt((d̂+0 )1/n), X1/n

n := −evrtt((d̂−0 )1/n),
and Xr := evrtt(d̂+r ) = (−1)nevrtt(d̂−−n+r ) for 0 ≤ r ≤ n, where the last equal-
ity follows from the explicit formulas for evrtt (which also imply evrtt(d̂±±s) =
0 for s > n). Then, the center ZU rtt,′

v (gln)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1) of

U rtt,′
v (gln)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1) is isomorphic to C(v)[z±11 , . . . , z±1n , X1/n

0 ,

X1, . . . , Xn−1, X1/n
n ]/(X1/n

0 X1/n
n + 1, z1 . . . zn − 1).

Define the extended quantized universal enveloping ˜U ad
v (sln) as the central reduc-

tion of U
′
v(gln)[z±11 , . . . , z±1n ]/(

∏

zi − 1) by the 2-sided ideal generated by

ϒ−1(X1/n
0 )− 1, ϒ−1(X1/n

n )+ 1, ϒ−1(Xr )− (−1)r er (z1, . . . , zn) (0 < r < n),

cf. Beilinson and Ginzburg (1999) (the appearance of sln is due to the fact that
ϒ−1(X0) = 1). By abuse of notation, we denote the corresponding projection
U
′
v(gln)[z±11 , . . . , z±1n ]/(

∏

zi−1) � ˜U ad
v (sln) byπ again. Likewise, define ˜U rtt,′

v (sln)

as the central reduction of U rtt,′
v (gln)[z±11 , . . . , z±1n ]/(

∏

zi − 1) by the 2-sided ideal

generated by {X1/n
0 − 1, X1/n

n + 1, Xr − (−1)r er (z1, . . . , zn)}n−1r=1 . By abuse of nota-
tion, we denote the corresponding projectionU rtt,′

v (gln)[z±11 , . . . , z±1n ]/(
∏

zi − 1) �
˜U rtt,′
v (sln) by π again. We denote the composition U rtt,′

v (Lgln)[z±11 , . . . , z±1n ]/
(
∏

zi − 1)
evrtt−−→ U rtt,′

v (gln)[z±11 , . . . , z±1n ]/(
∏

zi − 1)
π−→ ˜U rtt,′

v (sln) by evrtt. Note
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that by construction it factors through π :U rtt,′
v (Lgln)[z±11 , . . . , z±1n ]/(

∏

zi − 1) →
U rtt,′
v (Lsln)[z±11 , . . . , z±1n ]/(

∏

zi − 1), and we denote the corresponding homo-

morphism U rtt,′
v (Lsln)[z±11 , . . . , z±1n ]/(

∏

zi − 1) → ˜U rtt,′
v (sln) by evrtt again.

Likewise, we denote the composition U ad
v (Lsln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
ev−→

U
′
v(gln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
π−→ ˜U ad

v (sln) by ev.
Summarizing all the above, we obtain the following commutative diagram:

U ad
v (Lsln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
ev−−−−→ ˜U ad

v (sln)
⏐

⏐

�ϒ ϒ

⏐

⏐

�
�

U rtt,′
v (Lgln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
evrtt−−−−→ ˜U rtt,′

v (sln)
⏐

⏐

�
π

∥

∥

∥

U rtt,′
v (Lsln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
evrtt−−−−→ ˜U rtt,′

v (sln)

(4.25)

Due to the isomorphism U ad
v (Lsln) ∼−→U rtt,′

v (Lsln) of (3.46), the composition of the
left vertical arrows of (4.25) is an isomorphism:

π ◦ϒ : U ad
v (Lsln)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1)

∼−→U rtt,′
v (Lsln)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1).

The commutative diagram (4.25) in turn gives rise to the following commutative
diagram:

Uad
v (Lsln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
ev−−−−→ ˜Uad

v (sln)
⏐

⏐

�ϒ ϒ

⏐

⏐

�
�

Urtt,′
v (Lgln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
evrtt−−−−→ ˜Urtt,′

v (sln)
⏐

⏐

�
π

∥

∥

∥

Urtt,′
v (Lsln)[z±11 , . . . , z±1n ]/(

∏

zi − 1)
evrtt−−−−→ ˜Urtt,′

v (sln)

(4.26)

and the composition π ◦ϒ on the left is again an algebra isomorphism.
Here we use the following notations:

• Uad
v (Lsln)[z±11 , . . . , z±1n ]/(

∏

zi − 1) := Uad
v (Lsln) ⊗C[v,v−1] C[v, v−1][z±11 , . . . ,

z±1n ]/(
∏

zi − 1), or alternatively it can be defined as a C[v, v−1]-subalgebra
of U ad

v (Lsln)[z±11 , . . . , z±1n ]/(
∏

zi − 1) generated by {E (r)
j,i+1, F

(r)
i+1, j }r∈Z1≤ j≤i<n ∪

{ψ±i,±s}s≥11≤i<n ∪ {φ±1i }n−1i=1 ∪ {z±1i }ni=1.
• Urtt,′

v (Lgln)[z±11 , . . . , z±1n ]/(
∏

zi −1) := Urtt,′
v (Lgln)⊗C[v,v−1]C[v, v−1][z±11 , . . . ,

z±1n ]/(
∏

zi − 1) or alternatively it can be viewed as a C[v, v−1]-subalgebra of
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U rtt,′
v (Lgln)[z±11 , . . . , z±1n ]/(

∏

zi −1) generated by {t±i j [±r ]}r∈N1≤i, j≤n ∪{(t[0])±1/n}∪
{z±1i }ni=1.
• Urtt,′

v (Lsln)[z±11 , . . . , z±1n ]/(
∏

zi − 1) is defined similarly.
•˜Uad

v (sln) denotes the reduced extended version of U
′
v(gln), or alternatively it can be

viewed as aC[v, v−1]-subalgebra of ˜U ad
v (sln) generated by {E j,i+1, Fi+1, j }1≤ j≤i<n∪

{φ±1i }n−1i=1 ∪ {z±1i }ni=1.
•˜Urtt,′

v (sln) denotes the reduced extended version of U
rtt,′
v (gln), or alternatively it can

be viewed as a C[v, v−1]-subalgebra of ˜U rtt,′
v (sln) generated by {t±i j }ni, j=1 ∪ {t±1/n} ∪

{z±1i }ni=1.
Consider a natural projection

κ : Uad,0
v [z±11 , . . . , z±1n ]/(z1 . . . zn − 1) � Uad

v (Lsln)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1)
(4.27)

whose kernel is a 2-sided ideal generated by {φ+i φ−i − 1}n−1i=1 . Let ẽv denote the
composition ev◦κ. The following result can be viewed as a trigonometric counterpart
of Theorem 2.41:

Theorem 4.19 I
nωn−1
0 = Ker

(

ẽv : Uad,0
v [z±11 , . . . , z±1n ]/(

∏

zi − 1)→ ˜Uad
v (sln)

)

.

Proof In the particular case μ = 0, λ = nωn−1, we note that Z1(z) = · · · =
Zn−2(z) = 1, Zn−1(z) =∏n

s=1(1− zs
v−1z ), Ẑ1(z) = · · · = Ẑn−2(z) = 1, Ẑn−1(z) =

∏n
s=1(1 − v−1z

zs
). Let us introduce extra currents A±0 (z), A±n (z) via A±0 (z) :=

1, A+n (z) :=
∏n

s=1(1− zs/z), A−n (z) =
∏n

s=1(zs − z). Then, formula (4.22) relating
the generating series {ψ±k (z)}n−1k=1 to {A±k (z)}n−1k=1 can be uniformly written as follows:

ψ±k (z) = A±k−1(v−1z)A
±
k+1(v−1z)

A±k (z)A
±
k (v
−2z)

for any 1 ≤ k ≤ n − 1. (4.28)

Denoting the κ-images of ψ±k (z), A±k (z) again by ψ±k (z), A±k (z), we will view (4.28)
from now on as an equality of the series with coefficients in the algebra
U ad
v (Lsln)[z±11 , . . . , z±1n ]/(

∏

zi − 1).

Let �±k (z) denote the k-th principal quantum minor t1...k;±1...k (z) of T±(z), see Defi-
nition 3.37. According to Molev (2007), the following equality holds:

ϒ(ψ±k (z)) = �±k−1(v1−k z)�
±
k+1(v−1−k z)

�±k (v1−k z)�
±
k (v
−1−k z)

.

Generalizing �̂±n (z), define �̂±k (z) := �±k (v1−k z). Then, the above formula reads as

ϒ(ψ±k (z)) = �̂±k−1(v−1z)�̂
±
k+1(v−1z)

�̂±k (z)�̂
±
k (v
−2z)

.
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By abuse of notation, let us denote the image π(�̂±k (z)) by �̂±k (z) again. Note that
�̂±n (z) = A±n (z), due to our definition of π . Combining this with (4.28), we obtain
the following result:

Corollary 4.20 Under the isomorphism

π ◦ ϒ : Uad
v (Lsln)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1)

∼−→Urtt,′
v (Lsln)[z±11 , . . . , z±1n ]/(z1 . . . zn − 1),

the generating series A±k (z) are mapped into �̂±k (z), that is, π ◦ϒ(A±k (z)) = �̂±k (z).

Combining this result with the commutativity of the diagram (4.26) and the explicit
formulas evrtt(T+(z)) = T+ − T−z−1, evrtt(T−(z)) = T− − T+z, we get

Corollary 4.21 I
nωn−1
0 ⊆ Ker(ẽv).

The opposite inclusion I
nωn−1
0 ⊇ Ker(ẽv) follows from the equality ẽv = ev ◦ κ,

the obvious inclusion Ker(κ) ⊂ I
nωn−1
0 , the commutativity of the diagrams (4.25,

4.26), and Theorem 3.7 by noticing that �̂±1 (z) = t±11(z) and so

(π ◦ϒ)−1(t±11[±r ]) = A±1,±r ∈ κ(I
nωn−1
0 ) for r > 1,

(π ◦ϒ)−1(t±11[±1] + t∓11[0]) = A±1,±1 + A∓1,0 ∈ κ(I
nωn−1
0 ).

This completes our proof of Theorem 4.19. ��
Now we are ready to present the proof of Theorem 4.18.

Proof of Theorem 4.18 Recall the subtorus T ′W = {g ∈ TW | det(g) = 1} of TW , and

define Av := K (˜GL(V )×T ′W )O�˜C
×
(RGL(V ),N), so that Av � Av/(

∏

zi − 1). After
imposing

∏

zi = 1, the homomorphism ˜�nωn−1
0 : Uad,0

v [z±11 , . . . , z±1n ]/(
∏

zi − 1)→
˜Av[z±11 , . . . , z±1n ]/(

∏

zi − 1) is a composition of the surjective homomorphism

�
nωn−1
0 : Uad,0

v [z±11 , . . . , z±1n ]/(
∏

zi−1) � Av (seeTheorem4.15) and an embedding
z∗(ι∗)−1 : Av ↪→ ˜Av[z±11 , . . . , z±1n ]/(

∏

zi−1), so that Ker(˜�nωn−1
0 ) = Ker(�nωn−1

0 ).
The homomorphism �

nωn−1
0 factors through φ : ˜Uad

v (sln) � Av (due to Theo-
rem 4.19), and it remains to prove the injectivity of φ. Since both˜Uad

v (sln) andA
v are

free C[v, v−1]-modules, Ker(φ) is a flat C[v, v−1]-module. Hence, to prove the van-
ishing of Ker(φ), it suffices to prove the vanishing of Ker(φfrac : ˜U ad

v (sln) � Av
frac).

To this endwewill need the action ofU ad
v (Lsln) on the localized TW -equivariant K -

theory of theLaumonbased complete quasiflags’moduli spacesQ, see e.g. (Finkelberg
and Tsymbaliuk 2017, §12(v)). This action factors through the evaluation homomor-
phism and the action of U

′
v(gln) on the TW -equivariant K -theory in question, see

(Finkelberg and Tsymbaliuk 2017, Remark 12.8(c)). According to Braverman and
Finkelberg (2005, §2.26), the resulting U

′
v(gln)-module is nothing but the universal

Verma module. It is known that the action of U
′
v(gln) on the universal Verma module

extends uniquely to the action of the extended quantized universal enveloping ˜U
′
v(gln),
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and the latter action is effective. This implies that the resulting action of ˜U ad
v (sln) on

the localized T ′W -equivariant K -theory in question is also effective. According to
Bullimore et al. (2018), the K -theoretic Coulomb branch Av

frac acts naturally on the
T ′W -equivariant K -theory in question, and the action of ˜U ad

v (sln) factors through the
homomorphism φfrac : ˜U ad

v (sln) � Av
frac (see Finkelberg and Tsymbaliuk (2017,

Remark 12.8(c))). Hence, φfrac is injective.
This completes our proof of Theorem 4.18. ��

Corollary 4.22 The reduced quantized K -theoretic Coulomb branch Av is explicitly
given by Av � ˜Uad

v (sln).

4.4 Coproduct onUsc,�
v

In this subsection, we verify that the C(v)-algebra homomorphisms
�μ1,μ2: U sc,μ1+μ2

v → U sc,μ1
v ⊗ U sc,μ2

v constructed in Finkelberg and Tsymbaliuk
(2017, Theorem 10.26) give rise to the same named C[v, v−1]-algebra homomor-
phisms �μ1,μ2 : Usc,μ1+μ2

v → U
sc,μ1
v ⊗ U

sc,μ2
v . In other words, we have

Theorem 4.23 For any coweights μ1, μ2, the image of the C[v, v−1]-subalgebra
U
sc,μ1+μ2
v ⊂ U sc,μ1+μ2

v under the homomorphism �μ1,μ2 belongs to the C[v, v−1]-
subalgebraUsc,μ1

v ⊗Usc,μ2
v ⊂ U sc,μ1

v ⊗U sc,μ2
v . This gives rise to theC[v, v−1]-algebra

homomorphism

�μ1,μ2 : Usc,μ1+μ2
v → Usc,μ1

v ⊗ Usc,μ2
v .

Before proving this result, let us recall the key properties of�μ1,μ2 . Define integers
b1,i := α∨i (μ1), b2,i := α∨i (μ2) for 1 ≤ i < n. The homomorphism �0,0 essentially
coincides with the Drinfeld-Jimbo coproduct � on Uv(Lsln).

Ifμ1 andμ2 are antidominant (that is, b1,i , b2,i ≤ 0 for all i), then our construction
of �μ1,μ2 in Finkelberg and Tsymbaliuk (2017, Theorem 10.22) is explicit and is
based on the Levendorskii type presentation of antidominantly shifted quantum affine
algebras, see Finkelberg and Tsymbaliuk (2017, Theorem 5.5). To state the key prop-
erty of �μ1,μ2 (for antidominant μ1 and μ2) of Finkelberg and Tsymbaliuk (2017,
Propositions H.1, H.22), we introduce the following notations:
•LetU+v andU−v be the positive and the negativeBorel subalgebras in theDrinfeld-

Jimbo realization of Uv(Lsln), respectively. Explicitly, they are generated over C(v)

by {ei,0, (ψ+i,0)±1, F (1)
n1 }n−1i=1 and { fi,0, (ψ−i,0)±1, E (−1)

1n }n−1i=1 , respectively.
• Likewise, let U sc,μ1,μ2;+

v and U sc,μ1,μ2;−
v be the C(v)-subalgebras of U sc,μ1+μ2

v

generated by {ei,0, (ψ+i,0)±1, F (1)
n1 }n−1i=1 and { fi,b1,i , (ψ−i,b1,i+b2,i )±1, Ê

(−1)
1n }n−1i=1 , respec-

tively. Here the element Ê (−1)
1n is defined via Ê (−1)

1n := (v − v−1)[en−1,b2,n−1 , · · · ,
[e2,b2,2 , e1,b2,1−1]v−1 · · · ]v−1 .
Proposition 4.24 (Finkelberg and Tsymbaliuk 2017) (a) There are unique C(v)-
algebra homomorphisms

j+μ1,μ2
: U+v −→ U sc,μ1,μ2;+

v , j−μ1,μ2
: U−v −→ U sc,μ1,μ2;−

v , (4.29)
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such that

j+μ1,μ2
: ei,r �→ ei,r , ψ

+
i,0 �→ ψ+i,0, F

(1)
n1 �→ F (1)

n1 for 1 ≤ i ≤ n − 1, r ≥ 0,

j−μ1,μ2
: fi,s �→ fi,s+b1,i , ψ−i,0 �→ ψ−i,b1,i+b2,i , E

(−1)
1n �→ Ê (−1)

1n

for 1 ≤ i ≤ n − 1, s ≤ 0.

(b) The following diagram is commutative:

U±v
�−−−−→ U±v ⊗U±v

⏐

⏐

�
j±μ1,μ2

⏐

⏐

�
j±μ1,0⊗j

±
0,μ2

U sc,μ1,μ2;±
v

�μ1,μ2−−−−→ U sc,μ1,0;±
v ⊗U sc,0,μ2;±

v

(4.30)

We shall crucially need the so-called shift homomorphisms ιμ,ν1,ν2 of Finkelberg
and Tsymbaliuk (2017, Lemma 10.24) (which are injective due to Finkelberg and
Tsymbaliuk (2017, Theorem 10.25, Appendix I)):

Proposition 4.25 (Finkelberg andTsymbaliuk 2017)For any coweightμandantidom-
inant coweights ν1, ν2, there is a unique C(v)-algebra embedding

ιμ,ν1,ν2 : U sc,μ
v ↪→ U sc,μ+ν1+ν2

v (4.31)

defined by

ei (z) �→ (1− z−1)−α∨i (ν1)ei (z), fi (z) �→ (1− z−1)−α∨i (ν2) fi (z),
ψ±i (z) �→ (1− z−1)−α∨i (ν1+ν2)ψ±i (z).

In Finkelberg and Tsymbaliuk (2017), we used these shift homomorphisms to
reduce the construction of �μ1,μ2 for general μ1, μ2 to the aforementioned case of
antidominant μ1, μ2 by proving the following result:

Proposition 4.26 (Finkelberg and Tsymbaliuk 2017) The homomorphisms
{�μ1,μ2}μ1,μ2 exist and are uniquely determined by the condition that they coincide
with those constructed before for antidominantμ1, μ2 and that the following diagram
is commutative for any antidominant ν1, ν2:

U sc,μ1+μ2
v

�μ1,μ2−−−−→ U sc,μ1
v ⊗U sc,μ2

v
⏐

⏐

�

ιμ,ν2,ν1

⏐

⏐

�

ιμ1,0,ν1⊗ιμ2,ν2,0

U sc,μ1+μ2+ν1+ν2
v

�μ1+ν1,μ2+ν2−−−−−−−−→ U sc,μ1+ν1
v ⊗U sc,μ2+ν2

v

(4.32)

Having summarized the key properties of the coproduct homomorphisms�μ1,μ2 of
Finkelberg and Tsymbaliuk (2017), let us now proceed to the proof of Theorem 4.23.
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Proof of Theorem 4.23 Theproof proceeds in three steps (cf. our proof ofTheorem4.4).

Step 1: Case μ1 = μ2 = 0.
Under the embedding ϒ : Uv(Lsln) ↪→ U rtt

v (Lgln), the Drinfeld-Jimbo coproduct
� on Uv(Lsln) is intertwined with the C(v)-extension of the RTT-coproduct
�rtt : Urtt

v (Lgln) → Urtt
v (Lgln) ⊗ Urtt

v (Lgln) defined via �rtt(T±(z)) = T±(z) ⊗
T±(z), see Ding and Frenkel (1993). As the ϒ-preimage of Urtt

v (Lgln) coincides
with Uv(Lsln) (due to Proposition 3.20 and the equality4 Uv(Lsln) = Uv(Lsln) ∩
Uv(Lgln)), we obtain�(Uv(Lsln)) ⊂ Uv(Lsln)⊗Uv(Lsln). This immediately implies
the result of the theorem for μ1 = μ2 = 0, since �0,0 essentially coincides with �.5

Step 2: Case of antidominant μ1, μ2.
For any 1 ≤ j ≤ i < n and r = (r j , . . . , ri ) ∈ Z

i− j+1, recall the elements

E j,i+1(r) ∈ U>
v (Lgln) � U>

v (Lsln) � U
sc,μ1+μ2;>
v and Fi+1, j (r) ∈ U<

v (Lgln) �
U<
v (Lsln) � U

sc,μ1+μ2;<
v defined in (3.32). We start with the following result:

Lemma 4.27 (a) If r j , r j+1, . . . , ri ≥ 0, then �μ1,μ2(E j,i+1(r)) ∈ U
sc,μ1
v ⊗ U

sc,μ2
v .

(b) If r j ≤ b1, j , r j+1 ≤ b1, j+1, . . . , ri ≤ b1,i , then �μ1,μ2(Fi+1, j (r)) ∈
U
sc,μ1
v ⊗ U

sc,μ2
v .

Proof (a) If r ∈ N
i− j+1, then clearly E j,i+1(r) ∈ U+v ∩Uv(Lsln). As�(U+v ) ⊂ U+v ⊗

U+v and �(Uv(Lsln)) ⊂ Uv(Lsln) ⊗ Uv(Lsln) (see Step 1), we get �(E j,i+1(r)) ∈
(U+v ∩ Uv(Lsln)) ⊗ (U+v ∩ Uv(Lsln)). Combining the commutativity of the dia-
gram (4.30) with the equality j+μ1,μ2

(E j,i+1(r)) = E j,i+1(r), it remains to prove

the inclusion j+ν1,ν2(U
+
v ∩ Uv(Lsln)) ⊂ U

sc,ν1+ν2
v for antidominant ν1, ν2. The lat-

ter follows from Finkelberg and Tsymbaliuk (2017, Lemma H.9)6 and the following
result:

Lemma 4.28 The C[v, v−1]-subalgebra U+v ∩Uv(Lsln) of Uv(Lsln) is generated by

{E (r)
j,i+1}r∈N1≤ j≤i<n ∪ {F (r)

i+1, j }r>0
1≤ j≤i<n ∪ {ψ+i,s, (ψ+i,0)±1}s>0

1≤i<n .

Proof Recall the embedding ϒ : Uv(Lsln) ↪→ U rtt
v (Lgln). Note that the Borel

subalgebra U+v of Uv(Lsln) coincides with the ϒ-preimage of the C(v)-subalgebra

4 The equality Uv(Lsln) = Uv(Lsln) ∩ Uv(Lgln) immediately follows from Theorem 3.24.
5 To be more precise, one needs to replace Urttv (Lgln) ⊂ U rtt

v (Lgln) by U
rtt,ext
v (Lgln) ⊂ U rtt,ext

v (Lgln)
introduced in Step 1 of our proof of Theorem 4.4, while Uv(Lsln) ⊂ Uv(Lsln) should be replaced by
U
sc,0
v ⊂ U sc,0

v .
6 Herewe refer to the equalities j+ν1,ν2 (E

(r)
j ,i+1) = E(r)

j ,i+1, j+ν1,ν2 (F
(s)
i+1, j ) = F(s)

i+1, j , j+ν1,ν2 (ψ
+
i,s ) = ψ+i,s

for any 1 ≤ j ≤ i < n and r ≥ 0, s ≥ 1. Actually, in Finkelberg and Tsymbaliuk (2017, Lemma H.9)
we proved those only for r = 0, s = 1. However, since the matrix ([ci j ]v)n−1i, j=1 is non-degenerate, for

every 1 ≤ i < n there is a unique C(v)-linear combination of {(ψ+j,0)−1ψ+j,1}n−1j=1, denoted by h⊥i,1,
such that [h⊥i,1, e j,r ] = δi j e j ,r+1, [h⊥i,1, f j ,r ] = −δi j f j ,r+1. As j+ν1,ν2 (h

⊥
i,1) = h⊥i,1 and the elements

E(r)
j,i+1, F

(s)
i+1, j can be obtained by iteratively commuting E(0)

j ,i+1, F
(1)
i+1, j with h⊥j,1, we immediately

obtain the claimed equalities j+ν1,ν2 (E
(r)
j ,i+1) = E(r)

j ,i+1, j+ν1,ν2 (F
(s)
i+1, j ) = F(s)

i+1, j for any r ≥ 0, s ≥ 1.

The remaining equality j+ν1,ν2 (ψ
+
i,s ) = ψ+i,s follows from ψ+i,s = (v − v−1)[ei,0, fi,s ] for s ≥ 1.
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U rtt,+
v (Lgln) ofU

rtt
v (Lgln) generated by {t+i j [r ]}r∈N1≤i, j≤n∪{(t+i i [0])−1}ni=1. Evoking the

Gauss decomposition of T+(z), we see that the C[v, v−1]-subalgebra Urtt,+
v (Lgln) =

U rtt,+
v (Lgln) ∩ Urtt

v (Lgln) is generated by {ẽ(r)j,i+1}r∈N1≤ j≤i<n ∪ { f̃ (r)i+1, j }r>0
1≤ j≤i<n ∪

{g̃(r)i , (g̃+i )±1}r>0
1≤i<n . Combining this with Corollary 3.23 and the above equality

Uv(Lsln) = Uv(Lsln) ∩ Uv(Lgln) yields the claim. ��
This completes our proof of part (a).

(b) The proof of part (b) is completely analogous and utilizes homomorphisms j−•,•
instead. ��

Let us now prove

�μ1,μ2(U
sc,μ1+μ2
v ) ⊂ Usc,μ1

v ⊗ Usc,μ2
v (4.33)

for antidominantμ1, μ2 by induction in−μ1−μ2. The base of induction,μ1 = μ2 =
0, is established in Step 1. The following result establishes the induction step:

Proposition 4.29 If (4.33) holds for a pair of antidominant coweights (μ1, μ2), then
it also holds both for (μ1, μ2 − ω�) and (μ1 − ω�, μ2) for any 1 ≤ � ≤ n − 1.

Proof We will prove this only for (μ1, μ2 −ω�), since the verification for the second
pair is completely analogous. For any 1 ≤ j ≤ i < n and r ∈ Z, we pick a particular
decomposition r = (r j , . . . , ri ) ∈ Z

i− j+1 with r j + · · · + ri = r as follows: we set
r j = r , r j+1 = · · · = ri = 0 if � < j or � > i , and we set r� = r , r j = · · · = r�−1 =
r�+1 = · · · = ri = 0 if j ≤ � ≤ i .

Identifying U
sc,μ1+μ2;>
v � U>

v (Lsln) � U>
v (Lgln), Theorem 3.25(a) guar-

antees that the ordered PBWD monomials in E j,i+1(r) form a basis of a free

C[v, v−1]-module Usc,μ1+μ2;>
v . Let us now apply the morphisms of the commutative

diagram (4.32) with ν1 = 0, ν2 = −ω� to the element E j,i+1(r). As E j,i+1(r) ∈
U
sc,μ1+μ2
v , our assumption guarantees that �μ1,μ2(E j,i+1(r)) ∈ U

sc,μ1
v ⊗ U

sc,μ2
v .

Meanwhile, for any coweight μ and antidominant coweights ν′1, ν′2, we have

ιμ,ν′1,ν′2(U
sc,μ
v ) ⊂ U

sc,μ+ν′1+ν′2
v , (4.34)

since every generator E j,i+1(r) (resp. Fi+1, j (r) or ψ±i,s) is mapped to a C-linear

combination of elements of the form E j,i+1(r ′) (resp. Fi+1, j (r ′) or ψ±i,s′ ) for various
r ′, s′. Thus, we obtain

�μ1,μ2−ω�
(ιμ1+μ2,−ω�,0(E j,i+1(r)))

= (Id ⊗ ιμ2,−ω�,0)(�μ1,μ2(E j,i+1(r))) ∈ Usc,μ1
v ⊗ Usc,μ2−ω�

v .
(4.35)

If � < j or � > i , then ιμ1+μ2,−ω�,0(E j,i+1(r)) = E j,i+1(r), and so
�μ1,μ2−ω�

(E j,i+1(r)) ∈ U
sc,μ1
v ⊗ U

sc,μ2−ω�
v , due to (4.35). If j ≤ � ≤ i , then

ιμ1+μ2,−ω�,0(E j,i+1(r)) = E j,i+1(r)−E j,i+1(r − 1), hence,�μ1,μ2−ω�
(E j,i+1(r)−

E j,i+1(r − 1)) ∈ U
sc,μ1
v ⊗ U

sc,μ2−ω�
v , due to (4.35). Combining this with
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�μ1,μ2−ω�
(E j,i+1(r)) ∈ U

sc,μ1
v ⊗U

sc,μ2−ω�
v for r ≥ 0, due to Lemma 4.27(a), we get

�μ1,μ2−ω�
(E j,i+1(r)) ∈ U

sc,μ1
v ⊗ U

sc,μ2−ω�
v for any r ∈ Z. This completes the proof

of the inclusion

�μ1,μ2−ω�
(E j,i+1(r)) ∈ Usc,μ1

v ⊗ Usc,μ2−ω�
v for any 1 ≤ j ≤ i < n, r ∈ Z.

The proof of the inclusion

�μ1,μ2−ω�
(Fi+1, j (r)) ∈ Usc,μ1

v ⊗ Usc,μ2−ω�
v for any 1 ≤ j ≤ i < n, r ∈ Z

is analogous. However, to apply Lemma 4.27(b), we need another choice of decom-
positions r . For any 1 ≤ j ≤ i < n and r ∈ Z, we pick a decomposition
r = (r j , . . . , ri ) ∈ Z

i− j+1 with r j + · · · + ri = r as follows: we set r j =
r − b1, j+1 − · · · − b1,i , r j+1 = b1, j+1, . . . , ri = b1,i if � < j or � > i , and we
set r� = r − b1, j − · · · − b1,�−1 − b1,�+1 − · · · − b1,i , r j = b1, j , . . . , r�−1 =
b1,�−1, r�+1 = b1,�+1, . . . , ri = b1,i if j ≤ � ≤ i .

Finally, we note that

�μ1,μ2−ω�
(ιμ1+μ2,−ω�,0(ψ

±
i,s)) = (Id⊗ιμ2,−ω�,0)(�μ1,μ2(ψ

±
i,s)) ∈ Usc,μ1

v ⊗Usc,μ2−ω�
v .

(4.36)
Therefore, �μ1,μ2−ω�

(ψ±i,s − δi,�ψ
±
i,s−1) ∈ U

sc,μ1
v ⊗ U

sc,μ2−ω�
v . This implies (after a

simple induction in s for i = �) that�μ1,μ2−ω�
(ψ±i,s) ∈ U

sc,μ1
v ⊗Usc,μ2−ω�

v for any i, s.

Thus, the images of all generators of Usc,μ1+μ2−ω�
v under �μ1,μ2−ω�

belong to
U
sc,μ1
v ⊗ U

sc,μ2−ω�
v . This implies the validity of (4.33) for the pair (μ1, μ2 − ω�). ��

This completes our proof of Theorem 4.23 for antidominant μ1, μ2.

Step 3: General case.
Having established (4.33) for all antidominantμ1, μ2 (Step 2), the validity of (4.33)

for arbitrary μ1, μ2 is implied by the following result:

Lemma 4.30 If (4.33) holds for a pair of coweights (μ1, μ2), then it also holds both
for (μ1, μ2 + ω�) and (μ1 + ω�, μ2) for any 1 ≤ � ≤ n − 1.

Proof We will prove this only for (μ1, μ2 + ω�), since the verification for the
second pair is completely analogous. The commutativity of the diagram (4.32)
implies the following equality: �μ1,μ2(ιμ1+μ2+ω�,−ω�,0(E j,i+1(r))) = (Id ⊗
ιμ2+ω�,−ω�,0)(�μ1,μ2+ω�

(E j,i+1(r))). Its left-hand side belongs to U
sc,μ1
v ⊗ U

sc,μ2
v ,

due to (4.34) and our assumption. However, the argument identical to the one used in
Step 4 of our proof of Theorem 4.4 yields the following implication:

(Id ⊗ ιμ2+ω�,−ω�,0)(X) ∈ Usc,μ1
v ⊗ Usc,μ2

v �⇒ X ∈ Usc,μ1
v ⊗ Usc,μ2+ω�

v .

This completes our proof of the inclusion�μ1,μ2+ω�
(E j,i+1(r)) ∈ U

sc,μ1
v ⊗Usc,μ2+ω�

v .
The verification of inclusions �μ1,μ2+ω�

(Fi+1, j (r)),�μ1,μ2+ω�
(ψ±i,s) ∈ U

sc,μ1
v ⊗

U
sc,μ2+ω�
v is analogous. Hence, the images of all generators of Usc,μ1+μ2+ω�

v under
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�μ1,μ2+ω�
belong to U

sc,μ1
v ⊗ U

sc,μ2+ω�
v . This implies the validity of (4.33) for the

pair (μ1, μ2 + ω�). ��
This completes our proof of Theorem 4.23. ��
We conclude this subsection with the following result:

Lemma 4.31 For any μ, ν1, ν2, we have ι−1μ,ν1,ν2
(U

sc,μ+ν1+ν2
v ) = U

sc,μ
v .

Proof Since ιμ+ν1+ν2,ν′1,ν′2 ◦ ιμ,ν1,ν2 = ιμ,ν1+ν′1,ν2+ν′2 for any coweightμ and antidom-
inant coweights ν1, ν2, ν

′
1, ν
′
2, it suffices to verify the claim for the simplest pairs

(ν1 = −ω�, ν2 = 0) and (ν1 = 0, ν2 = −ω�), 1 ≤ � ≤ n − 1. In both cases, the
inclusion

{x ∈ U sc,μ
v : ιμ,ν1,ν2(x) ∈ Usc,μ+ν1+ν2

v } ⊂ Usc,μ
v

has been already used in Step 3 above and follows from the argument used in Step 4
of our proof of Theorem 4.4. The opposite inclusion is just (4.34).

This completes our proof of Lemma 4.31. ��
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Appendices By Alexander Tsymbaliuk and AlexWeekes.

Appendix A: PBWTheorem and Rees Algebra Realization for the Drinfeld–Gavarini
Dual, and the Shifted Yangian

In Kamnitzer et al. (2014), dominantly shifted Yangians were defined for any
semisimple Lie algebra g, generalizing Brundan–Kleshchev’s definition Brundan and
Kleshchev (2006) for gln . Two issues with the definition given in Kamnitzer et al.
(2014) are now clear:

(a) Kamnitzer et al. (2014, §3C) recalled Drinfeld–Gavarini duality, and an explicit
description of the Drinfeld–Gavarini dual based on the discussion in Gavarini
(2002, §3.5). However, additional assumptions seem necessary in order for this
description to be correct.

(b) Applying the explicit description of (a), a presentation of the dominantly shifted
Yangians was given in Kamnitzer et al. (2014, Theorem 3.5, Definition 3.10). But
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it was incomplete, as it does not include a full set of relations. In fact, writing
down a complete (explicit) set of relations seems very difficult (at least, in terms
of new Drinfeld generators).

We rectify (a) in Proposition A.2, which is of independent interest. We then verify that
this result applies to the Yangian, yielding Theorem A.7. This proves that the set of
generators given just before Kamnitzer et al. (2014, Theorem 3.5) is indeed correct.
We also verify that Proposition A.2 applies to the RTT Yangian Y rtt

�
(gln), which

implies an identification of its Drinfeld–Gavarini dual with the subalgebra Yrtt
�
(gln)

of Definition 2.3, establishes the PBW theorem for the latter (that we referred to in
Sect. 2), and provides a conceptual proof of Proposition 2.21.

Another definition of the shiftedYangian (for an arbitrary, not necessarily dominant,
shift) as a Rees algebra was given in Finkelberg et al. (2018, §5.4) and Braverman et
al. (2016, Appendix B(i)), precisely to avoid the issues mentioned above. This raises

Question:Are these two definitions of the shifted Yangians equivalent for dominant
shifts?

We answer this question in the affirmative in Theorem A.12, which generalizes
Theorem 2.31 for any semisimple Lie algebra g.

We conclude this appendix with one more equivalent definition of the shifted Yan-
gians, see Appendix A.8, in particular, Theorem A.17.

A.1 Drinfeld’s Functor

Let a be a Lie algebra over C. Assume that A is a deformation quantization of the
Hopf algebra U (a),7 over C[�]. In other words, A is a Hopf algebra over C[�], and
there is an isomorphism of Hopf algebras A/�A � U (a).

Denote the coproduct and the counit of A by� and ε, respectively. For any n ≥ 0,
let �n : A → A⊗n be the n-th iterated coproduct (tensor product over C[�]). It is
defined inductively by �0 = ε, �1 = id, and �n = (�⊗ id⊗(n−2)) ◦�n−1. Define
δn : A→ A⊗n via

δn := (id−ε)⊗n ◦�n . (A.1)

Drinfeld (1986) introduced functors on Hopf algebras, which have been studied
extensively in work of Gavarini, see e.g. Gavarini (2002). In particular, the Drinfeld–
Gavarini dual of A is the sub-Hopf algebra A′ ⊂ A defined by

A′ = {a ∈ A : δn(a) ∈ �
n A⊗n for all n ∈ N

}

. (A.2)

As in the second part of the proof of Gavarini (2002, Proposition 2.6):

Lemma A.1 For any a, b ∈ A′, we have [a, b] ∈ �A′.
The dual A′ can be defined for any Hopf algebra A over C[�]. However, the case of

the greatest interest is precisely when A/�A � U (a). In this case, one can prove that

7 Here U (a) denotes the universal enveloping algebra of a over C, in contrast to Definition 2.11.
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A′ is a deformation quantization of the coordinate ring of a ‘dual’ algebraic group.
This is a part of the quantum duality principle, see Gavarini (2002, Theorem 1.6)
(called Drinfeld–Gavarini duality in Kamnitzer et al. (2014, §3C)).

A.2 PBW Basis for A′

We will now make some additional assumptions on A. Suppose that there exists a
totally ordered set (I,≤), and elements {xi }i∈I ⊂ A. By an (ordered) PBWmonomial,
we mean any ordered monomial

xi1 . . . xi� ∈ A (A.3)

with � ∈ N and i1 ≤ . . . ≤ i�. Assume that:

{xi }i∈I lifts a basis {xi }i∈I for a, (As1)

A is free over C[�], with a basis given by the PBW monomials in {xi }i∈I, (As2)

for all i ∈ I, we have �xi ∈ A′. (As3)

We will use the multi-index notation xα to denote a PBW monomial
∏

i∈I x
αi
i in

the PBW generators xi . We write |α| = ∑i∈I αi for the total degree of xα . Finally,
for a ∈ U (a) we denote by ∂(a) its degree with respect to the usual filtration, i.e. the
maximal value of |α| over all summands xα that appear in a.

In Gavarini (2002, §3.5), an explicit description of A′ is given in the formal case,
i.e. when working with complete algebras over C[[�]]. The next result is inspired by
this description, but with the aim of working instead over C[�].
Proposition A.2 Suppose that A satisfies Assumptions (As1)–(As3). Then A′ is free
over C[�], with a basis given by the PBW monomials in the elements {�xi }i∈I. In
particular, A′ ⊂ A is the C[�]-subalgebra generated by {�xi }i∈I.

In the proof, we will make use of Etingof and Kazhdan (1996, Lemma 4.12) (cf.
(Gavarini 2002, Lemma 3.3)):

Lemma A.3 Let a ∈ A′ be non-zero, and write a = �
nb where b ∈ A\�A. Then

∂(b) ≤ n.

Proof of Proposition A.2 Let c ∈ A′. By assumption (As2), we can write c =
∑

k,α ck,α�
k xα for some ck,α ∈ C which are almost all zero. Since A′ is an alge-

bra, by assumption (As3) we know that �
k xα ∈ A′ whenever k ≥ |α|. Subtracting all

such elements from c, we conclude that the element

a =
∑

k,α:k<|α|
ck,α�

k xα ∈ A′. (A.4)

Assume that a �= 0. Choosing

n = min{k : ∃α such that k < |α| and ck,α �= 0}, (A.5)
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we can write a = �
nb, where

b ∈
∑

α:n<|α|
cn,αx

α + �A. (A.6)

From assumption (As1) it follows that

b =
∑

α:n<|α|
cn,αx

α ∈ U (a), (A.7)

and so ∂(b) > n. But by Lemma A.3 we should have ∂(b) ≤ n. So we conclude that
a = 0.

This shows that the PBW monomials in {�xi }i∈I span A′ over C[�]. But they are
also linearly independent, because of assumption (As2). Thus, they form a basis.

A.3 Rees Algebra Description of A′

In this subsection, we make a further assumption on A:

A is a graded Hopf algebra, with deg(�) = 1 and {xi }i∈I being homogeneous.
(As4)

Note that A′ ⊂ A is then a graded sub-Hopf algebra, and that the specializations of
A, A′ at � = 0 inherit gradings. By Proposition A.2, we see that the inclusion A′ ⊂ A
induces an isomorphism of their specializations at � = 1:

A′/(�− 1)A′ � A/(�− 1)A. (A.8)

Moreover, the images of their respective PBW generators and bases agree as �xi +
(�− 1)A = xi + (�− 1)A.

Denote the algebra in (A.8) by A�=1. If assumption (As4) holds, it follows that
A�=1 inherits two filtrations F ′•A�=1, F•A�=1, coming from A′ and A, respectively.
Denoting di = deg xi , these filtrations may be defined explicitly in terms of the PBW
monomials:

Fk A�=1 = spanC

{

xα + (�− 1)A :
∑

i

diαi ≤ k
}

, (A.9)

F ′k A�=1 = spanC

{

xα + (�− 1)A :
∑

i

(di + 1)αi ≤ k
}

. (A.10)

In particular, F ′k A�=1 ⊂ Fk A�=1 for all k ∈ Z.
By the above discussion, we obtain another description of A′, as a Rees algebra:

Proposition A.4 Suppose that A satisfies Assumptions (As1)–(As4). Then there is a
canonical isomorphism of graded Hopf algebras

A′ � ReesF
′•(A�=1).
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It is compatiblewith the canonical isomorphism A � ReesF•(A�=1), under the natural
inclusions A′ ⊂ A and ReesF

′•(A�=1) ⊂ ReesF•(A�=1).

A.4 The Yangian of g

Consider the Yangian Y� = Y�(g) associated to a semisimple Lie algebra g. It is
the associative C[�]-algebra with generators {e(r)i , h(r)i , f (r)i }r∈Ni∈I (here I denotes the
set of vertices of the Dynkin diagram of g), and relations as in Kamnitzer et al.
(2014, §3A) and Guay et al. (2018, Definition 2.1), cf. (2.9). For each i ∈ I , define
the element si := h(1)i − �

2 (h
(0)
i )2 ∈ Y�, cf. (2.17). Then Y� is also generated by

{e(0)i , h(0)i , f (0)i , si }i∈I , cf. Sect. 2.5.
For each positive root α∨ and r ≥ 0, define the elements e(r)

α∨ , f
(r)
α∨ of Y� via

e(r)
α∨ :=

[[

· · ·
[

e(r)
α∨i�

, e(0)
α∨i�−1

]

, · · · , e(0)
α∨i2

]

, e(0)
α∨i1

]

,

f (r)
α∨ :=

[

f (0)
α∨i1

,

[

f (0)
α∨i2

, · · · ,
[

f (0)
α∨i�−1

, f (r)
α∨i�

]

· · ·
]]

,

(A.11)

where α∨ = α∨i1 + α∨i2 + · · · + α∨i�−1 + α∨i� is an (ordered) decomposition into simple
roots such that the element [ fα∨i1 , [ fα∨i2 , · · · , [ fα∨i�−1 , fα∨i� ] · · · ]] is a non-zero element

of g (here { fα∨i }i∈I denote the standard Chevalley generators of g). We will refer to

these elements, together with {h(r)i }r∈Ni∈I , as the Yangian PBW generators. Through-
out this appendix (and the next one), we fix some total ordering on the set of all
PBW generators. It is well-known that Y� is free over C[�] with a basis given by the
PBW monomials, as was proven in Levendorskii (1993). Since the original proof of
Levendorskii (1993) contains a significant gap, we give an alternative short proof in
Appendix B.

Y� is a graded Hopf algebra, with deg(�) = 1 and deg(x (r)) = r for x =
eα∨ , hi , fα∨ . Its coproduct is uniquely determined by

�(x (0)) = x (0) ⊗ 1+ 1⊗ x (0) for x = eα∨ , hi , fα∨ ,

�(si ) = si ⊗ 1+ 1⊗ si − �

∑

γ∨>0

〈αi , γ∨〉 f (0)γ∨ ⊗ e(0)
γ∨ . (A.12)

A proof of these formulas appears in Guay et al. (2018). Meanwhile, the counit of Y�

is given simply by

ε
(

e(0)
α∨
)

= ε
(

f (0)
α∨
)

= ε
(

h(0)i

)

= ε(si ) = 0. (A.13)

Finally, we note that in the classical limit there is an isomorphism of graded Hopf
algebras

Y�/�Y� � U (g[t]), (A.14)

where U (g[t]) carries the loop grading.
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A.5 The Drinfeld–Gavarini Dual of the Yangian

In this subsection, we describe the Drinfeld–Gavarini dual Y ′
�
, by applying the results

of the previous subsections. To this end, we will verify that Assumptions (As1)–(As4)
hold for Y� and its PBW generators. Note that only assumption (As3) remains; the
others hold as discussed in Sect. A.4.

Using Eqs. (A.12, A.13), a straightforward calculation shows that:

Lemma A.5 (1) δn(x (0)) =
{

x, if n = 1
0, otherwise

, for any x = eα∨ , hi , fα∨ .

(2) δn(si ) =
⎧

⎨

⎩

si , if n = 1
−�
∑

γ∨>0〈αi , γ∨〉 f (0)γ∨ ⊗ e(0)
γ∨ , if n = 2

0, otherwise
.

Using this lemma, we can now verify assumption (As3):

Lemma A.6 For any PBW generator x (r) of Y�, the element X (r+1) := �x (r) belongs
to the Drinfeld–Gavarini dual Y ′

�
.

Proof By the previous lemma, we have �e(0)
α∨ , �h(0)i , � f (0)

α∨ , �si ∈ Y ′
�
. All the PBW

generators x (r) can be obtained by taking repeated commutators of these elements,
and X (r+1) by repeated application of the operation a, b �→ 1

�
[a, b] to the elements

�e(0)
α∨ , �h(0)i , � f (0)

α∨ , and�si . SinceY ′� is closed under this operation, due toLemmaA.1,
the claim follows. ��

Thus Proposition A.2 applies providing a complete proof of the description of Y ′
�

given just before Kamnitzer et al. (2014, Theorem 3.5). Note that, as mentioned above,
the relations given in Kamnitzer et al. (2014, Theorem 3.5) are incomplete (with the
exception of g = sl2).We do not address this issue here, as our methods do not provide
a complete set of relations.

Theorem A.7 The Drinfeld–Gavarini dual Y ′
�
is free over C[�], with a basis given

by the PBW monomials in the elements X (r+1). In particular, Y ′
�
⊂ Y� is the C[�]-

subalgebra generated by the elements X (r+1).

Applying Proposition A.4, we also obtain the Rees algebra description of Y ′
�
of

Finkelberg et al. (2018). In the case of the Yangian, the filtration F ′•Y�=1 from (A.10)
is known as the Kazhdan filtration.

Corollary A.8 There is a canonical C[�]-algebra isomorphism

Y ′
�
� ReesF

′•(Y�=1)

with the Rees algebra of Y�=1 with respect to the Kazhdan filtration.
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A.6 The RTTVersion

Recall the RTT Yangian Y rtt
�
(gln) of Sect. 2.1. We refer to the elements {t (r)i j }r≥11≤i, j≤n

as the PBW generators of Y rtt
�
(gln). Fix some total ordering on the set of all PBW

generators; this gives rise to the notion of the PBW monomials in {t (r)i j }r≥11≤i, j≤n .
Y rtt

�
(gln) is an N-graded Hopf algebra with deg(�) = 1, deg(t (r)i j ) = r − 1. Its

coproduct �rtt and counit εrtt are determined explicitly by

�rtt(T (z)) = T (z)⊗ T (z), εrtt(T (z)) = In . (A.15)

Moreover, according to Remark 2.2, we have an isomorphism of graded Hopf
algebras

Y rtt
�
(gln)/�Y

rtt
�
(gln) � U (gln[t]). (A.16)

Proposition A.9 The PBW monomials in {t (r)i j }r≥11≤i, j≤n form a basis of a free C[�]-
module Y rtt

�
(gln).

Proof The proof is similar to that of Theorem B.3 below. First, combining the isomor-
phism (A.16) with the PBW theorem forU (gln[t]), we immediately see that the PBW
monomials span Y rtt

�
(gln) over C[�]. To prove the linear independence of the PBW

monomials over C[�], it suffices to verify that their images are linearly independent
over C when we specialize � to any nonzero complex number. The latter holds for
� = 1 (and thus for any � �= 0, since all such specializations are isomorphic), due to
(Molev 2007, Theorem 1.4.1).

This completes our proof of Proposition A.9. ��
The following result provides a new viewpoint towards Yrtt

�
(gln) of Definition 2.3:

Theorem A.10 The Drinfeld–Gavarini dual Y rtt
�
(gln)

′ is free over C[�], with a basis

given by thePBWmonomials in the elements�t (r)i j . In particular, Y rtt
�
(gln)

′ = Yrtt
�
(gln).

Proof This follows from Proposition A.2 once we verify that Assumptions (As1)–
(As4) hold for Y rtt

�
(gln). Note that only assumption (As3) remains; the others hold

as discussed above. The desired inclusion �t (r)i j ∈ Y rtt
�
(gln)

′ follows immediately

from (A.15), due to (id−εrtt)(�t (r)i j ) = �t (r)i j ∈ �Y rtt
�
(gln). ��

Since the C[�]-algebra isomorphismϒ : Y�(gln)
∼−→ Y rtt

�
(gln) of Theorem 2.18 is

actually an isomorphism of Hopf algebras, we conclude that it gives rise to an isomor-
phism of the corresponding Drinfeld–Gavarini duals ϒ : Y�(gln)

∼−→Yrtt
�
(gln). This

provides an alternative computation-free proof of Proposition 2.21.

Remark A.11 Let us compare the above exposition with that of Molev (2007), where
an opposite order of reasoning is used. In loc.cit., the author works with the C-
algebra Y rtt(gln) defined as a common specialization Y rtt(gln) = Y rtt

�=1(gln) =
Yrtt

�=1(gln), endowed with two different filtrations F•Y rtt(gln), F
′•Y rtt(gln) determined
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by degF•(t (r)i j ) = r , degF
′•(t (r)i j ) = r − 1 (these notations are opposite to those we

used in Sect. A.3). First, in Molev (2007, Corollary 1.4.2), an algebra isomorphism
grF• Y rtt(gln) � C[{t (r)i j }r≥11≤i, j≤n] is proven, and only then an algebra isomorphism

grF
′• Y rtt(gln) � U (gln[t]) is deduced in Molev (2007, Proposition 1.5.2).

A.7 The Shifted Yangian

In Sects. 2.6 and 2.7 , respectively, the algebras Yμ (for any coweight μ) and Y′μ
(only for a dominant coweight μ) are defined. In this section, we show that these two
definitions are equivalent when μ is dominant. Note that although these definitions
were only given in the case of g = sln , they can be easily extended to any semisimple
Lie algebra g (cf. Kamnitzer et al. 2014; Finkelberg et al. 2018). Till the end of this
subsection, we assume that μ is dominant.

We first recall two auxiliary algebras. The first is the C-algebra Yμ defined in
Sect. 2.6, and the second is the C[�]-algebra Yμ,� introduced in Sect. 2.7. Both have
PBW bases in the corresponding generators over their respective ground rings, by
Theorems 2.26 and 2.29 , respectively.

Fixing a splitting μ = μ1 + μ2, recall that Yμ has a corresponding filtration
F•μ1,μ2

Yμ, see (2.23). Similarly Yμ,� has a corresponding grading, defined by setting
deg(�) = 1 and

deg(e(r)
α∨ ) = α∨(μ1)+ r , deg( f (r)

α∨ ) = α∨(μ2)+ r , deg(h(r)i ) = α∨i (μ)+ r .

Thus for x = eα∨ , fα∨ , hi , we have deg(x (r)) = deg(x)+r , where the internal grading
deg(x) is defined via deg(eα∨) = α∨(μ1), deg( fα∨) = α∨(μ2), deg(hi ) = α∨i (μ).

By comparing their defining relations, it is clear that there is a C-algebra isomor-
phism

Yμ,�/(�− 1)Yμ,�
∼−→ Yμ. (A.17)

On the PBW generators, this isomorphism involves a shift of labels: x (r) �→ X (r+1)
for x = eα∨ , fα∨ , hi . It follows that Yμ inherits a second filtration G•μ1,μ2

Yμ, coming
from the above grading on Yμ,�. This is analogous to the situation in Sect. A.3: if by
abuse of notation we denote the PBW generators of Yμ by x (r), then Gk

μ1,μ2
Yμ is the

span of all PBW monomials
x (r1)1 · · · x (r�)� (A.18)

with (deg(x1)+ r1)+ · · · + (deg(x�)+ r�) ≤ k. Meanwhile, Fk
μ1,μ2

Yμ is the span of
those monomials (A.18) with (deg(x1)+ r1 + 1)+ · · · + (deg(x�)+ r� + 1) ≤ k.

In particular, there is an inclusion Fk
μ1,μ2

Yμ ⊂ Gk
μ1,μ2

Yμ, hence, an embedding of
the Rees algebras

ReesF
•
μ1,μ2 (Yμ) ⊂ ReesG

•
μ1,μ2 (Yμ). (A.19)

Now on the one hand, Yμ = ReesF
•
μ1,μ2 (Yμ) by Definition 2.27. On the other hand,

since Yμ,� is free over C[�], we have Yμ,� � ReesG
•
μ1,μ2 (Yμ). Explicitly, on PBW
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generators this isomorphism is defined by

Yμ,� ' x (k) �→ �
deg(x)+k x (k) ∈ �

deg(x)+kGdeg(x)+k
μ1,μ2 Yμ ⊂ ReesG

•
μ1,μ2 (Yμ). (A.20)

Altogether, we obtain an injective homomorphism of graded C[�]-algebras Yμ ↪→
Yμ,�.

We can now prove a generalization of Theorem 2.31 for an arbitrary g:

Theorem A.12 For any dominant coweight μ, there is a canonical C[�]-algebra iso-
morphism Yμ � Y′μ. For any splitting μ = μ1 +μ2, this isomorphism is compatible
with the associated gradings onYμ (from the filtration F•μ1,μ2

Yμ) andY′μ (as a graded
subalgebra of Yμ,�).

Proof All that remains is to check that the image ofYμ ↪→ Yμ,� is preciselyY′μ. This
follows from the “shift” that distinguishes the filtrations Fk

μ1,μ2
Yμ and Gk

μ1,μ2
Yμ.

Indeed, for a monomial x (r1)1 · · · x (r�)� ∈ Fk
μ1,μ2

Yμ, the corresponding element in the
Rees algebra is

�
k x (r1)1 · · · x (r�)� ∈ �

k Fk
μ1,μ2

Yμ ⊂ ReesF
•
μ1,μ2 (Yμ).

But in the Rees algebra ReesG
•
μ1,μ2 (Yμ) � Yμ,�, by inverting (A.20) this element gets

sent to

�
k−(deg(x1)+r1)−···−(deg(x�)+r�)x (r1)1 · · · x (r�)� ∈ Yμ,�.

Since (deg(x1)+ r1 + 1)+ · · · + (deg(x�)+ r� + 1) ≤ k, we can rewrite this as

�
k−(deg(x1)+r1+1)−···−(deg(x�)+r�+1)(�x (r1)1 ) · · · (�x (r�)� ),

which lies inY′μ. Taking spans of suchmonomials,we see thatYμ = ReesF
•
μ1,μ2 (Yμ) ⊂

Y′μ. But it is easy to see that the generators of Y′μ lie in ReesF
•
μ1,μ2 (Yμ), so actually

Yμ = Y′μ. ��

A.8 The Shifted Yangian, Construction III

Motivated by the discussion of the previous subsection, we provide one more alter-
native definition of the shifted Yangians. Fix a coweight μ of g and set bi := α∨i (μ),
where {α∨i }i∈I are the simple roots of g. Let Yμ,� be the associative C[�, �

−1]-algebra
generated by {e(r)i , f (r)i , h(si )i }r≥0,si≥−bii∈I with the defining relations similar to those
of (2.24) (but generalized to any g) with the only exception:

[e(r)i , f (r
′)

j ] =

⎧

⎪

⎨

⎪

⎩

h(r+r
′)

i , if i = j and r + r ′ ≥ −bi
�
−1, if i = j and r + r ′ = −bi − 1

0, otherwise

. (A.21)
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Remark A.13 Ifμ is dominant, the equality r+r ′ = −bi−1 never occurs for r , r ′ ≥ 0.
Thus,Yμ,� is theC[�, �

−1]-extension of scalars of Yμ,� of AppendixA.7 for dominant
μ.

Define the elements {e(r)
α∨ , f

(r)
α∨ }r≥0α∨∈�+ (here�+ denotes the set of positive roots of

g) of Yμ,� following (2.25) (but generalized from type A to any g, cf. (Finkelberg et al.
2018, (3.1))). Choose any total ordering on the set of PBW generators as in (2.26) (but
generalized from type A to any g, cf. Finkelberg et al. (2018, (3.4))). The following is
analogous to Finkelberg et al. (2018, Corollary 3.15) (cf. Theorem 2.26 in type A):

Theorem A.14 For any coweight μ, the PBW monomials form a basis of a free
C[�, �

−1]-module Yμ,�.

This follows immediately from Finkelberg et al. (2018, Corollary 3.15) and the
following simple result:

Lemma A.15 Fix a pair of coweights μ1, μ2 such that μ1 + μ2 = μ.
(a) There is an isomorphism of C[�, �

−1]-algebras Yμ,�
∼−→ Yμ[�, �

−1] defined by

h(r)i �→ �
α∨i (μ)+r H (r+1)

i , e(r)i �→ �
α∨i (μ1)+r E (r+1)

i , f (r)i �→ �
α∨i (μ2)+r F (r+1)

i .

(b) The above isomorphism sends the PBW generators as follows:

e(r)
α∨ �→ �

α∨(μ1)+r E (r+1)
α∨ , f (r)

α∨ �→ �
α∨(μ2)+r F (r+1)

α∨ .

Proof Part (a) is straightforward. Part (b) follows by comparing (2.21) and (2.25). ��
Following Definition 2.30, we introduce:

Definition A.16 Let Yμ be the C[�]-subalgebra of Yμ,� generated by

{�e(r)
α∨ }r≥0α∨∈�+ ∪ {� f (r)

α∨ }r≥0α∨∈�+ ∪ {�h(si )i }si≥−bii∈I .

The following is the main result of this subsection:

Theorem A.17 For any coweight μ, there is a canonical C[�]-algebra isomorphism
Yμ � Yμ.

Remark A.18 We note that Theorem A.17 does not imply Theorem A.12, since the
algebra Y′μ could a priori have an �-torsion.

As Yμ = ReesF
•
μ1,μ2 (Yμ), by the very definition of the Rees algebra we have a

natural embedding Yμ ⊂ Yμ[�, �
−1]. Applying Lemma A.15 with the same decom-

position μ = μ1 + μ2, we also obtain an embedding Yμ ⊂ Yμ,�
∼−→ Yμ[�, �

−1].
Therefore, Theorem A.17 follows from:

Lemma A.19 The images of Yμ and Yμ in Yμ[�, �
−1] are equal.
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Proof The filtration F•μ1,μ2
Yμ is defined by the degrees of PBW monomials as in

(Finkelberg et al. 2018, (5.1)) (cf. (2.23) in type A). In particular, Yμ is the C[�]-
subalgebra of Yμ[�, �

−1] generated by the elements

�
α∨(μ1)+r E (r)

α∨ , �
α∨i (μ)+r H (r)

i , �
α∨(μ2)+r F (r)

α∨ .

Note that these are precisely the images of the generators �e(r−1)
α∨ , �h(r−1)i , � f (r−1)

α∨
of Yμ under the isomorphism of Lemma A.15. The claim follows. ��

Remark A.20 We note that Lemma A.19 provides another proof of the fact that the
Rees algebras ReesF

•
μ1,μ2 (Yμ) are canonically isomorphic for any choice of a splitting

μ = μ1 + μ2.

Appendix B: A Short Proof of the PBW Theorem for the Yangians

The PBW theorem for the Yangians is well-known and was first proven by Lev-
endorskii in Levendorskii (1993). However, we feel that the proof of Levendorskii
(1993) contains a gap: in Levendorskii (1993, p. 40) it is stated that certain exponents
m±(i, j),m0(r , j) are independent of j without any hint (actually, this seems to be
wrong), and this fact plays a crucial role in the proof. For this reason, we present here a
short proof of the PBW theorem for the Yangians, which is inspired by Levendorskii’s,
but which avoids the aforementioned gap.8

B.1 Useful Lemma

Let A =⊕k∈Z Ak be a graded algebra over C[�], with 1 ∈ A0 and � ∈ A1. Consider
its two specializations A�=0 = A/�A and A�=1 = A/(� − 1)A. The former is
naturally graded via A�=0 = ⊕

k∈Z Ak/�Ak−1, while the latter inherits a natural
filtration F•A�=1 with Fk A�=1 denoting the image of

⊕

�≤k A� ⊂ A, giving rise to a
graded algebra gr A�=1 = grF• A�=1.

An explicit relation between the resulting graded C-algebras A�=0 and gr A�=1 is
presented in the following result:

Lemma B.1 (a) There is a canonical epimorphism of graded C-algebras ϑ : A�=0 �
gr A�=1.
(b) The kernel of ϑ is the image of the �–torsion9 of A in A�=0.

Proof The proof is straightforward. ��

8 A similar proof appears in Wendlandt (2018), while a completely different proof of the PBW theorem
for the Yangian defined in its J -realization was recently presented in Guay et al. (2019, Proposition 2.2).
9 Explicitly, the �–torsion of A is given by T�(A) =

{

a ∈ A : �r a = 0 for some r ≥ 0
}

.
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B.2 Setup

We follow Sect. A.4 for the conventions regarding the Yangian Y�. However, through-
out this section we will work with its specialization Y�=1, which we denote simply by
Y . Below, we prove the PBW theorem for Y over C. We then give a simple argument
extending the PBW theorem to the one for Y� over C[�]. By abuse of notation, we
denote the images of the Yangian’s PBW generators in Y by e(r)

α∨ , h
(r)
i , f (r)

α∨ .
Let us recall a few basic facts about Y . First of all, there is a natural linear map

g → Y , defined on the Chevalley generators by ei �→ e(0)i , hi �→ h(0)i , fi �→ f (0)i ,
cf. Lemma 2.12(a). This map is injective. Indeed, according to Drinfeld (1985, Theo-
rem 8),10 the faithful action of g on g⊕C (the direct sum of the adjoint representation
and the trivial one-dimensional) can be extended to an action of Y , hence, any element
in the kernel of the above map g→ Y is zero.

Second, the grading on Y� of Sect. A.4 gives rise to a filtration F•Y as in Sect. B.1.
In particular, every PBW generator x (r) belongs to FrY . We note that the coproduct
� : Y → Y ⊗ Y satisfies

Total filtered degree
(

�(x (r))− x (r) ⊗ 1− 1⊗ x (r)
)

< r (B.1)

for any PBW generator x (r), which follows from (A.12). Note that the aforementioned
embedding g ↪→ Y yields a surjection U (g) � F0Y . Moreover, combining the
isomorphism (A.14) with Lemma B.1, we obtain a graded algebra epimorphism
ϑ : U (g[t]) �

⊕

k≥0 FkY/Fk−1Y , in particular, we get a surjective linear map from
the degree k part of U (g[t]) to FkY/Fk−1Y .

Finally, we recall that there is a translation homomorphism τa : Y → Y [a] (here a
is a formal parameter) defined on the PBW generators by

τa(x
(r)) =

r
∑

s=0

(

r

s

)

ar−s x (s) (B.2)

for any PBW generator x = eα∨ , hi , fα∨ (note that this formula is valid for eα∨ , fα∨
with α∨ a non-simple root because of our choices (A.11)). In particular, it follows that
the filtered degree of any PBW monomial y ∈ Y is precisely the degree in a of τa(y).

Define a homomorphism �n : Y → Y [a1] ⊗ · · · ⊗ Y [an] as the composition

Y
�n−−→ Y⊗n

τa1⊗···⊗τan−−−−→ Y [a1] ⊗ · · · ⊗ Y [an]. (B.3)

Here �n is the n-th iterated coproduct as in Sect. A.1, and τai : Y → Y [ai ] is the
translation homomorphism. In particular, it follows from the above discussion that for
any PBW generator x (r), we have

10 The proof of this result is presented in Chari and Pressley (1991, Section 6).
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�n(x
(r)) = ar1x⊗1⊗· · ·⊗1+1⊗ar2x⊗1⊗· · ·⊗1+ . . .+1⊗· · ·⊗1⊗arnx (B.4)

modulo terms of total degree < r in a1, . . . , an .

B.3 The PBWTheorem for the Yangians

In this subsection, we prove the PBW theorems for Y and Y�.

Theorem B.2 The PBW monomials in the generators e(r)
α∨ , h

(r)
i , f (r)

α∨ form a C-basis
of Y .

Proof First, we claim that the PBW monomials span Y . The proof is by induction
in the filtered degree. For degree 0, we recall that there is an algebra epimorphism
U (g) � F0Y , so the usual PBW theorem for U (g) applies; in particular, the PBW
monomials in e(0)

α∨ , h
(0)
i , f (0)

α∨ span F0Y . For any k > 0, recall that the degree k part of
U (g[t]) surjects onto FkY/Fk−1Y . Combining thiswith the PBW theorem forU (g[t]),
we see that FkY is spanned by the PBWmonomials modulo terms of the lower filtered
degree. By induction, the claim follows.

Next, suppose that we could find a relation R between some PBW monomials.
Consider the set of the PBW monomials of the maximal filtered degree d that appear
non-trivially in this relation. Since this is a finite set, we may find a list of PBW
generators x (d1)1 ≤ . . . ≤ x (dn)n (possibly with multiplicities) such that each of these
maximal degree monomials has the form

(x (d1)1 )ε1 · · · (x (dn)n )εn , (B.5)

with all εi ∈ {0, 1} and ∑i εidi = d. When multiplicities do occur, we take the
convention that the εi = 1 appear to the left of εi = 0. With this convention, each
tuple (ε1, . . . , εn) corresponds uniquely to a PBW monomial.

By (B.4), we find that �n(R) is a sum of expressions of the form

(

n
∑

i=1
1⊗(i−1) ⊗ ad1i x (0)1 ⊗ 1⊗(n−i)

)ε1

· · ·
(

n
∑

i=1
1⊗(i−1) ⊗ adni x (0)n ⊗ 1⊗(n−i)

)εn

,

(B.6)
modulo terms of total degree < d in a1, . . . , an . In particular, in the expression (B.6)
there is a summand

(ad11 x (0)1 )ε1 ⊗ (ad22 x (0)2 )ε2 ⊗ · · · ⊗ (adnn x (0)n )εn (B.7)

which appears with coefficient 1. Moreover, there is a unique PBW monomial for
which (B.7) appears as a summand.

Since x (0)r are in the image of the embedding g ↪→ Y , the elements (B.7) are
linearly independent in Y [a1] ⊗ · · · ⊗ Y [an]. Thus the expressions (B.6) are also
linearly independent. This implies that the top total degree term in �n(R) must be
zero, a contradiction.

Hence no linear relations exist, proving the PBW theorem for Y . ��
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This PBW theorem can be easily generalized to Y� over C[�]:
Theorem B.3 Y� is free overC[�], with a basis of thePBWmonomials in the generators
e(r)
α∨ , h

(r)
i , f (r)

α∨ .

Proof Similarly to the proof of Theorem B.2, we see that the PBW monomials span
Y� over C[�]. Moreover, if we specialize � to any complex number, the images of the
PBW monomials form a basis. Indeed, the previous theorem proves this for � = 1
(and thus for any � �= 0, since all such specializations are isomorphic), while the case
� = 0 follows from (A.14) and the PBW theorem for U (g[t]).

Suppose that there is some linear relation among the PBW monomials. Its coeffi-
cients are elements ofC[�]. But they must vanish wherever � is specialized inC, since
the PBWmonomials become a basis. Therefore, all the coefficients are zero. So there
are no relations, and the theorem is proved. ��
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