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Abstract We introduce the shifted quantum affine algebras. They map homomor-
phically into the quantized K-theoretic Coulomb branches of 3d N = 4 SUSY
quiver gauge theories. In typeA, they are endowed with a coproduct, and they act on
the equivariant K-theory of parabolic Laumon spaces. In type A1, they are closely
related to the type A open relativistic quantum Toda system.
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1 Introduction

1.1 Summary

The goal of this paper is to initiate the study of shifted quantum affine algebras1

and shifted v-Yangians. They arise as a tool to write down via generators and

1They were introduced by B. Feigin in 2010.
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relations the quantized K-theoretic Coulomb branches of 3d N = 4 SUSY quiver
gauge theories (see [10, Remark 3.9(2)]), similarly to the appearance of shifted
Yangians in the study of the quantized Coulomb branches of 3d N = 4 SUSY
quiver gauge theories [10].2 Similarly to [24], the shifted quantum affine algebras
carry a coproduct, see Sect. 10 for partial results in this direction. The multiplicative
analogue of the construction [4] equips the equivariant K-theory of parabolic
Laumon spaces with an action of the quantized K-theoretic Coulomb branch for
a type A quiver, and hence with an action of a shifted quantum affine algebra of
type A. Similarly to [24], the unframed case of type A1 quiver is closely related to
the open relativistic quantum Toda system of type A.

1.2 Outline of the Paper

• In Sect. 2, we give a construction of the completed phase space of the (quasiclas-
sical) relativistic open Toda system for arbitrary simply-connected semisimple
algebraic groupG via quasihamiltonian and Poisson reductions. It is a direct mul-
tiplicative analogue of the Kazhdan–Kostant construction of the (nonrelativistic)
open Toda integrable system. We want to stress right away that it depends on a
choice of a pair of Coxeter elements in the Weyl group W of G, via a choice of
Steinberg’s cross-section.3 In the case when the two Coxeter elements coincide,
the resulting completed phase space is isomorphic to the universal centralizer ZGG,
see Sect. 2.3. In the case G = SL(n), the universal centralizer is isomorphic to a
natural n-fold cover of the moduli space of centered periodic SU(2)-monopoles
of charge n, see Corollary 2.6.

• The conjectural quantization of the above construction of the completed phase
space of the relativistic open Toda is described in Sect. 3.12. We conjecture
that it is isomorphic to the corresponding spherical symmetric nil-DAHA which
is realized as an equivariant K-theory of a twisted affine Grassmannian, i.e.
as a sort of twisted quantized Coulomb branch (the twist is necessary in the
case of non-simply-laced G). The bulk of Sect. 3 is occupied by the review of
Cherednik’s definition of symmetric nil-DAHA, its residue construction, and its
realization as the equivariant K-theory of a twisted affine flag variety. In the
simply-laced case no twist is required, and the spherical nil-DAHA in question
is isomorphic to the convolution algebra KG(O)�C

×
(GrG) up to some finite

extension. This convolution algebra is defined for arbitrary reductive G. In
case G = GL(n), this convolution algebra is likely to have a presentation
via generators and relations (as a truncated shifted quantum affine algebra of
type A1), see Sect. 9. From this presentation and Proposition 11.21 we obtain a
homomorphism KG(O)�C

×
(GrG) → KL(O)�C

×
(GrL) for any Levi subgroup

2We must admit right away that we were not able to prove the desired presentation of the quantized
Coulomb branch for a single quiver.
3The appearance of Coxeter elements in the construction of relativistic Toda lattice goes back at
least to [60].
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L ⊂ G = GL(n). We conjecture an existence of such a homomorphism
for arbitrary Levi subgroup L in arbitrary reductive group G, but we have
no clue as to a geometric construction of such a homomorphism. It would be
important for a study of equivariant quantum K-theory of the flag variety B of
G. Its analogue for the equivariant Borel-Moore homology convolution algebra
HG(O)�C

×
• (GrG) → HL(O)�C

×
• (GrL) is constructed in [24]. However, the

construction is not geometric; it uses an isomorphism with the quantum open
(nonrelativistic) Toda lattice.

• Recall that for an arbitrary 3d N = 4 SUSY quiver gauge theory of type
ADE, the non-quantized K-theoretic Coulomb branch is identified with a
multiplicative generalized slice in the corresponding affine Grassmannian [10,
Remarks 3.9(2), 3.17]. These multiplicative slices are studied in detail in Sect. 4
(in the unframed case, they were studied in detail in [25]). In particular, they
embed into the loop group G(z), and it is likely that the image coincides
with the space of scattering matrices of singular periodic monopoles [14]. The
multiplication in the loop group gives rise to the multiplication of slices, which
is conjecturally quantized by the coproduct of the corresponding shifted quantum
affine algebras.

• In Sect. 5, we introduce the shifted quantum affine algebras Usc
μ+,μ− and Uad

μ+,μ−
(simply-connected and adjoint versions, respectively) for any simple Lie algebra
g and its two coweights μ+, μ− (these algebras depend only on μ = μ+ + μ−
up to an isomorphism). For μ+ = μ− = 0, they are central extensions of the
standard quantum loop algebra Uv(Lg) and its adjoint version U ad

v (Lg). These
algebras can be viewed as trigonometric versions of the shifted Yangians Yμ,
see [10, 24, 45].

An alternative (but equivalent) definition of Usc
μ+,μ− was suggested to us

by B. Feigin in Spring 2010 in an attempt to generalize the results of [7]
to the K-theoretic setting (which is the subject of Sect. 12 of the present
paper). In this approach, we consider an algebra with the same generators
and defining relations as Uv(Lg) in the new Drinfeld realization with just

one modification: the relation [ei(z), fj (w)] = δij δ(z/w)

vi−v−1
i

(
ψ+i (z)− ψ−i (z)

)
is

replaced by pi(z)[ei(z), fj (w)] = δij δ(z/w)

vi−v−1
i

(
ψ+i (z)− ψ−i (z)

)
for any collection

of rational functions {pi(z)}i∈I (here I parametrizes the set of vertices of the
Dynkin diagram of g). For g = sl2 and μ+ = μ− ∈ −N, the algebra Usc

μ+,μ−
appeared in [18, § 5.2].

We also provide an alternative presentation of the antidominantly shifted
quantum affine algebras with a finite number of generators and defining relations,
see Theorem 5.5 and Appendix A for its proof. We note that this result (and its
proof) also holds for any affine Lie algebra, except for type A(1)1 . In the unshifted
case, more precisely for Uv(Lg), it can be viewed as a v-version of the famous
Levendorskii presentation of the Yangian Y (g), see [47]. Motivated by Guay et al.
[33], we also provide a slight modification of this presentation in Theorem A.3.

• In Sect. 6, we introduce other generators of Uad
μ+,μ− , which can be encoded by the

generating series {A±i (z), B±i (z), C±i (z),D±i (z)}i∈I . We provide a complete list
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of the defining relations between these generators for antidominant μ+, μ− ∈
�− (we use �− to denote the submonoid of the coweight lattice � spanned by
antidominant coweights), see Theorem 6.6 and Appendix B for its proof. This
should be viewed as a shifted v-version of the corresponding construction for
Yangians of [30]. We note that while some of the relations were established
(without a proof) in loc. cit., the authors did not aim at providing a complete list
of the defining relations. However, a rational analogue of Theorem 6.6 provides
such a list.

We would like to point out that this is one of the few places where it is essential
to work with the adjoint version. In the simplest case, that is of U ad

v (Lsl2), these
generating series coincide with the entries of the matrices T ±(z) from the RTT
realization of U ad

v (Lsl2), see [17] and our discussion in Sect. 11.4.
• In Sect. 7, we construct homomorphisms

�̃
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] −→ Ãv
frac[z±1

1 , . . . , z±1
N ]

from the adjoint version of shifted quantum affine algebras to the
C(v)[z±1

1 , . . . , z±1
N ]-algebras Ãv

frac[z±1
1 , . . . , z±1

N ] of difference operators on
multidimensional tori, see Theorem 7.1 and Appendix C for its proof. Here
λ = (ωi1 , . . . , ωiN ) is a sequence of fundamental coweights, such that λ − μ

is a sum of simple coroots with coefficients in N, where λ := ∑N
s=1 ωis . This

result can be viewed as a v-version of the corresponding construction for shifted
Yangians of [10, Theorem B.15], while the unshifted case of it, more precisely
the case of Uv(Lg), appeared (without a proof) in [31]. For g = sl2, N = 0 and
antidominant shift, the above homomorphism made its first appearance in [18,
Section 6].

• In Sect. 8, we consider the quantized K-theoretic Coulomb branch Av in
the particular case of quiver gauge theories of ADE type (a straightforward
generalization of the constructions of [9, 10], with the equivariant Borel-
Moore homology replaced by the equivariant K-theory). There is a natural
embedding z∗(ι∗)−1 : Av ↪→ Ãv[z±1

1 , . . . , z±1
N ]. In Theorem 8.1, we show that

our homomorphism �̃
λ
μ of Sect. 7 factors through the above embedding (with

C[v±1] extended to C(v)), giving rise to a homomorphism

�
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] −→ Av
frac.

This is a v-version of the corresponding result for shifted Yangians of [10,
Theorem B.18].

In Sect. 8.3, we add certain truncation relations to the relations defining
Uad

0,μ[z±1
1 , . . . , z±1

N ] to obtain the truncated shifted quantum affine algebras U
λ
μ

such that the homomorphism �
λ
μ factors through the projection and the same

named homomorphism Uad
0,μ[z±1

1 , . . . , z±1
N ] � U

λ
μ

�
λ
μ−→ Av

frac. We expect that

�
λ
μ : Uλμ → Av

frac is an isomorphism, see Conjecture 8.9.
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In Sect. 8.4, we define the shifted v-Yangians iY
v
μ[z±1

1 , . . . , z±1
N ] ⊂

Uad
0,μ[z±1

1 , . . . , z±1
N ] and their truncated quotients iY

λ
μ ⊂ U

λ
μ. We conjecture that

�
λ
μ : iY

λ
μ → Av

frac is an isomorphism, see Conjecture 8.13.

One of our biggest failures is the failure to define the integral forms iY
λ
μ ⊂ iY

λ
μ

and U
λ
μ ⊂ U

λ
μ over C[v±1] ⊂ C(v) that would (at least conjecturally) map

isomorphically onto Av ⊂ Av
frac. Only in the case of g = sl2, making use of

the ABCD-generators of Sect. 6, we are able to introduce the desired integral
form in Sect. 9.1 (see also [29] for the integral forms for g = sln). It is worth
noting that for arbitrary simply-laced g and any i ∈ I , the images under �λ

μ of
the generators B+i,r and ei,r (resp. C+i,r and fi,r ) are the classes of dual exceptional
collections of vector bundles on the corresponding minuscule Schubert varieties
in the affine Grassmannian, see Remark 8.4.

The desired integral forms iY
λ
μ and U

λ
μ are expected to be quantizations of a

certain cover †Ŵ
λ∗
μ∗ of a multiplicative slice introduced in Sect. 4.6, see Conjec-

ture 8.14. Here ∗ stands for the involution μ �→ −w0μ of the coweight lattice �.

• In Sect. 9, we prove the surjectivity of the homomorphism �
0
−nα in the simplest

case of g = sl2 and antidominant shifts, see Theorem 9.2. This identifies
the slightly localized and extended quantized K-theoretic Coulomb branch

K
G̃L(n,O)�C̃

×
loc (GrGL(n)) with a quotient of the localized version of the trun-

cated shifted quantum affine algebra U0
−nα,loc (where G̃L(n) and C̃× stand

for the two-fold covers of GL(n),C×; while the localization is obtained by
inverting 1 − v2m, 1 ≤ m ≤ n). We reduce the proof of the isomorphism

U0
−nα,loc

∼−→K
G̃L(n,O)�C̃

×
loc (GrGL(n)) to a verification of an identity with quan-

tum resultants in U0−nα , see Remarks 9.6, and 9.12. It would be interesting to
describe explicitly a basis of U0

−nα,loc projecting to the “canonical” basis of

K
G̃L(n,O)�C̃

×
loc (GrGL(n)) formed by the classes of irreducible equivariant perverse

coherent sheaves [8].
• In Sect. 10, we discuss generalizations of the classical coproducts on Uv(Lg) to

the shifted setting. We start by considering the simplest case g = sl2. We will
denote Usc

0,bα/2 simply by Usc
0,b (here b ∈ Z and α is the simple positive coroot).

We construct homomorphisms

�b1,b2 : Usc
0,b −→ Usc

0,b1
⊗ Usc

0,b2

for any b1, b2 ∈ Z, which recover the classical Drinfeld-Jimbo coproduct for
b1 = b2 = 0. Our construction is parallel to the one for shifted Yangians
of [24] and proceeds in two steps. First, we define such homomorphisms in the
antidominant case b1, b2 ∈ Z≤0, see Theorem 10.5 and Appendix D for its proof.
The proof is crucially based on the aforementioned alternative presentation of the
antidominantly shifted quantum affine algebras with a finite number of generators
and defining relations of Theorem 5.5. Second, we use the algebra embeddings
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ιn,m1,m2 : Usc
0,n ↪→ Usc

0,n+m1+m2
(here m1,m2 ≤ 0) to reduce the general case to

the antidominant one, see Theorem 10.10 and Appendix F for its proof. We note
that our proof of injectivity of the shift homomorphisms ιn,m1,m2 is based on the
PBW property of the shifted quantum affine algebras of sl2, see Lemma 10.9 and
Theorem E.2 of Appendix E.

In Sects. 10.6 and 10.7, we generalize the aforementioned case of sl2 to the
case of sln (n ≥ 2). The idea is again to treat first the case of antidominant
shifts and then deduce the general case. To achieve the former goal, it is essential
to have explicit formulas for the action of the Drinfeld-Jimbo coproduct on the
generators {ei,−1, fi,1, hi,±1}i∈I of Uv(Lsln). This is the key technical result,
stated in Theorem 10.13 and proved in Appendix G. Once this is established,
it is easy to guess the formulas for the homomorphism �μ1,μ2 : Usc

0,μ1+μ2
→

Usc
0,μ1

⊗ Usc
0,μ2

in the case μ1, μ2 ∈ �− (antidominant), see Theorem 10.16 and
its proof in Appendix H. In Theorem 10.20 we derive the construction of �μ1,μ2

for general μ1, μ2 ∈ � by utilizing the algebra embeddings ιμ,ν1,ν2 : Usc
0,μ ↪→

Usc
0,μ+ν1+ν2

for μ ∈ �, ν1, ν2 ∈ �−, see Theorem 10.19 and its proof in
Appendix I (the latter is based on the shuffle realization of Uv(Lsln) of [53, 63]).

Motivated by Finkelberg et al. [24], we expect that our construction of
homomorphisms �μ1,μ2 can be generalized to any simply-laced g and its
two coweights μ1, μ2 ∈ �. However, we failed to achieve this due to a
lack of explicit formulas for the Drinfeld-Jimbo coproduct of the generators
{ei,−1, fi,1, hi,±1}i∈I of Uv(Lg) (even for g = sln, the formulas of Theo-
rem 10.13 seem to be new, to our surprise).

Moreover, we expect that this coproduct extends to

�ad
μ1,μ2

: Uad
0,μ+μ2

[z±1
1 , . . . , z±1

N1+N2
] −→ Uad

0,μ1
[z±1

1 , . . . , z±1
N1
] ⊗ Uad

0,μ2
[z±1
N1+1, . . . , z

±1
N1+N2

],

which descends to the same named homomorphism �ad
μ1,μ2

: Uλμ1+μ2
→ U

λ(1)

μ1 ⊗
U
λ(2)

μ2 between truncated algebras, see Conjecture 11.22. We check a particular
case of this conjecture for g = sl2 in Proposition 11.21, using the RTT realization
of Uad

0,2b of Theorem 11.11.
• In Sect. 11, we discuss relativistic/trigonometric Lax matrices, the shifted RTT

algebras of sl2 and their relation to the shifted quantum affine algebras of sl2.
This yields a link between two seemingly different appearances of the RTT
relations (both trigonometric and rational).

In Sect. 11.2, we recall the Kuznetsov-Tsyganov [43] local relativistic Lax
matrix L

v,0
i (z) satisfying the trigonometric RTT-relation. The complete mon-

odromy matrix T v,0
n (z) = L

v,0
n (z) · · ·Lv,0

1 (z) also satisfies the same relation, and

its matrix coefficient T v,0
n (z)11 encodes all the hamiltonians of the q-difference

quantum open Toda lattice for GL(n) [19, 56].
We introduce two more local Lax matrices Lv,±1

i (z) satisfying the same
trigonometric RTT-relation. They give rise to the plethora of 3n complete
monodromy matrices T v

�k (z),
�k ∈ {−1, 0, 1}n, given by the length n products of



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 139

the three local Lax matrices in arbitrary order. The matrix coefficient T v
�k (z)11

encodes the hamiltonians of the corresponding modified quantum difference
Toda lattice; the quadratic hamiltonians are given by the formula (11.8). At
the quasiclassical level, these integrable systems go back to [21]. We show that
among these 3n integrable systems there are no more than 3n−2 nonequivalent,
see Lemma 11.6. It is shown in [35] that they are all obtained by the construction
of [56] using arbitrary pairs of orientations of the An−1 Dynkin diagram,
see Remark 11.7.

In Sect. 11.4, we introduce the shifted RTT algebras of sl2, denoted by Urtt
0,−2n,

and construct isomorphisms ϒ0,−2n : Uad
0,−2n

∼−→Urtt
0,−2n for any n ∈ N, see

Theorem 11.8 and Theorem 11.11. For n = 0, this recovers the isomorphism
of the new Drinfeld and the RTT realizations of the quantum loop algebra
U ad

v (Lsl2), due to [17]. We also identify the ABCD generators of Uad
0,−2n

of Sect. 6 with the generators of Urtt
0,−2n, see Corollary 11.10.

Viewing the Lax matrix L
v,−1
1 (z) as a homomorphism from Urtt

0,−2 to
the algebra of difference operators on C× and composing it with ϒ0,−2,
we recover the homomorphism �̃0

−2 of Sect. 7. More generally, among all
pairwise isomorphic shifted algebras {Uad

b,−2−b|b ∈ Z} only those with
b,−2 − b ≤ 0 admit an RTT realization, i.e., there are analogous iso-
morphisms ϒb,−2−b : Uad

b,−2−b
∼−→Urtt

b,−2−b. Moreover, recasting the homomor-

phisms �̃b,−2−b (generalizations of �̃0
−2 for b = 0) as the homomorphisms

Urtt
b,−2−b → Âv

1, we recover the other two Lax matrices Lv,0
1 (z) (for b = −1)

and Lv,1
1 (z) (for b = −2).

Finally, we use the RTT presentation of U ad
v (Lsl2) to derive explicit formulas

for the action of the Drinfeld-Jimbo coproduct on the Drinfeld half-currents,
see Proposition 11.18 and Appendix J for its proof. We also show that the
same formulas hold in the antidominantly shifted setting for the homomorphisms
�b1,b2 , see Proposition 11.19. As a consequence of the latter, the homomorphism
�ad

2b1,2b2
is intertwined with the RTT coproduct �rtt

2b1,2b2
, see Corollary 11.20,

which is used to prove the aforementioned Proposition 11.21 on the descent of
�ad

2b1,2b2
to the truncated versions.

• In Sect. 12, we provide yet another geometric realization of the shifted quantum
affine algebras (resp. shifted Yangians) of sln via the parabolic Laumon spaces.

Roughly speaking, this arises by combining our homomorphism �
λ

μ of Sect. 8

(resp. �
λ

μ of [10, Theorem B.18]) with an action of the quantized K-theoretic
(resp. cohomological) Coulomb branch Av

frac on the localized equivariant K-
theory (resp. cohomology) of parabolic Laumon spaces, constructed in [4], see
Remark 12.3(c).

For any π = (p1, . . . , pn) ∈ Zn>0, we construct an action of Usc
0,μ,

the simply-connected shifted quantum affine algebra of sln with the shift
μ = ∑n−1

j=1(pj+1 − pj )ωj , on M(π): the direct sum of localized equivariant
K-theory of Qd , see Theorem 12.2. Here Qd is the type π Laumon based
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parabolic quasiflags’ space, which we recall in Sect. 12.1. In Theorem 12.6,
we slightly generalize this by constructing an action of the shifted quantum
affine algebra of gln (defined in Sect. 12.7) on M(π). In Theorem 12.4, we
establish an isomorphism M(π ′) ⊗ M(π ′′) ∼−→M(π) (here π = π ′ + π ′′) of
Usc

0,μ-modules, where the action on the source arises from the formal coproduct

�̃ : Usc
0,μ → Usc

0,μ′ ⊗̂Usc
0,μ′′ , constructed in Sect. 10.1 (an analogue of the Drinfeld

formal coproduct on Uv(Lg)).
The rational counterpart of these results is established in Theorem 12.7, where

we construct an action of Yh̄μ (the shifted Yangian of sln with scalars extended
to C(h̄)) on V (π): the sum of localized equivariant cohomology of Qd . The
dominant case (p1 ≤ . . . ≤ pn) of this result was treated in [7], where the
proof was deduced from the Gelfand-Tsetlin formulas of [27]. In contrast, our
straightforward proof is valid for any π and, thus, gives an alternative proof of the
above Gelfand-Tsetlin formulas. We also propose a v-analogue of the Gelfand-
Tsetlin formulas of [27], see Proposition 12.8.

Our construction can be also naturally generalized to provide the actions of
the shifted quantum toroidal (resp. affine Yangian) algebras of sln on the sum
of localized equivariant K-theory (resp. cohomology) of the parabolic affine
Laumon spaces, see Sect. 12.9.

In Sect. 12.10, we introduce the Whittaker vectors in the completions ofM(π)

and V (π):

m :=
∑
d

[OQd
] ∈ M(π)∧ and v :=

∑
d

[Qd ] ∈ V (π)∧.

This name is motivated by their eigenvector properties of Proposition 12.11,
Remark 12.12(c).

Motivated by the work of Brundan-Kleshchev, see [12], we expect that the
truncated shifted quantum affine algebras U

Nωn−1
μ of sln should be v-analogues

of the finite W-algebras W(slN, eπ ), see [57], where N := ∑pi and eπ ∈ slN
is a nilpotent element of Jordan type π .

2 Relativistic Open Toda Lattice

2.1 Quasihamiltonian Reduction

Let G ⊃ B ⊃ T be a reductive group with a Borel and Cartan subgroups. Let
T ⊂ B− ⊂ G be the opposite Borel subgroup; let U (resp. U−) be the unipotent
radical of B (resp. B−). We consider the doubleD(G) = G×G (see, e.g., [2, § 3.2])
equipped with an action of G×G : (u1, u2) · (g1, g2) = (u1g1u

−1
2 , u2g2u

−1
2 ), and

with a moment map μ = (μ1, μ2) : D(G)→ G×G, μ(g1, g2) = (g1g2g
−1
1 , g−1

2 )

(see [2, Remark 3.2]). The double D(G) carries a (non-closed) 2-form ωD =
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1
2 (Adg2 g

∗
1θ, g

∗
1θ) + 1

2 (g
∗
1θ, g

∗
2θ + g∗2θ) where (·, ·) is a nondegenerate invariant

symmetric bilinear form on g, and θ (resp. θ ) is the left- (resp. right-) invariant
Maurer–Cartan form on G.

We choose a pair of Coxeter elements c, c′ ∈ W = NG(T )/T , and their
representatives ċ, ċ′ ∈ NG(T ). Steinberg’s cross-section �ċ

G ⊂ G is defined as
Z0(G) · (U−ċ ∩ ċU). If G is semisimple simply-connected, then the composed
morphism �ċ

G ↪→ G → G//AdG = T/W is an isomorphism [58, Theorem 1.4].
For arbitrary G, the composed morphism � : �ċ

G → T/W is a ramified Galois
cover with Galois group π1(G/Z

0(G)). Furthermore, we consider �ċG := Z0(G) ·
U−ċU− ⊃ �ċ

G. According to [58, § 8.9] (for a proof, see, e.g., [39]), �ċ
G meets any

U−-orbit (with respect to the conjugation action) on �ċG in exactly one point, and
the conjugation action of U− on �ċG is free, so that �ċG/AdU− � �ċ

G.
For example, according to [58, Example 7.4b)], for an appropriate choice of

ċ, the Steinberg cross-section �ċ
SL(n) consists of the matrices with 1’s just above

the main diagonal, (−1)n−1 in the bottom left corner, arbitrary entries elsewhere
in the first column, and zeros everywhere else (in our conventions, B (resp. B−)
is the subgroup of upper triangular (resp. lower triangular) matrices in SL(n)).
Hence �ċSL(n) consists of matrices with 1’s just above the main diagonal, and zeros
everywhere above that.

Following [26], we define the phase space of the open relativistic Toda lattice as
the quasihamiltonian reduction †Zc

′,c(G) := μ−1(�ċ
′
G× inv(�ċG))/U− ×U− where

inv : G→ G is the inversion g �→ g−1. The composed projection

μ−1(�ċ
′
G × inv(�ċG))→ inv(�ċG) ↪→ G� G//AdG = T/W

gives rise to an integrable system � : †Zc
′,c(G) → T/W which factors through

†Zc
′,c(G)

�̃−→ �ċ
G

�−→ T/W .

Lemma 2.1 IfG is semisimple simply-connected, then †Zc
′,c(G) is smooth, and ωD

gives rise to a symplectic form on †Zc
′,c(G).

Proof The morphism �ċG → �ċ
G = T/W is smooth by [58, Theorem 1.5], so the

fibered product �ċ
′
G ×T/W �ċG ⊂ �ċ

′
G ×�ċG is smooth. But

μ : D(G) ⊃ μ−1(�ċ
′
G × inv(�ċG))→ �ċ

′
G × inv(�ċG) � �ċ

′
G ×�ċG

is a submersion onto �ċ
′
G ×T/W �ċG, hence M := μ−1(�ċ

′
G × inv(�ċG)) is smooth,

and its quotient modulo the free action of U− × U− is smooth as well.
The restriction of ωD toM is U−×U−-invariant, so it descends to a 2-form ω on

†Zc
′,c(G). This 2-form is closed since the differential dωD = −μ∗(χ1+χ2) (see [2,

Definition 2.2(B1)]) where χ = 1
12 (θ, [θ, θ ]) is the canonical closed biinvariant 3-

form on G, and χ1 (resp. χ2) is its pull-back from the first (resp. second) copy of G.
But the restriction χ |�ċG vanishes identically since (b−, [b−, b−]) = 0.
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It remains to check the nondegeneracy of ω, that is given (g1, g2) ∈ M to check
that KerωD|M(g1, g2) is contained in the span v(n− ⊕ n−) of tangent vectors at
(g1, g2) arising from the action of U− × U−. The argument in the proof of [2,
Theorem 5.1] shows that KerωD|M(g1, g2) ⊂ v(g ⊕ g). However, it is clear that
T(g1,g2)M ∩ v(g⊕ g) = v(n− ⊕ n−).

The lemma is proved. ��

2.2 Poisson Reduction

Note that T · �ċG = �ċG · T = AdT (�ċG) = B− · ċ · B− =: Cc (a Coxeter Bruhat
cell). One can check that the natural morphism

†Zc
′,c(G) = μ−1(�ċ

′
G × inv(�ċG))/U− × U− → μ−1(Cc′ × inv(Cc))/B− × B−

is an isomorphism. Moreover, the action of B−×B− on μ−1(Cc′ × inv(Cc)) factors
through the free action of (B−×B−)/�Z(G): the quotient modulo the diagonal copy
of the center of G.

The double D(G) = G × G carries the Semenov-Tian-Shansky Poisson
structure [59, Section 2]. Following loc. cit., G × G with this Poisson structure
is denoted by (D+(G), {,}+), the Heisenberg double. Another Poisson structure
on G × G denoted {,}− in loc. cit. is the Drinfeld double D−(G). The diagonal
embedding G ↪→ D−(G) is Poisson with respect to the standard Poisson structure
onG denoted πG in [20, § 2.1]. The dual (Semenov-Tian-Shansky) Poisson structure
on G is denoted π in [20, § 2.2].

The Heisenberg double D+(G) is equipped with two commuting (left and
right) dressing Poisson actions of the Drinfeld double D−(G). Restricting to the
diagonal G ↪→ D−(G) we obtain two commuting Poisson actions of (G, πG) on
D+(G). The multiplicative moment map of this action is nothing but μ : D+(G)→
(G, π) × (G, π) of Sect. 2.1 (a Poisson morphism). Now Cc ⊂ G is a coisotropic
subvariety [20, § 6.2] of (G, π), and μ−1(Cc′ × inv(Cc)) ↪→ D(G) is a coisotropic
subvariety of (D+(G), {, }+). The action of G × G on (D+(G), {,}+) is Poisson
if G×G is equipped with the direct product of the standard Poisson-Lie structures
denoted πG in [20, § 2.1]. Note that B− ×B− ⊂ G×G is a Poisson-Lie subgroup;
its Poisson structure will be denoted πB− × πB− .

The characteristic distribution [20, § 6.2] of the coisotropic subvariety μ−1(Cc′ ×
inv(Cc)) ⊂ (D+(G), {,}+) coincides with the distribution defined by the tangent
spaces to the B− × B−-orbits in μ−1(Cc′ × inv(Cc)). By [20, Proposition 6.7] we
obtain a Poisson structure on μ−1(Cc′ × inv(Cc))/(B− × B−) � †Zc

′,c(G). This
Poisson structure coincides with the one arising from the symplectic form ω on
†Zc

′,c(G).
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2.3 The Universal Centralizer

Recall that the universal centralizer [49, Section 8] ZGG ⊂ G × �ċ
G is defined as

ZGG = {(g, x) : gxg−1 = x}. In case c = c′ and ċ = ċ′, we have an evident
embedding ZGG ↪→ μ−1(�ċG × inv(�ċG)), and the composed morphism η : ZGG ↪→
μ−1(�ċG × inv(�ċG))� †Zc,c(G). Clearly, the following diagram commutes:

Proposition 2.2 For semisimple simply-connected G, the morphism η : ZGG →
†Zc,c(G) is an isomorphism.

Proof First we prove the surjectivity of η. We use the equality U− × U− =
(U− × {e}) × �U− . Given (g1, g2) ∈ μ−1(�ċG × inv(�ċG)) we first act by
(u2, u2) ∈ �U− : (g1, g2) �→ (u2g1u

−1
2 , u2g2u

−1
2 ). We can find a unique u2 such

that u2g2u
−1
2 ∈ �ċ

G. Let us denote the resulting (u2g1u
−1
2 , u2g2u

−1
2 ) by (h1, h2)

for brevity. Now we act by the left shift h1 �→ u1h1 which takes h1h2h
−1
1 to

u1h1h2h
−1
1 u−1

1 . We can find a unique u1 such that u1h1h2h
−1
1 u−1

1 ∈ �ċ
G. Now both

h2 = u2g2u
−1
2 and u1h1h2h

−1
1 u−1

1 are in �ċ
G. Being conjugate they must coincide,

hence (u1h1, h2) ∈ ZGG.
Now if η(g, x) = η(g′, x′), then there is u2 ∈ U− such that u2xu

−1
2 = x′, hence

x = x′ and u2 = e. Then g′ = u1g for some u1 ∈ U−, and both g and g′ commute
with x, hence u1xu

−1
1 = x, hence u1 = e, so that g = g′.

So η is bijective at the level of C-points. But †Zc,c(G) is smooth, hence η is an
isomorphism. ��
Remark 2.3 For arbitrary reductive G the morphism η is an affine embedding, but
it fails to be surjective already for G = PGL(2) where the class of (g1, g2) such

that g2 =
(
a −1
1 0

)
and g1g2g

−1
1 =

(−a −1
1 0

)
does not lie in the image of η when

a �= 0. Similarly, for G = GL(2), the class of (g1, g2) such that g2 =
(
a −1
1 0

)
and

g1g2g
−1
1 =

(
a 1
−1 0

)
does not lie in the image of η. It also follows that the natural

projection †Zc,c(SL(2))→ †Zc,c(PGL(2)) is not surjective.

Remark 2.4 For G semisimple simply-connected, the reduction

(D(G), ωD(G))//diag(G)

[2, Example 6.1, Remark 6.2] inherits a symplectic structure on its nonsingular
locus. We have a natural morphism ZGG → (D(G), ωD(G))//diag(G) which is a
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birational isomorphism (but not an isomorphism: e.g., it contracts the centralizer
of a regular unipotent element). Thus an open subvariety of ZGG is equipped with a
symplectic form pulled back from (D(G), ωD(G))//diag(G). This form extends to a

symplectic form on the entire ZGG [8, § 2.4]. The isomorphism η : ZGG ∼−→ †Zc,c(G)
is a symplectomorphism.

2.4 Comparison with the Coxeter–Toda Lattice

We compare †Zc
′,c(G) with the construction of [38]. Throughout this section we

assume G to be semisimple simply-connected. The left action of the center Z(G)
on D(G), ξ · (g1, g2) = (ξg1, g2) gives rise to the action of Z(G) on †Zc

′,c(G) =
M/U− × U− where M = μ−1(�ċ

′
G × inv(�ċG)) ⊂ D(G) = G × G. We consider

an open subset M ⊃ •
M := (U− · T · ẇ0 · U− × G) ∩M given by the condition

that g1 lies in the big Bruhat cell Cw0 ⊂ G. Clearly,
•
M ⊂ M is U− ×U−-invariant,

and we define †•Zc′,c(G) := •
M/U− × U−, an open subvariety of †Zc

′,c(G). Let
S ⊂ •

M be given by the condition g1 ∈ T · ẇ0. Then the composed projection
S ↪→ •

M � †•Zc′,c(G) is an isomorphism. Moreover, the projection pr2 : S → G is
a Z(G)-torsor over its image �ċG ∩ AdT (ẇ0�

ċ′
Gẇ

−1
0 ) = �ċG ∩ AdT (Uẇ0ċ

′ẇ−1
0 U).

Finally, note that the composed projection

�ċG ∩ AdT (Uẇ0ċ
′ẇ−1

0 U) ↪→ T · U− · ċ · U− · T ∩ T · U · ẇ0ċ
′ẇ−1

0 · U · T �

� (T · U− · ċ · U− · T ∩ T · U · ẇ0ċ
′ẇ−1

0 · U · T )/AdT =: Gċ,ẇ0ċ
′ẇ−1

0 /AdT

is an isomorphism. But according to [38] (see also [34]), Gċ,ẇ0ċ
′ẇ−1

0 /AdT is the
phase space of the Coxeter–Toda lattice. All in all, we obtain an isomorphism

(respecting the symplectic structures) Z(G)\†•Zc′,c ∼−→Gċ,ẇ0ċ
′ẇ−1

0 /AdT .
For example, for an appropriate choice of ċ, ċ′ ∈ SL(n), the slice S is formed by

all the tridiagonal matrices of determinant 1 with 1’s just above the main diagonal,
and with the invertible entries just below the main diagonal (see [34, Introduction]).

We also define an open subset S ⊃ ◦
S := {(g1, g2) ∈ M : g1 ∈ T · ẇ0, g2 ∈

U−·T ·U}. It is equipped with a projection pr1 :
◦
S → T ·ẇ0

∼−→ T , and with another

projection pr2 :
◦
S → U− · T ·U � T . One can check that (pr1, pr2) :

◦
S ∼−→ T × T .

We define an open subvariety †Zc
′,c(G) ⊃ †•Zc′,c(G) ⊃ †◦Zc′,c(G) as the isomorphic

image of
◦
S. Thus †◦Zc′,c(G) � T × T .

2.5 Trigonometric Zastava for SL(2)

Recall the degree n trigonometric open zastava †◦Zn for the group SL(2) (see [25]).
This is the moduli space of pairs of relatively prime polynomials (Q = zn +
q1z

n−1 + . . .+ qn, R = r1z
n−1 + r2z

n−2 + . . .+ rn) such that qn �= 0. We have a
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morphism ζ : ZGL(n)GL(n) → †◦Zn taking a pair (g, x) ∈ Z
GL(n)
GL(n) to (Q,R) where Q is the

characteristic polynomial of x, and R is a unique polynomial of degree less than n
such that R(x) = g. We denote by pr : †◦Zn → (C×)(n) the morphism taking (Q,R)
to the set of roots of Q.

Recall that �ċ
GL(n) = Z0(GL(n)) · �ċ

SL(n) � Z(GL(n)) × �ċ
SL(n) = C× ×

�ċ
SL(n). We denote by p : ZGL(n)GL(n) → C× the composed projection Z

GL(n)
GL(n) →

�ċ
GL(n) → C×.

Proposition 2.5 The following square is Cartesian:

Thus ZGL(n)GL(n) is an unramified Z/nZ-cover of †◦Zn.

Proof Clear from the above discussion. ��
Following [1, end of chapter 2], we consider the subvariety †Z̃n1 ↪→ †◦Zn formed

by the pairs (Q,R) such that qn = 1 and the resultant of Q and R, denoted
Result(Q,R), equals 1. Note that we have an evident embedding Z

SL(n)
SL(n) ↪→ Z

GL(n)
GL(n).

Corollary 2.6 The restriction of the morphism ζ to Z
SL(n)
SL(n) ⊂ Z

GL(n)
GL(n) gives rise to

an isomorphism ζ : ZSL(n)SL(n)
∼−→ †Z̃n1 .

Proof For (g, x) ∈ Z
GL(n)
GL(n), the inclusion x ∈ SL(n) is equivalent to qn = 1, while

we claim that the inclusion g ∈ SL(n) is equivalent to Result(Q,R) = 1. The latter
follows by combining the equalities gx = xg and g = R(x) with the standard
equality Result(Q,R) = ∏n

i=1 R(ξi), where {ξi}ni=1 are the roots of Q. Since
{ξi}ni=1 are the generalized eigenvalues (taken with corresponding multiplicities)
of x, it is easy to see that {R(ξi)}ni=1 are the generalized eigenvalues of g, hence,
det(g) =∏n

i=1 R(ξi). ��
For a future use we define an unramified Z/2Z-cover †Ẑn → †◦Zn where †Ẑn is

the moduli space of pairs of relatively prime polynomials (Q = q0z
n + q1z

n−1 +
. . .+qn, R = r1z

n−1+r2zn−2+ . . .+rn) such that qn ·q0 = (−1)n. The projection
†Ẑn → †◦Zn takes (Q,R) to (q−1

0 Q,R).

Finally, there are important embeddings � : †◦Zn, †Ẑn ↪→ SL(2,C[z]) taking

(Q,R) to a unique matrix

(
Q R̃

R Q̃

)
such that deg R̃ ≤ n > deg Q̃, and R̃(0)= 0,

that is R̃ = r̃0z
n + r̃1z

n−1 + . . . + r̃n−1z. Identifying †Ẑn and †◦Zn with their
images inside SL(2,C[z]), the matrix multiplication gives rise to the multiplication
morphisms †Ẑk × †Ẑl → †Ẑk+l , †◦Zk × †◦Zl → †◦Zk+l .
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3 Quantum Relativistic Open Toda and Nil-DAHA

Throughout this section (with the exception of Sect. 3.11 dealing with G = GL(n))
G is an almost simple simply-connected complex algebraic group.

3.1 Root Systems and Foldings

Let G∨ be the Langlands dual (adjoint) group with a Cartan torus T ∨. We choose a
Borel subgroup B∨ ⊃ T ∨. It defines the set of simple positive roots {αi, i ∈ I }. Let
g∨ be the Lie algebra ofG∨. We realize g∨ as a folding of a simple simply-laced Lie
algebra g′∨, i.e. as invariants of an outer automorphism σ of g′∨ preserving a Cartan
subalgebra t′∨ ⊂ g′∨ and acting on the root system of (g′∨, t′∨). In particular, σ
gives rise to the same named automorphism of the Langlands dual Lie algebras
g′ ⊃ t′ (note that say, if g is of type Bn, then g′ is of type A2n−1, while if g is of
type Cn, then g′ is of type Dn+1; in particular, g �⊂ g′). We choose a σ -invariant
Borel subalgebra t′ ⊂ b′ ⊂ g′ such that b = (b′)σ . The corresponding set of
simple roots is denoted by I ′. We denote by � the finite cyclic group generated
by σ , and d := |�|. Let G′ ⊃ T ′ denote the corresponding simply-connected Lie
group and its Cartan torus. The coinvariants X∗(T ′)σ of σ on the coroot lattice
X∗(T ′) of (g′, t′) coincide with the root lattice of g∨. We have an injective map
a : X∗(T ′)σ → X∗(T ′)σ from coinvariants to invariants defined as follows: given
a coinvariant α with a representative α̃ ∈ X∗(T ′) we set a(α) :=∑ξ∈� ξ(α̃).

To compare with the notations of [36, § 4.4, Remark 4.5], we are in the symmetric
case with Q′0 = Y := X∗(T ∨) = X∗(T ) = X∗(T ′)σ , and Q0 ⊂ X := X∗(T ′)σ
generated by the classes of simple roots of T ′ ⊂ B ′ ⊂ G′. Note that Q′0 is
generated by the classes of simple coroots of T ′ ⊂ B ′ ⊂ G′, and we have a
canonical identification Q0 = Q′0 sending a coroot α̃ to the corresponding root
α̃∨. The Weyl group W of G ⊃ T coincides with the invariants (W ′)σ of σ
on the Weyl group W ′ of G′ ⊃ T ′ (our W is denoted W0 in [36]). The W -
invariant pairing X × Y → Q defined in [36, § 4.4] is actually integer valued:
X × Y → Z, so that m = 1 (notations of loc. cit.). To compare with notations
of [13, Section 1], P := X, Q := Q0, and the natural pairing P × P → Q
gives rise to the embedding Q = Y ↪→ P . We will also need an extended lattice
Yad := X∗(Tad) = X∗(T ′ad)σ ⊃ Y . Note that � := Yad/Y = (X∗(T ′ad)/X∗(T ′))σ .
Also note that the above W -invariant identification Q0 = Q′0 extends to the W -
invariant identificationQ0 ⊂ X = Yad ⊃ Q′0. The extended pairingX×Yad → Q is
no more integer valued in general, and we denote by mad the maximal denominator
appearing in the values of this pairing. Finally, R ⊂ X stands for the set of roots.
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3.2 Affine Flags

We fix a primitive root of unity ζ of order d = ord(σ ). We set K = C((t)) ⊃
O = C[[t]]. The group ind-scheme G′(K) is equipped with an automorphism ς

defined as the composition of two automorphisms: a) σ on G′; b) t �→ ζ t. This
automorphism preserves the Iwahori subgroup I′ ⊂ G′(K). We denote by F� the
twisted affine flag space G′(K)ς/(I′)ς : an ind-proper ind-scheme of ind-finite type,
see [55]. We denote by u ⊂ Lie(I′)ς its pronilpotent radical. The trivial (Tate)
bundle g′(K)ς with the fiber g′(K)ς over F� has a structure of an ind-scheme. It
contains a profinite dimensional vector subbundle u whose fiber over a point b ∈ F�

represented by a compact subalgebra in g′(K)ς is the pronilpotent radical of this
subalgebra. The trivial vector bundle g′(K)ς also contains a trivial vector subbundle
u× F�. We will call u the cotangent bundle of F�, and we will call the intersection
� := u ∩ (u× F�) the affine Steinberg variety.

To simplify the notations we will write I for (I′)ς , and K for G′(O)ς . The convo-
lution product on the complexified equivariant coherent K-theory KC

××I�C
×
(�)

is defined as in [9, Remark 3.9(3)] (cf. [8, § 7.1] and [64, § 2.2, 2.3]). Here the
first copy of C× acts by dilations in fibers of u, while the second one acts by loop
rotations, and KC××C×(pt) = C[t±1, q±1].

3.3 DAHA, Symmetric Case

Following [36, § 4.6], we set X̃ := X ⊕ Zδ = X∗(T ′)σ ⊕ Zδ. This is the group of
characters of I �C×. Note that the Picard group Pic(F�) is canonically isomorphic
to X ⊕ Zω0. The I-orbits on F� are parametrized by the affine Weyl group Wa �
Y � W = X∗(T ′)σ � W . We denote by �e � u the closed subscheme of �: the
preimage of the one-point I-orbit F�e ⊂ F�. For λ̃ = (λ̌, k) ∈ X̃ we denote by
O�e 〈λ̃〉 ∈ KC

××I�C
×
(�) the (class of the) direct image of the structure sheaf of

�e twisted by the character λ̃ of I �C×. Let Ĩ ⊂ Wa be the set of one-dimensional
I-orbits on F�. For i ∈ Ĩ we denote by F�i the corresponding orbit, and by F�i its
closure, isomorphic to a projective line. We denote by �i ⊂ � the closed subscheme
of �: the closure of the preimage of F�i . We denote by ω�i

the (class of the) direct
image (wrt the closed embedding �i ↪→ �) of the inverse image (wrt the smooth
projection �i → F�i) of the canonical line bundle on F�i � P1 equipped with
the natural C× × I � C×-equivariant structure. Finally, we set Ti := −1− tω�i

∈
KC

××I�C
×
(�).

Definition 3.1 (Cf. [36, Definition 5.6]) The double affine Hecke algebra (DAHA)
H(Wa, X̃) is the C[q±1, t±1]-algebra generated by {Xλ̃, Tw|λ̃ ∈ X̃, w ∈ Wa} with
the following defining relations:

(a) Tw’s satisfy the braid relations of Wa ;
(b) Xλ̃Xμ̃ = Xλ̃+μ̃, and Xδ = q;
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(c) (Ti − t)(Ti + 1) = 0 for i ∈ Ĩ , where we set Ti = Tsi ;
(d) Xλ̃Ti − TiXλ̃−rα̌i = (t − 1)Xλ̃(1+X−α̌i + . . .+Xr−1

−α̌i ) where 〈λ̃, αi〉 = r ≥ 0.

Theorem 3.2 There is a unique isomorphism � : H(Wa, X̃)
∼−→KC

××I�C
×
(�)

such that �(Xλ̃) = O�e 〈λ̃〉, and �(Ti) = Ti , for any i ∈ Ĩ .

Proof Same as the one of [64, Theorem 2.5.6]. ��

3.4 Nil-DAHA, Symmetric Case

The complexified equivariant K-theory KI�C
×
(F�) forms a C[q±1]-algebra with

respect to the convolution. We denote by OF�e 〈λ̃〉 the (class of the) structure sheaf
of the point orbit F�e ∈ F� twisted by a character λ̃ ∈ X̃. We denote by ωF�i

the

(class of the) direct image (wrt the closed embedding F�i ↪→ F�) of the canonical
line bundle on F�i equipped with the natural I � C×-equivariant structure. We set
Ti := −1− ωF�i

∈ KI�C
×
(F�).

Definition 3.3 (Cf. [13, § 1.1]) The nil-DAHA HH(Wa, X̃) is the C[q±1]-algebra
generated by {Xλ̃,Tw|λ̃ ∈ X̃, w ∈ Wa} with the following defining relations:

(a) Tw’s satisfy the braid relations of Wa ;
(b) Xλ̃Xμ̃ = Xλ̃+μ̃, and Xδ = q;

(c) Ti (Ti + 1) = 0 for i ∈ Ĩ , where we set Ti = Tsi ;
(d) Xλ̃Ti − TiXλ̃−rα̌i = −Xλ̃(1+ X−α̌i + . . .+ Xr−1

−α̌i ) where 〈λ̃, αi〉 = r ≥ 0.

Theorem 3.4 There is a unique isomorphism � : HH(Wa, X̃)
∼−→KI�C

×
(F�)

such that �(Xλ̃) = OF�e 〈λ̃〉, and �(Ti ) = Ti , for any i ∈ Ĩ .

Proof Same as the one of [64, Theorem 2.5.6]. ��

3.5 Extended Nil-DAHA

We consider the 2mad-fold cover C̃× → C× of the loop rotation group (see the
end of Sect. 3.1), and set Î := I � C̃×. The group of characters of T × C̃×
is X̂ := X ⊕ Z 1

2mad
δ. The extended affine Weyl group is We = Yad � W =

Wa ��. The extended nil-DAHA HH(We, X̂) is the (extended) semidirect product

(HH(Wa, X̂) � �) ⊗C[q±1] C[q
±1

2mad ]. That is, it has generators X
λ̂
, λ̂ ∈ X̂,

and Ti , i ∈ Ĩ , and π ∈ �; with additional relations πTiπ−1 = Tπ(i), and
πX

λ̂
π−1 = X

π(λ̂)
.

Remark 3.5 The definition of [13, § 1.1] is equivalent to our Sect. 3.5: the genera-
tors Ti of loc. cit. correspond to −Ti − 1; geometrically, Ti = [ωF�i

].
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3.6 Residue Construction

Let A := C[q ±1
2mad ], and Q := C(q

1
2mad ). Let Oq(T ×T ) be an A-algebra with gener-

ators [λ,μ], λ, μ ∈ X, and relations [λ,μ] · [λ′, μ′] = q
(μ,λ′)−(μ′,λ)

2 [λ+λ′, μ+μ′].
This is the subalgebra of endomorphisms of A[T ] generated by multiplications by
Xλ, λ ∈ X, and q-shift operators Dμ

q f (t) := f (qμt) where we view qμ as a
homomorphism C̃× → T . In other words, Dμ

q Xλ = q(μ,λ)Xλ. We may and will
view Oq(T ×T ) as a subalgebra of endomorphisms of the field of rational functions
Q(T ) as well. It embeds into the subalgebra Cq(T × T ) ⊂ End(Q(T )) generated
by D

μ
q , μ ∈ X, and multiplications by f ∈ Q(T ). We consider the semidirect

product Cq(T × T ) � C[W ] with respect to the diagonal action of W on T × T .
Inside we consider the linear subspace HHres(We, X̂) formed by the finite sums∑μ∈X

w∈W hw,μD
μ
q · [w], hw,μ ∈ Q(T ), satisfying the following conditions:

(a) hw,μ is regular except at the divisors Tα,qk := {t : α(t) = qk}, α ∈ R, k ∈ Z,
where they are allowed to have only first order poles.

(b) ResT
α,q−k (hw,μ)+ ResT

α,q−k (hsαw,kα+sαμ) = 0 for any α ∈ R.

The algebra of regular functions C[T × C̃×] is embedded into HHres(We, X̂) via
the assignment f �→ f · [1]. Furthermore, for i ∈ I ⊂ Ĩ , we consider the Demazure
operator [13, § 1.3] τi := 1

1−Xαi
· ([si] − [1]) ∈ HHres(We, X̂), and for i0 ∈ Ĩ \ I

we consider the Demazure operator [13, § 1.3] τi0 := 1
1−qX−1

θ

· ([sθ ] ·Dθ
q − [1]) ∈

HHres(We, X̂), where θ ∈ R is the dominant short root, (θ, θ) = 2.

Theorem 3.6

(a) HHres(We, X̂) is a subalgebra of Cq(T × T )�C[W ].
(b) The assignment f �→ f · [1]; Ti �→ τi, i ∈ Ĩ ; � � π �→ the

corresponding automorphism of Q(T ) = Q(X̂ ⊗ C×) (arising from the
automorphism of the extended Dynkin diagram), defines an isomorphism
ϕ : HH(We, X̂)

∼−→HHres(We, X̂).

Proof Same as the one of [5, Theorem 7.2]. ��
Remark 3.7 Nil-DAHA HH(We, X̂) is not isomorphic to the degeneration Ḧ|v=0
of [5, Section 6].

3.7 K-theory of Disconnected Flags

We define Iad as the image of I in G′ad(K)
ς , and we consider the adjoint version of

the affine flags F�ad := G′ad(K)
ς/Iad. This is an ind-scheme having |�| connected

components, each one isomorphic to F�. The isomorphism of Theorem 3.4 extends
to the same named isomorphism HH(We, X̂)

∼−→K Î(F�ad). Let us explain why the
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RHS forms an algebra. We consider an algebra K(̂I\G′ad(K)
ς /̂I) = K Î(F�ad/�).

Here we view � = Z(G′σ ) as the center of the simply-connected group G′σ acting
trivially on F�ad. Now K Î(F�ad/�) contains a subalgebra K Î(F�ad/�)diag formed
by the classes of bi-equivariant sheaves on F�ad such that the �-equivariance coin-
cides with the Z(G′σ )-equivariance obtained by the restriction of Î-equivariance.
Finally, K Î(F�ad/�)diag � K Î(F�ad).

3.8 Spherical Nil-DAHA

We define the new generators T̂i := −Ti − 1, i ∈ Ĩ (they correspond to the
generators Ti of [13, Definition 1.1]). Geometrically, T̂i = [ωF�i

]. They still satisfy
the braid relations of Wa . So for any w ∈ Wa we have a well-defined element
(product of the generators) T̂w. We also define T̂′i := T̂i + 1 = −Ti , i ∈ Ĩ .

Geometrically, for i ∈ I ⊂ Ĩ , we have T̂′i = Xρ∨[OF�i
]X−1

ρ∨ . These generators also
satisfy the braid relations of Wa , so for any w ∈ Wa we have a well-defined element
(product of the generators) T̂′w.

Given a reduced decomposition w = si1 · · · sil we have for the class of the
structure sheaf of the Schubert variety [OF�w

] = [OF�i1
] · · · [OF�il

] since F�w has

rational singularities. Hence, for w ∈ W ⊂ Wa , we have [OF�w
] = X−1

ρ∨ T̂
′
wXρ∨ . In

particular, for the longest element w0 ∈ W we set e := [OF�w0
] = X−1

ρ∨ T̂
′
w0

Xρ∨ , an

idempotent in HH(We, X̂). Indeed, calculating [OF�w0
][OF�w0

] as the pushforward

of the structure sheaf from the convolution diagram F�w0×̃F�w0 → F�w0 we get
OF�w0

since R (F�w0 ,OF�w0
) = C.

We define the spherical nil-DAHA HHsph(Wa, X̃) := eHH(Wa, X̃)e, and the
spherical extended nil-DAHA HHsph(We, X̂) := eHH(We, X̂)e.

3.9 Equivariant K-theory of the Affine Grassmannian

We denote by Grad the twisted affine Grassmannian G′ad(K)
ς/G′ad(O)

ς : an ind-
proper ind-scheme of ind-finite type, see [55]. The complexified equivariant

coherentK-theoryKK�C̃
×
(Grad) = KG′(O)ς�C̃

×
(Grad) forms a C[q± 1

2mad ]-algebra
with respect to the convolution (see Sect. 3.7). We have the smooth projection

p : F�ad → Grad, and the natural embedding KK�C̃
×
(Grad) ↪→ KI�C̃

×
(Grad)

p∗
↪→

KI�C̃
×
(F�ad).
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Corollary 3.8 The isomorphism � of Sect. 3.7 takes the spherical subalgebra
HHsph(We, X̂) ⊂ HH(We, X̂) isomorphically onto KK�C̃

×
(Grad) ⊂

KI�C̃
×
(F�ad). The right ideal eHH(We, X̂) corresponds to KK�C

×
(F�ad) =

(KI�C̃
×
(F�ad))

W ⊂ KI�C̃
×
(F�ad). ��

3.10 Classical Limit

The following theorem is proved similarly to [8, Theorem 2.15]:

Theorem 3.9

(a) The algebra KK(Grad) is commutative.
(b) Its spectrum together with the projection onto T/W is naturally isomorphic to

ZGG
pr−→ T/W .

(c) The Poisson structure onKK(Grad) arising from the deformationKK�C
×
(Grad)

corresponds under the above identification to the Poisson (symplectic) structure
of Remark 2.4 on ZGG. ��

Corollary 3.10

(a) The algebra HHsph(We, X̂)|q=1 is commutative.
(b) This algebra with the subalgebra C[X]W is naturally isomorphic to C[ZGG] ⊃

C[T/W ].
(c) The Poisson structure on HHsph(We, X̂)|q=1 arising from the deformation

HHsph(We, X̂) corresponds under the above identification to the Poisson
(symplectic) structure of Remark 2.4 on ZGG. ��

3.11 Nil-DAHA, General Linear Group

In caseG = GL(n) � G∨, the general definition of HH(We, X̂) takes a particularly
explicit form.

Definition 3.11 The nil-DAHA HH(GL(n)) is the C[q±1]-algebra with generators
T0, . . . ,Tn−1, X±1

1 , . . . ,X±1
n , π±1, and the following relations:

(a) Ti’s for i ∈ Z/nZ satisfy the braid relations of the affine braid group of type
Ãn−1;

(b) X±1
i , i = 1, . . . , n, all commute;

(c) Ti (Ti + 1) = 0 for i ∈ Z/nZ;
(d) πXiπ−1 = Xi+1 for i = 1, . . . , n− 1, and πXnπ−1 = qX1;
(e) πTiπ

−1 = Ti+1 for i ∈ Z/nZ;
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(f) Xi+1Ti − TiXi = Xi , and X−1
i Ti − TiX

−1
i+1 = X−1

i+1 for i = 1, . . . , n− 1;

(h) qX1T0 − T0Xn = Xn, and qX−1
n T0 − T0X−1

1 = X−1
1 ;

(fh) X±1
i and Tj commute for all the pairs i, j not listed in (f,h) above.

Note that X := X1 · · ·Xn commutes with all the Ti’s, while πXπ−1 = qX. For a
future use we give the following

Definition 3.12 The extended nil-DAHA HHe(GL(n)) is the C[v±1]-algebra,

q = v2, with generators T0, . . . ,Tn−1, X±1
1 , . . . ,X±1

n , π±1,
√

X
±1

, and relations
(a–fh) of Definition 3.11 plus

(i) (
√

X±1)2 = X±1 := X±1
1 · · ·X±1

n ;
(j)
√

X±1 commutes with all the X±1
i and all the Ti ;

(k) π
√

Xπ−1 = v
√

X.

We interpret Xi , i = 1, . . . , n, as the i-th diagonal matrix entry character of the
diagonal torus T ⊂ GL(n). It gives rise to the same named character of the Iwahori
subgroup I ⊂ GL(n,K). We denote by OF�e 〈Xi〉 the (class of the) structure sheaf
of the point orbit F�e ⊂ F� = F�GL(n) (the affine flag variety of GL(n)) twisted
by the character Xi . We denote by ωF�i

, i = 0, . . . , n − 1, the (class of the) direct

image (wrt the closed embedding F�i ↪→ F�SL(n) ↪→ F�GL(n)) of the canonical
line bundle on F�i equipped with the natural I � C×-equivariant structure. We set
Ti := −1 − ωF�i

∈ KI�C
×
(F�) as in Sect. 3.4. Finally, note that the fixed point

set F�T is naturally identified with the extended affine Weyl group of GL(n), that
is the group of n-periodic permutations of Z : σ(k + n) = σ(k) + n, and the fixed
point � corresponding to the shift permutation σ(k) = k+1 is a point I�C×-orbit
F�� . We denote by � ∈ KI�C

×
(F�) the class of the structure sheaf OF�� .

Theorem 3.13 There is a unique isomorphism � : HH(GL(n)) ∼−→KI�C
×
(F�)

such that �(Xi ) = OF�e 〈Xi〉, i = 1, . . . , n, and �(Ti ) = Ti , i = 0, . . . , n − 1,
and �(π) = � .

Proof Same as the one of [64, Theorem 2.5.6]. ��
As in Sect. 3.8, we have an idempotent e = [OF�w0

] ∈ KI�C
×
(F�SL(n)) ⊂

KI�C
×
(F�) � HH(GL(n)), and we define the spherical subalgebras

HHsph(GL(n)) := eHH(GL(n))e, and HH
sph
e (GL(n)) := eHHe(GL(n))e. We

also define a two-fold cover G̃ := {(g ∈ GL(n), y ∈ C×) : det(g) = y2} �
G, K := GL(n,O), K̃ := G̃(O), and finally C̃× as the two-fold cover (with
coordinate v) of C× (with coordinate q).

Corollary 3.14 The isomorphism � of Theorem 3.13 takes the spherical subal-
gebra HHsph(GL(n)) ⊂ HH(GL(n)) isomorphically onto KK�C

×
(GrGL(n)) ⊂

KI�C
×
(F�GL(n)). This isomorphism extends uniquely to HH

sph
e (GL(n)) ∼−→

KK̃�C̃
×
(GrGL(n)) where the right-hand side is equipped with the algebra structure

as in Sect. 3.7. ��
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The following theorem is proved similarly to [10, Theorem 3.1, Proposi-
tion 3.18]:

Theorem 3.15

(a) The algebras KK(GrGL(n)), KK̃(GrGL(n)) are commutative.
(b) The spectrum of KK(GrGL(n)) together with the projection onto (C×)(n) =

Spec(KGL(n)(pt)) is naturally isomorphic to †◦Zn pr−→ (C×)(n) (see Sect. 2.5).

(c) The spectrum of KK̃(GrGL(n)) together with the projection onto

Spec(KK(GrGL(n))) is naturally isomorphic to †Ẑn → †◦Zn (see Sect. 2.5).
(d) The Poisson structure on KK(GrGL(n)) arising from the deformation

KK�C
×
(GrGL(n)) corresponds under the above identification to the negative of

the Poisson (symplectic) structure of [25, 34] on †◦Zn. The Poisson (symplectic)

structure on KK̃(GrGL(n)) arising from the deformation KK̃�C̃
×
(GrGL(n)) is

the negative of the pull-back of the symplectic structure on †◦Zn. ��
Corollary 3.16

(a) The algebras HHsph(GL(n))|q=1, HH
sph
e (GL(n))|v=1 are commutative.

(b) The algebra HHsph(GL(n))|q=1 with the subalgebra C[X±1
1 , . . . ,X±1

n ]Sn is

naturally isomorphic to C[†◦Zn] ⊃ C[(C×)(n)].
(c) The Poisson structures on HHsph(GL(n))|q=1, HH

sph
e (GL(n))|v=1 arising

from the deformations HHsph(GL(n)), HH
sph
e (GL(n)) correspond under the

above identification to the negative of the Poisson (symplectic) structures
of [25, 34] on †◦Zn, †Ẑn. ��

3.12 Quantum Poisson Reduction

Now again G is an almost simple simply-connected algebraic group. We consider
Lusztig’s integral form Uq(g) of the quantized universal enveloping algebra over
C[q±1] with Cartan elementsKλ, λ ∈ X. It is denoted U̇A in [65, § 2.2]. We extend

the scalars to C[q ±1
2mad ] and consider the integrable representations of Uq(g) with

weights in X. We consider the reflection equation algebra Oq(G) spanned by the
matrix coefficients of integrable Uq(g)-modules (with weights in X); it is denoted
FA in [65, § 2.2]. The corresponding integral form Dq(G) of the Heisenberg
double [59, Section 3] (quantum differential operators) is denoted DA in [65,
§ 2.2]. The quasiclassical limit of Dq(G) is D+(G) with the Poisson structure {,}+
considered in Sect. 2.2. The moment map μ : (D+(G), {,}+) → (G, π) × (G, π)

is the quasiclassical limit of μq : Uq(g) ⊗ Uq(g) → Dq(G) (see, e.g., [48]). The
Poisson action of (G, πG) × (G, πG) on D+(G) is the quasiclassical limit of the
comodule structure of Dq(G) over Oq(G)⊗ Oq(G).
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Recall the subalgebra Uc
q (n) ⊂ Uq(g) [56, § 2.2] associated to a Coxeter

element c (we shall omit its dependence on {nij }i,j∈I satisfying [56, § 2.2.2]). The
Uq(g)-module Uq(g)/(Uq(g)·[Uc

q (n), U
c
q (n)]) is the quantization of the coisotropic

subvariety Cc ⊂ (G, π) of Sect. 2.2. Given a pair of Coxeter elements c, c′,
we consider the left ideal Ic′,c of Dq(G) generated by μq([Uc′

q (n), U
c′
q (n)] ⊗

S[Uc
q (n), U

c
q (n)]) where S stands for the antipode. The invariants of Dq(G)/Ic′,c

with respect to the coaction of Oq(B−) ⊗ Oq(B−) form an algebra denoted
Oq(

†Zc
′,c(G)).

Conjecture 3.17 There is an isomorphism HHsph(We, X̂)
∼−→Oq(

†Zc,c(G)) equal
to id†Zc,c(G) at q = 1.

4 Multiplicative Slices

4.1 Asymmetric Definition

We closely follow the exposition in [10, Section 2]. Let G be an adjoint simple
complex algebraic group. We fix a Borel and a Cartan subgroup G ⊃ B ⊃ T .
Let � be the coweight lattice, and let �+ ⊂ � be the submonoid spanned by
the simple coroots αi, i ∈ I . The involution α �→ −w0α of � restricts to an
involution of �+ and induces an involution αi �→ αi∗ of the set of simple coroots.
We will sometimes write α∗ := −w0α for short. Let λ be a dominant coweight
of G, and μ ≤ λ an arbitrary coweight of G, not necessarily dominant, such that
α := λ−μ =∑i∈I aiαi, ai ∈ N. We will define the multiplicative (trigonometric)
analogues †Wλ

μ of the generalized slices Wλ
μ of [10, 2(ii)].

Namely, †Wλ
μ is the moduli space of the following data:

(a) a G-bundle P on P1;
(b) a trivialization σ : Ptriv|P1\{1} ∼−→P|P1\{1} having a pole of degree ≤ λ at

1 ∈ P1. This means that for an irreducible G-module V λ∨ and the associated
vector bundle Vλ

∨
P on P1 we have V λ∨ ⊗ OP1(−〈λ, λ∨〉 · 1) ⊂ Vλ

∨
P ⊂ V λ∨ ⊗

OP1(−〈w0λ, λ
∨〉 · 1);

(c) a reduction φ of P to a B-bundle (B-structure φ on P) such that the induced
T -bundle φT has degree w0μ, and the fiber of φ at ∞ ∈ P1 is B− ⊂ G

(with respect to the trivialization σ of P at ∞ ∈ P1). This means in particular
that for an irreducible G-module V λ∨ and the associated vector bundle Vλ

∨
P

on P1 we are given an invertible subsheaf Lλ∨ ⊂ Vλ
∨
P of degree −〈w0μ, λ

∨〉.
We require φ to be transversal at 0 ∈ P1 to the trivial B-structure B in Ptriv.
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4.2 Multiplicative BD Slices

Let λ = (ωi1 , . . . , ωiN ) be a sequence of fundamental coweights of G such that∑N
s=1 ωis = λ. We define †W

λ
μ as the moduli space of the following data:

(a) a collection of points (z1, . . . , zN) ∈ (C×)N ;
(b) a G-bundle P on P1;
(c) a trivialization (a section) σ of P on P1 \ {z1, . . . , zN } with a pole of degree

≤∑N
s=1 ωis · zs on the complement;

(d) a reduction φ of P to a B-bundle (B-structure φ on P) such that the induced
T -bundle φT has degree w0μ, and the fiber of φ at ∞ ∈ P1 is B− ⊂ G and
transversal to B at 0 ∈ P1 (with respect to the trivialization σ ).

Remark 4.1 The definition of multiplicative BD slices differs from the definition of
BD slices in [10, § 2(x)] only by the open condition of transversality at 0 ∈ P1. Thus
†W

λ
μ is an open subvariety in W

λ
μ (and similarly, †Wλ

μ is an open subvariety in Wλ
μ).

Hence, the favorable properties of the slices of [10] (e.g., the Cohen–Macaulay
property) are inherited by the multiplicative slices.

4.3 A Symmetric Definition

Given arbitrary coweights μ−, μ+ such that μ−+μ+ = μ, we consider the moduli
space †W

λ
μ−,μ+ of the following data:

(a) a collection of points (z1, . . . , zN) ∈ (C×)N ;
(b) G-bundles P−,P+ on P1;
(c) an isomorphism σ : P−|P1\{z1,...,zN }

∼−→P+|P1\{z1,...,zN } with a pole of degree

≤∑N
s=1 ωis · zs on the complement;

(d) a trivialization of P− = P+ at∞ ∈ P1;
(e) a reduction φ− of P− to a B−-bundle (a B−-structure on P−) such that the

induced T -bundle φT− has degree −w0μ−, and the fiber of φ− at ∞ ∈ P1 is
B ⊂ G;

(f) a reduction φ+ of P+ to a B-bundle (a B-structure on P+) such that the induced
T -bundle φT+ has degree w0μ+, and the fiber of φ+ at ∞ ∈ P1 is B− ⊂ G.
We require φ− and φ+ to be transversal at 0 ∈ P1 (with respect to the
isomorphism σ ).

Note that the trivial G-bundle on P1 has a unique B−-reduction of degree 0
with fiber B at ∞. Conversely, a G-bundle P− with a B−-structure of degree 0
is necessarily trivial, and its trivialization at∞ uniquely extends to the whole of P1.
Hence †W

λ

0,μ = †W
λ
μ.

For arbitrary †W
λ
μ−,μ+ , the G-bundles P−,P+ are identified via σ on

P1 \ {z1, . . . , zN }, so they are both equipped with B and B−-structures transversal
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around 0,∞ ∈ P1, that is they are both equipped with a reduction to a T -bundle
around 0,∞ ∈ P1. So P± = PT±×T G for certain T -bundles PT± around 0,∞ ∈ P1,
trivialized at ∞ ∈ P1. The modified T -bundles ′PT± := PT±(w0μ− · ∞) are
canonically isomorphic to PT± off ∞ ∈ P1 and trivialized at ∞ ∈ P1. We define
′P± as the result of gluing P± and ′PT± ×T G in the punctured neighborhood of

∞ ∈ P1. Then the isomorphism σ : ′P−|P1\{∞,z1,...,zN }
∼−→ ′P+|P1\{∞,z1,...,zN }

extends to P1 \ {z1, . . . , zN }, and φ± also extends from P1 \ {∞} to a B-structure
′φ+ in ′P+ of degree w0μ (resp. a B−-structure ′φ− on ′P− of degree 0).

This defines an isomorphism †W
λ
μ−,μ+ � †W

λ
μ. Similarly, for the nondeformed

slices we have an isomorphism †Wλ
μ−,μ+ � †Wλ

μ.

4.4 Multiplication of Slices

Given λ1 ≥ μ1 and λ2 ≥ μ2 with λ1, λ2 dominant, we think of †W
λ1
μ1 (resp.

†W
λ2
μ2 ) in the incarnation †W

λ1
μ1,0

(resp. †W
λ2
0,μ2

). Note that P2− is canonically

trivialized as in Sect. 4.3, and P1+ is canonically trivialized for the same reason.

Given (P1±, σ1, φ
1±) ∈ †W

λ1
μ1,0

, we change the trivialization of P1+ by a (uniquely

determined) element of U− (the unipotent radical of B−) so that the value φ1−(0)
becomes B (while φ1+(0) remains equal to B−). Now the value φ1−(∞) is not B
anymore; it is only transversal to B−. In order to distinguish the data obtained by the
composition with the above trivialization change, we denote them by (′P1±, ′σ1,

′φ1±).
Given (P2±, σ2, φ

2±) ∈ †W
λ2
0,μ2

, we consider (′P1−,P2+, σ2 ◦ ′σ1,
′φ1−, φ2+) (recall that

′P1+ = Ptriv = P2−). These data do not lie in †W
λ1+λ2
μ1,μ2 since the value ′φ1−(∞) is

not necessarily equal to B, it is only transversal to B−. However, we change the
trivialization of ′P1−(∞) = P2+(∞) by a (uniquely determined) element of U−, so

that the value of ′φ1−(∞) becomes B, and we end up in †W
λ1+λ2
μ1,μ2 = †W

λ1+λ2
μ1+μ2

.

This defines a multiplication morphism †W
λ1
μ1 × †W

λ2
μ2 → †W

λ1+λ2
μ1+μ2

.

In particular, taking μ2 = λ2 so that †W
λ2
λ2

is a point and †W
λ1
μ1 × †W

λ2
λ2
= †W

λ1
μ1 ,

we get a stabilization morphism †W
λ1
μ1 → †W

λ1+λ2
μ1+λ2

.

Remark 4.2 The multiplication of slices in [10, § 2(vi)] does not preserve the
multiplicative slices viewed as open subvarieties according to Remark 4.1 (in
particular, it does not induce the above multiplication on multiplicative slices).

4.5 Scattering Matrix

Given a collection (z1, . . . , zN) ∈ (C×)N , we define Pz(z) := ∏N
s=1(z − zs) ∈

C[z]. We also define a closed subvariety †W
λ,z
μ ⊂ †W

λ
μ as the fiber of the latter
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over z = (z1, . . . , zN). We construct a locally closed embedding � : †W
λ,z
μ ↪→

G[z, P−1] into an ind-affine scheme as follows. According to Sect. 4.3, we have
an isomorphism ζ : †W

λ,z
μ = †W

λ,z
0,μ

∼−→ †W
λ,z
μ,0. We denote ζ(P±, σ, φ±) by

(P′±, σ ′, φ′±). Note that P− and P′+ are trivialized, and P′+ is obtained from P+
by an application of a certain Hecke transformation at ∞ ∈ P1. In particular,
we obtain an isomorphism P+|A1

∼−→P′+|A1 = Ptriv|A1 . As in Sect. 4.4, we
change the trivialization of P′+ by a uniquely defined element of U− so that the
value of φ′−(0) becomes B. Now we compose this change of trivialization with

the above isomorphism P+|A1
∼−→P′+|A1 = Ptriv|A1 and with σ : Ptriv|A1\z =

P−|A1\z ∼−→P+|A1\z to obtain an isomorphism Ptriv|A1\z ∼−→Ptriv|A1\z, i.e. an

element of G[z, P−1].
Here is an equivalent construction of the above embedding. Given (P±, σ, φ±) ∈

†W
λ,z
μ−,μ+ = †W

λ,z
μ , we choose a trivialization of the B-bundle φ+|A1 (resp. of the

B−-bundle φ−|A1 ). This trivialization gives rise to a trivialization of the G-bundle
P+|A1 (resp. of P−|A1 ), so that σ becomes an element of G(z) regular at 0 ∈ P1;
moreover, the value of σ(0) lies in the big Bruhat cell B · B− ⊂ G. We require that
σ(0) ∈ B ⊂ G. Then σ is well-defined up to the left multiplication by an element of
B[z] and the right multiplication by an element of B−,1[z] (the kernel of evaluation
at 0 ∈ P1 : B−[z] → B−), i.e. σ is a well-defined element of B[z]\G(z)/B−,1[z].
Clearly, this element of G(z) lies in the closure of the double coset G[z]zλ,zG[z]
where zλ,z :=∏N

s=1(z− zs)ωis . Moreover, it lies in G[z]zλ,zG[z] ∩ ev−1
0 (B). Thus

we have constructed an embedding

� ′ : †W
λ,z
μ ↪→ B[z]\(G[z]zλ,zG[z] ∩ ev−1

0 (B))/B−,1[z]

If we compose with an embedding G(z) ↪→ G((z−1)), then the image of � ′ lies in
B[z]\U1[[z−1]]T1[[z−1]]zμU−[[z−1]]/U−,1[z] where U1[[z−1]] ⊂ U [[z−1]] (resp.
T1[[z−1]] ⊂ T [[z−1]]) stands for the kernel of evaluation at ∞ ∈ P1. However, the
projection

U1[[z−1]]T1[[z−1]]zμU−[[z−1]] → B[z]\U1[[z−1]]T1[[z−1]]zμU−[[z−1]]/U−,1[z]

is clearly one-to-one. Summing up, we obtain an embedding

� : †W
λ,z
μ → U1[[z−1]]T1[[z−1]]zμU−[[z−1]] ∩G[z]zλ,zG[z] ∩ ev−1

0 (B).

We claim that � is an isomorphism. To see it, we construct the inverse map to
†W

λ,z
0,μ: given g(z) ∈ U1[[z−1]]T1[[z−1]]zμU−[[z−1]] ∩ G[z]zλ,zG[z] ∩ ev−1

0 (B)

we use it to glue P+ together with a rational isomorphism σ : Ptriv = P− → P+,
and define φ+ as the image of the standard trivial B-structure in Ptriv under σ .
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Remark 4.3 The embedding W
λ,z
μ ↪→ G(z) of [10, § 2(xi)] restricted to the open

subvariety †W
λ,z
μ ⊂W

λ,z
μ does not give the above embedding †W

λ,z
μ ↪→ G(z).

4.6 A Cover of a Slice

We define a T -torsor †W̃
λ
μ → †W

λ
μ as the moduli space of data (a–d) as in Sect. 4.2

plus

(e) a collection of nowhere vanishing sections uλ∨ ∈  (P1 \ {∞},Lλ∨) satisfying
Plücker relations (cf. Sect. 4.1(c)).

The construction of Sect. 4.5 defines an isomorphism

�̃ : †W̃
λ,z
μ

∼−→U1[[z−1]]T [[z−1]]zμU−[[z−1]] ∩G[z]zλ,zG[z] ∩ ev−1
0 (B).

Let T[2] ⊂ T be the subgroup of 2-torsion. For a future use we define a T[2]-
torsor †W̃

λ,z
μ ⊃ †Ŵ

λ,z
μ → †W

λ,z
μ as follows. The evaluation at 0 ∈ P1 gives rise

to a projection pr0 : G[z]zλ,zG[z] ∩ ev−1
0 (B) → B → T . The leading coefficient

(at zμ) gives rise to a projection pr∞ : U1[[z−1]]T [[z−1]]zμU−[[z−1]] → T , and
†Ŵ

λ,z
μ is cut out by the equation pr0 · pr∞ = (−1)λ−μ ∈ T[2], where λ =∑N

s=1 ωis ,

see Sect. 4.2. As z varies, we obtain a T[2]-torsor †W̃
λ
μ ⊃ †Ŵ

λ
μ → †W

λ
μ.

4.7 An Example

This section is parallel to [10, § 2(xii)], but our present conventions are slightly
different. Let G = GL(2) = GL(V ) with V = Ce1 ⊕ Ce2. Let B be the stabilizer
of Ce2 (the lower triangular matrices), and let B− be the stabilizer of Ce1 (the upper
triangular matrices). Let N,m ∈ N; λ be an N -tuple of fundamental coweights
(0, 1), and μ = (m,N − m), so that w0μ = (N − m,m). Let O := OP1 . We fix a
collection (z1, . . . , zN) ∈ (C×)N and define Pz(z) := ∏N

s=1(z − zs) ∈ C[z]. Then
†W

λ,z
μ is the moduli space of flags (O⊗ V ⊃ V ⊃ L), where

(a) V is a 2-dimensional locally free subsheaf in O ⊗ V coinciding with O ⊗ V

around 0,∞ ∈ P1 and such that on A1 ⊂ P1 the global sections of detV
coincide with PzC[z]e1 ∧ e2 as a C[z]-submodule of  (A1, det(OA1 ⊗ V )) =
C[z]e1 ∧ e2.

(b) L is a line subbundle in V of degree −m, assuming the value Ce1 at ∞ ∈ P1,
and such that the value of L at 0 ∈ P1 is transversal to Ce2. In particular,
degV/L = m−N .
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On the other hand, let us introduce a closed subvariety †Ŵ
λ,z
μ in Mat2[z] formed

by all the matrices M =
(
A B

C D

)
such that A(z) = amz

m + . . .+ a0, and am · a0 =
(−1)m, while degC(z) < m ≥ degB(z), and B(0) = 0; furthermore, det M =
Pz(z).

Then we have a two-fold cover � : †Ŵ
λ,z
μ → †W

λ,z
μ : given M ∈ †Ŵ

λ,z
μ we view

it as a transition matrix in a punctured neighborhood of ∞ ∈ P1 to glue a vector
bundle V which embeds, by construction, as a locally free subsheaf into O⊗V . The
morphism MOA1e1 ↪→ OA1 ⊗ V naturally extends to∞ ∈ P1 with a pole of degree
m, hence it extends to an embedding of O(−m · ∞) into V ⊂ O⊗ V . The image of
this embedding is the desired line subbundle L ⊂ V.

4.8 Thick Slices

We define thick multiplicative (trigonometric) slices †Wμ as the moduli space of the
following data:

(a) a G-bundle P on P1;
(b) a trivialization σ : Ptriv |̂P1∞

∼−→P|̂
P1∞ in the formal neighborhood of∞ ∈ P1;

(c) a reduction φ of P to a B-bundle (B-structure φ on P) such that the induced
T -bundle φT has degree w0μ, and the fiber of φ at ∞ ∈ P1 is transversal to B
(with respect to the trivialization σ of P at∞ ∈ P1);

(d) a collection of nowhere vanishing sections uλ∨ ∈  (P1 \ {∞},Lλ∨) satisfying
Plücker relations (cf. Sect. 4.1(c)).

The construction of Sect. 4.6 identifies †Wμ with the infinite type scheme
(cf. [24, § 5.9])

†Wμ � U1[[z−1]]T [[z−1]]zμU−[[z−1]] ⊂ G((z−1)). (4.1)

As the inclusion U1[[z−1]] ↪→ U((z−1)) gives rise to an isomorphism
U1[[z−1]] � U [z]\U((z−1)), we can identify †Wμ with the quotient
U [z]\U((z−1))T [[z−1]]zμU−((z−1))/U−,1[z], and we write π for this isomor-
phism. The construction of Sect. 4.5 (resp. of Sect. 4.6) defines a closed embedding
†Wλ

μ ↪→ †Wμ (resp. †Ŵλ
μ ↪→ †Wμ). We define the multiplication morphism

mμ1,μ2 : †Wμ1 × †Wμ2 → †Wμ1+μ2 by the formula mμ1,μ2(g1, g2) = π(g1g2).
Then the multiplication morphism m

λ1,λ2
μ1,μ2 : †W

λ1
μ1 × †W

λ2
μ2 → †W

λ1+λ2
μ1+μ2

of Sect. 4.4
is the restriction of mμ1,μ2 . Similarly, mμ1,μ2 restricts to a multiplication
†Ŵ

λ1
μ1 × †Ŵ

λ2
μ2 → †Ŵ

λ1+λ2
μ1+μ2

.
For ν1, ν2 antidominant, we define the shift maps ιμ,ν1,ν2 : †Wμ+ν1+ν2 → †Wμ

by g �→ π(z−ν1gz−ν2).
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5 Shifted Quantum Affine Algebras

Let g be a simple Lie algebra, h ⊂ g be a Cartan subalgebra of g, and (·, ·) be
a non-degenerate invariant bilinear symmetric form on g (with a square length of
the shortest root equal to 2). Let {α∨i }i∈I ⊂ h∗ be the simple positive roots of g

relative to h, and cij = 2
(α∨i ,α∨j )
(α∨i ,α∨i )

–the entries of the corresponding Cartan matrix. Set

di := (α∨i ,α∨i )
2 ∈ Z>0 so that dicij = dj cji for any i, j ∈ I . Let ν : h ∼−→ h∗ be the

isomorphism determined by the symmetric form (·, ·) so that αi = hi = ν−1(α∨i )/di
are the simple coroots of g.

5.1 Algebras Usc
μ1,μ2

and Uad
μ1,μ2

Given coweights μ+, μ− ∈ �, set b± = {b±i }i∈I ∈ ZI with b±i :=
α∨i (μ

±). Define the simply-connected version of shifted quantum affine algebra,
denoted by Usc

μ+,μ− or Usc
b+,b− , to be the associative C(v)-algebra generated by

{ei,r , fi,r , ψ±
i,±s±i

, (ψ±
i,∓b±i

)−1}r∈Z,s
±
i ≥−b±i

i∈I with the following defining relations (for

all i, j ∈ I and ε, ε′ ∈ {±}):

[ψε
i (z), ψ

ε′
j (w)] = 0, ψ±

i,∓b±i
· (ψ±

i,∓b±i
)−1 = (ψ±

i,∓b±i
)−1 · ψ±

i,∓b±i
= 1, (U1)

(z− v
cij
i w)ei(z)ej (w) = (v

cij
i z− w)ej (w)ei(z), (U2)

(v
cij
i z− w)fi(z)fj (w) = (z− v

cij
i w)fj (w)fi(z), (U3)

(z− v
cij
i w)ψ

ε
i (z)ej (w) = (v

cij
i z− w)ej (w)ψ

ε
i (z), (U4)

(v
cij
i z− w)ψε

i (z)fj (w) = (z− v
cij
i w)fj (w)ψ

ε
i (z), (U5)

[ei(z), fj (w)] = δij

vi − v−1
i

δ
( z
w

) (
ψ+i (z)− ψ−i (z)

)
, (U6)

Sym
z1,...,z1−cij

1−cij∑
r=0

(−1)r
[

1− cij

r

]
vi

ei(z1) · · · ei(zr )ej (w)ei(zr+1) · · · ei(z1−cij ) = 0,

(U7)

Sym
z1,...,z1−cij

1−cij∑
r=0

(−1)r
[

1− cij

r

]
vi

fi(z1) · · · fi(zr )fj (w)fi(zr+1) · · · fi(z1−cij ) = 0,

(U8)
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where vi := vdi , [a, b]x := ab − x · ba, [m]v := vm−v−m
v−v−1 ,

[
a
b

]
v
:= [a−b+1]v ···[a]v[1]v ···[b]v ,

Sym
z1,...,zs

stands for the symmetrization in z1, . . . , zs , and the generating series are

defined as follows:

ei(z) :=
∑
r∈Z

ei,r z
−r , fi(z) :=

∑
r∈Z

fi,r z
−r , ψ±i (z) :=

∑
r≥−b±i

ψ±i,±r z
∓r , δ(z) :=

∑
r∈Z

zr .

Let us introduce another set of Cartan generators {hi,±r}r>0
i∈I instead of

{ψ±
i,±s±i

}s
±
i >−b±i
i∈I via

(ψ±
i,∓b±i

z±b
±
i )−1ψ±i (z) = exp

(
±(vi − v−1

i )
∑
r>0

hi,±rz∓r
)
.

Then, relations (U4, U5) are equivalent to the following:

ψ±
i,∓b±i

ej,s = v
±cij
i ej,sψ

±
i,∓b±i

, [hi,r , ej,s] = [rcij ]vi
r

· ej,s+r for r �= 0, (U4′)

ψ±
i,∓b±i

fj,s = v
∓cij
i fj,sψ

±
i,∓b±i

, [hi,r , fj,s] = −[rcij ]vi
r

· fj,s+r for r �= 0.

(U5′)

Let Usc,<
μ+,μ− , U

sc,>
μ+,μ− , and U

sc,0
μ+,μ− be the C(v)-subalgebras of Usc

μ+,μ− generated

by {fi,r}r∈Zi∈I , {ei,r }r∈Zi∈I , and {ψ±
i,±s±i

, (ψ±
i,∓b±i

)−1}s
±
i ≥−b±i
i∈I , respectively. The follow-

ing is proved completely analogously to [37, Theorem 2]:

Proposition 5.1

(a) (Triangular decomposition of Usc
μ+,μ− ) The multiplication map

m : Usc,<
μ+,μ− ⊗ U

sc,0
μ+,μ− ⊗ U

sc,>
μ+,μ− −→ Usc

μ+,μ−

is an isomorphism of C(v)-vector spaces.
(b) The algebra U

sc,0
μ+,μ− (resp. U

sc,<
μ+,μ− and U

sc,>
μ+,μ− ) is isomorphic to the

C(v)-algebra generated by {ψ±
i,±s±i

, (ψ±
i,∓b±i

)−1}s
±
i ≥−b±i
i∈I (resp. {fi,r }r∈Zi∈I and

{ei,r }r∈Zi∈I ) with the defining relations (U1) (resp. (U3, U8) and (U2, U7)). In
particular, Usc,<

μ+,μ− and U
sc,>
μ+,μ− are independent of μ±.
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Following the terminology of [50], we also define the adjoint version of shifted
quantum affine algebra, denoted by Uad

μ+,μ− or Uad
b+,b− , by adding extra generators

{(φ±i )±1}i∈I to Usc
μ+,μ− , which satisfy the following extra relations:

(ψε
i,−εbεi )

±1 = (φεi )
±2 ·

∏
j−i
(φεj )

±cji , (φεi )±1 · (φεi )∓1 = 1, [φεi , φε
′
j ] = 0, (U9)

φεi ψ
ε′
j (z) = ψε′

j (z)φ
ε
i , φ

ε
i ej (z) = v

εδij
i ej (z)φ

ε
i , φ

ε
i fj (z) = v

−εδij
i fj (z)φ

ε
i ,

(U10)

for any i, j ∈ I and ε, ε′ ∈ {±}.
Both algebras Usc

μ+,μ− and Uad
μ+,μ− depend only on μ := μ+ + μ− up to an

isomorphism4. Let �± ⊂ � be the submonoids spanned by {±ωi}i∈I , that is, �+
(resp. �−) consists of dominant (resp. antidominant) coweights of �. We will say
that the algebras Usc

μ+,μ− ,U
ad
μ+,μ− are dominantly (resp. antidominantly) shifted if

μ ∈ �+ (resp. μ ∈ �−). We note that μ ∈ �+ ⇔ b+i + b−i = α∨i (μ) ≥ 0,
μ ∈ �− ⇔ b+i + b−i = α∨i (μ) ≤ 0 for all i ∈ I .

Remark 5.2 One of the key reasons to consider Uad
μ+,μ− , not only Usc

μ+,μ− , is to

construct quantizations of the thick slices †Wμ∗ of Sect. 4.8 and the multiplicative

slice covers †Ŵ
λ∗
μ∗ of Sect. 4.6, see our Conjecture 8.14. On the technical side, we

also need an alternative set of Cartan generators, whose generating series A±i (z) are
defined via (6.1) of Sect. 6 and whose definition requires to work with Uad

μ+,μ− (see
also Remark 6.7(b)).

Remark 5.3

(a) The elements {ψ+
i,−b+i

ψ−
i,b−i
}i∈I (resp. {φ+i φ−i }i∈I ) and their inverses are central

elements of Usc
μ+,μ− (resp. Uad

μ+,μ− ).

(b) We have Usc
0,0/(ψ

+
i,0ψ

−
i,0 − 1) � Uv(Lg), the standard quantum loop algebra of

g, while Uad
0,0/(φ

+
i φ

−
i − 1) � U ad

v (Lg), the adjoint version of Uv(Lg).
(c) We note that defining relations (U1–U8, U10) are independent of μ+, μ−.
(d) An equivalent definition of Usc

μ1,μ2
was suggested to us by Boris Feigin

in Spring 2010. In this definition, we take the same generators as for
Uv(Lg) and just modify relation (U6) by requesting pi(z)[ei(z), fj (w)] =
δij δ(z/w)

vi−v−1
i

(
ψ+i (z)− ψ−i (z)

)
for any collection {pi(z)}i∈I of rational functions.

4For example, there is an isomorphism Usc
μ+,μ−

∼−→Usc
0,μ++μ− such that fi(z) �→ fi(z), ei(z) �→

zb
+
i ei (z), ψ

±
i (z) �→ zb

+
i ψ±i (z).
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5.2 Levendorskii Type Presentation of Usc
0,μ

for μ ∈ �−

In Sect. 10, we will crucially need a presentation of the shifted quantum affine
algebras via a finite number of generators and defining relations. This is the purpose
of this subsection.

Fix antidominant coweights μ1, μ2 ∈ �− and set μ := μ1 + μ2. Define b1,i :=
α∨i (μ1), b2,i := α∨i (μ2), bi := b1,i + b2,i . Denote by Ûμ1,μ2 the associative C(v)-
algebra generated by

{ei,r , fi,s , (ψ+i,0)±1, (ψ−i,bi )
±1, hi,±1|i ∈ I, b2,i − 1 ≤ r ≤ 0, b1,i ≤ s ≤ 1}

and with the following defining relations:

{(ψ+i,0)±1, (ψ−i,bi )
±1, hi,±1}i∈I pairwise commute,

(ψ+i,0)
±1 · (ψ+i,0)∓1 = (ψ−i,bi )

±1 · (ψ−i,bi )∓1 = 1,
(Û1)

ei,r+1ej,s − v
cij
i ei,r ej,s+1 = v

cij
i ej,sei,r+1 − ej,s+1ei,r , (Û2)

v
cij
i fi,r+1fj,s − fi,rfj,s+1 = fj,sfi,r+1 − v

cij
i fj,s+1fi,r , (Û3)

ψ+i,0ej,r = v
cij
i ej,rψ

+
i,0, ψ

−
i,bi
ej,r = v

−cij
i ej,rψ

−
i,bi
, [hi,±1, ej,r ] = [cij ]vi · ej,r±1,

(Û4)

ψ+i,0fj,s = v
−cij
i fj,sψ

+
i,0, ψ

−
i,bi
fj,s = v

cij
i fj,sψ

−
i,bi
, [hi,±1, fj,s] = −[cij ]vi ·fj,s±1,

(Û5)

[ei,r , fj,s] = 0 if i �= j and [ei,r , fi,s] =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ+i,0hi,1 if r + s = 1,

ψ−i,bi hi,−1 if r + s = bi − 1,
ψ+i,0−δbi ,0ψ−i,bi

vi−v−1
i

if r + s = 0,

−ψ−i,bi+δbi ,0ψ
+
i,0

vi−v−1
i

if r + s = bi,

0 if bi < r + s < 0,

(Û6)

[ei,0, [ei,0, · · · , [ei,0, ej,0]vciji · · · ]v−cij−2

i

]
v
−cij
i

= 0 for i �= j, (Û7)

[fi,0, [fi,0, · · · , [fi,0, fj,0]vciji · · · ]v−cij−2

i

]
v
−cij
i

= 0 for i �= j, (Û8)

[hi,1, [fi,1, [hi,1, ei,0]]] = 0, [hi,−1, [ei,b2,i−1, [hi,−1, fi,b1,i ]]] = 0, (Û9)

for any i, j ∈ I and r, s such that the above relations make sense.
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Remark 5.4 One can rewrite relations (Û7, Û8) in the form similar to (U7, U8) as

1−cij∑
r=0

(−1)r
[

1− cij

r

]
vi

eri,0ej,0e
1−cij−r
i,0 = 0,

1−cij∑
r=0

(−1)r
[

1− cij

r

]
vi

f ri,0fj,0f
1−cij−r
i,0 = 0.

Define inductively

ei,r := [2]−1
vi
·
{
[hi,1, ei,r−1] if r > 0,

[hi,−1, ei,r+1] if r < b2,i − 1,

fi,r := −[2]−1
vi
·
{
[hi,1, fi,r−1] if r > 1,

[hi,−1, fi,r+1] if r < b1,i ,

ψ+i,r := (vi − v−1
i ) · [ei,r−1, fi,1] for r > 0,

ψ−i,r := (v−1
i − vi ) · [ei,r−b1,i , fi,b1,i ] for r < bi.

Theorem 5.5 There is a unique C(v)-algebra isomorphism Ûμ1,μ2
∼−→Usc

0,μ, such
that

ei,r �→ ei,r , fi,r �→ fi,r , ψ
±
i,±s±i

�→ ψ±
i,±s±i

for i ∈ I, r ∈ Z, s+i ≥ 0, s−i ≥ −bi .

This provides a new presentation of Usc
0,μ via a finite number of generators and

relations. The proof of this result is presented in Appendix A. Motivated by Guay
et al. [33], we also provide a slight modification of this presentation of Usc

0,μ in
Theorem A.3.

Remark 5.6 Theorem 5.5 can be viewed as a v-version of the corresponding result
for the shifted Yangians of [24, Theorem 4.3]. In the particular case μ1 = μ2 = 0,
the latter is the standard Levendorskii presentation of the Yangian, see [47].
However, we are not aware of the reference for Theorem 5.5 even in the unshifted
case μ1 = μ2 = 0.

6 ABCD Generators of Uad
μ+,μ−

In this section, we introduce an alternative set of generators of Uad
μ+,μ− , which will

be used later in the paper (they are also of independent interest), and deduce the
defining relations among them. While the definition works for any two coweights
μ+, μ− ∈ �, the relations hold only for antidominant μ+, μ− ∈ �−, which we
assume from now on.
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First, we define the Cartan generators {A±i,±r }r≥0
i∈I via

z∓b
±
i ψ±i (z) =

∏
j−i
∏−cji
p=1 A

±
j (v

−cji−2p
j z)

A±i (z)A
±
i (v

−2
i z)

with A±i,0 := (φ±i )
−1, (6.1)

where we set A±i (z) =
∑

r≥0 A
±
i,±r z∓r . Using non-degeneracy of the v-version of

the Cartan matrix (cij ) and arguing by induction in r > 0, one can easily see that
relations (6.1) for all i ∈ I determine uniquely all A±i,±r , see Remark B.2 (cf. [30,

Lemma 2.1]). An explicit formula for A±i (z) is given by (B.2) in Appendix B.
Next, we introduce the generating series B±i (z), C

±
i (z),D

±
i (z) via

B±i (z) := (vi − v−1
i )A±i (z)e

±
i (z), (6.2)

C±i (z) := (vi − v−1
i )f±i (z)A

±
i (z), (6.3)

D±i (z) := A±i (z)ψ
±
i (z)+ (vi − v−1

i )2f±i (z)A
±
i (z)e

±
i (z), (6.4)

where the Drinfeld half-currents are defined as follows:

e+i (z) :=
∑
r≥0

ei,r z
−r , e−i (z) := −

∑
r<0

ei,r z
−r ,

f+i (z) :=
∑
r>0

fi,rz
−r , f−i (z) := −

∑
r≤0

fi,rz
−r .

(6.5)

It is clear that coefficients of the generating series {A±i (z), B±i (z), C±i (z),
D±i (z)}i∈I together with {φ±i }i∈I generate (over C(v)) the shifted quantum affine
algebra Uad

μ+,μ− . The following is the key result of this section.

Theorem 6.6 Assume μ+, μ− ∈ �− and define {b±i }i∈I via b±i := α∨i (μ
±) as

before.

(a) The generating series A±i (z), B
±
i (z), C

±
i (z),D

±
i (z) satisfy the following rela-

tions:

φεi A
ε′
j (w) = Aε

′
j (w)φ

ε
i , φ

ε
i D

ε′
j (w) = Dε′

j (w)φ
ε
i ,

φεi B
ε′
j (w) = v

εδij
i Bε

′
j (w)φ

ε
i , φ

ε
i C

ε′
j (w) = v

−εδij
i Cε

′
j (w)φ

ε
i ,

(6.6)

[Aεi (z), Aε
′
j (w)] = 0, (6.7)

[Aεi (z), Bε
′
j (w)] = [Aεi (z), Cε

′
j (w)] = [Bεi (z), Cε

′
j (w)] = 0 for i �= j,

(6.8)
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[Bεi (z), Bε
′
i (w)] = [Cεi (z), Cε

′
i (w)] = [Dε

i (z),D
ε′
i (w)] = 0, (6.9)

(z− w)[Bε′i (w),Aεi (z)]v−1
i
= (vi − v−1

i )
(
zAεi (z)B

ε′
i (w)− wAε

′
i (w)B

ε
i (z)

)
,

(6.10)

(z− w)[Aεi (z), Cε
′
i (w)]vi = (vi − v−1

i )
(
wCε

′
i (w)A

ε
i (z)− zCεi (z)A

ε′
i (w)

)
,

(6.11)

(z− w)[Bεi (z), Cε
′
i (w)] = (vi − v−1

i )z
(
Dε′
i (w)A

ε
i (z)−Dε

i (z)A
ε′
i (w)

)
,

(6.12)

(z− w)[Bεi (z),Dε′
i (w)]vi = (vi − v−1

i )
(
wDε′

i (w)B
ε
i (z)− zDε

i (z)B
ε′
i (w)

)
,

(6.13)

(z−w)[Dε′
i (w), C

ε
i (z)]v−1

i
= (vi − v−1

i )
(
zCεi (z)D

ε′
i (w)− wCε

′
i (w)D

ε
i (z)

)
,

(6.14)

(z− w)[Aεi (z),Dε′
i (w)] = (vi − v−1

i )
(
wCε

′
i (w)B

ε
i (z)− zCεi (z)B

ε′
i (w)

)
,

(6.15)

Aεi (z)D
ε
i (v

−2
i z)− v−1

i Bεi (z)C
ε
i (v

−2
i z) = zεb

ε
i ·
∏
j−i

−cji∏
p=1

Aεj (v
−cji−2p
j z),

(6.16)
(z− v

cij
i w)B

ε
i (z)B

ε′
j (w)− (v

cij
i z− w)Bε

′
j (w)B

ε
i (z) =

zAεi (z)[φ+i B+i,0, Bε
′
j (w)]vciji + wAε

′
j (w)[φ+j B+j,0, Bεi (z)]vciji for i �= j,

(6.17)
(v
cij
i z− w)Cεi (z)C

ε′
j (w)− (z− v

cij
i w)C

ε′
j (w)C

ε
i (z) =

− [Cεi (z), C+j,1φ+j ]vciji Aε
′
j (w)− [Cε

′
j (w), C

+
i,1φ

+
i ]vciji Aεi (z) for i �= j,

(6.18)

Sym
z1,...,z1−cij

{∏
a<b

(vi za − v−1
i zb)(za − zb)·

1−cij∑
r=0

(−1)r
[

1− cij

r

]
vi

B
ε1
i (z1) · · ·Bεri (zr )Bε

′
j (w)B

εr+1
i (zr+1) · · ·B

ε1−cij
i (z1−cij )

⎫⎬⎭ = 0,

(6.19)

Sym
z1,...,z1−cij

{∏
a<b

(vi zb − v−1
i za)(zb − za)·

1−cij∑
r=0

(−1)r
[

1− cij

r

]
vi

C
ε1
i (z1) · · ·Cεri (zr )Cε

′
j (w)C

εr+1
i (zr+1) · · ·C

ε1−cij
i (z1−cij )

⎫⎬⎭ = 0,

(6.20)
for any i, j ∈ I and ε, ε′, ε1, . . . , ε1−cij ∈ {±}.
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(b) Relations (6.6–6.20) are the defining relations. In other words, the
associative C(v)-algebra generated by {φ±i , A±i,±r , B+i,r , B−i,−r−1, C

+
i,r+1,

C−i,−r ,D
±
i,±r±b±i

}r∈Ni∈I with the defining relations (6.6–6.20) is isomorphic

to Uad
μ+,μ− .

We sketch the proof in Appendix B. In the unshifted case, more pre-
cisely for U ad

v (Lg), the above construction should be viewed as a v-version
of that of [30]. In loc.cit., the authors introduced analogous generating series
{Ai(u), Bi(u), Ci(u),Di(u)}i∈I with coefficients in the Yangian Y (g) and stated
(without a proof) the relations between them, similar to (6.7–6.16).5 Meanwhile,
we note that adding rational analogues of (6.17–6.20) to their list of relations, we
get a complete list of the defining relations among these generating series.

Remark 6.7

(a) For g = sl2, relations (6.7, 6.9–6.15) are equivalent to the RTT-relations
(with the trigonometric R-matrix of (11.3)), see our proof of Theorem 11.11
below.

(b) This construction can be adapted to the setting of Usc
μ+,μ− . First, we redefine the

generating series A±i (z) = 1+∑r>0 A
±
i,±r z∓r which have to satisfy

z∓b
±
i (ψ±

i,∓b±i
)−1ψ±i (z) =

∏
j−i
∏−cji
p=1 A

±
j (v

−cji−2p
j z)

A±i (z)A
±
i (v

−2
i z)

. (6.21)

Next, we define B±i (z), C
±
i (z) via formulas (6.2, 6.3). Finally, we defineD±i (z)

via

D±i (z) := A±i (z)ψ
±
i (z)+ v∓1

i (vi − v−1
i )2f±i (z)A

±
i (z)e

±
i (z). (6.22)

The coefficients of these generating series together with {(ψε
i,−εbεi )

±1}ε=±i∈I
generate Usc

μ+,μ− . For μ+, μ− ∈ �− one can write a complete list of the
defining relations among these generators, which look similar to (6.7–6.20).

7 Homomorphism to Difference Operators

In this section, we construct homomorphisms from the shifted quantum affine
algebras to the algebras of difference operators.

5We note that the relation [Di(u),Di(v)] = 0 was missing in their list.
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7.1 Homomorphism ˜� λ
μ

Let Dyn(g) be the graph obtained from the Dynkin diagram of g by replacing
all multiple edges by simple ones. We fix an orientation of Dyn(g) and we fix
a dominant coweight λ ∈ �+ and a coweight μ ∈ �, such that λ − μ =∑

i∈I aiαi with ai ∈ N. We also fix a sequence λ = (ωi1 , . . . , ωiN ) of fundamental
coweights, such that

∑N
s=1 ωis = λ.

Consider the associative C[v±1]-algebra Âv generated by {D±1
i,r ,w

±1/2
i,r }1≤r≤aii∈I

with the defining relations (for all i, j ∈ I, 1 ≤ r ≤ ai, 1 ≤ s ≤ aj ):

[Di,r ,Dj,s ] = [w1/2
i,r ,w

1/2
j,s ] = 0, D±1

i,r D
∓1
i,r = w±1/2

i,r w∓1/2
i,r = 1, Di,rw

1/2
j,s = v

δij δrs
i w1/2

j,s Di,r .

Let Ãv be the localization of Âv by the multiplicative set generated by
{wi,r − vmi wi,s}1≤r �=s≤aii∈I,m∈Z ∪ {1 − vm}m∈Z\{0} (which obviously satisfies Ore con-

ditions). We also define their C(v)-counterparts Âv
frac := Âv ⊗C[v±1] C(v) and

Ãv
frac := Ãv ⊗C[v±1] C(v).
In what follows, we will work with the larger algebra Uad

0,μ[z±1
1 , . . . , z±1

N ], which

is obtained from Usc
0,μ[z±1

1 , . . . , z±1
N ] := Usc

0,μ ⊗C(v) C(v)[z±1
1 , . . . , z±1

N ] by adding

extra generators {(φεi )±1}ε=±i∈I satisfying relations (U9, U10) with the only change:∏
s:is=i

(−vizs)∓1 · (ψ−
i,α∨i (μ)

)±1 = (φ−i )
±2 ·

∏
j−i
(φ−j )

±cji .

We will also work with the larger algebras Ãv[z±1
1 , . . . , z±1

N ] := Ãv ⊗C[v±1]
C[v±1][z±1

1 , . . . , z±1
N ] and Ãv

frac[z±1
1 , . . . , z±1

N ] := Ãv
frac⊗C(v)C(v)[z±1

1 , . . . , z±1
N ].

Define

Zi(z) :=
is=i∏

1≤s≤N

(
1− vizs

z

)
, Wi(z) :=

ai∏
r=1

(
1− wi,r

z

)
, Wi,r (z) :=

s �=r∏
1≤s≤ai

(
1− wi,s

z

)
,

Ẑi (z) :=
is=i∏

1≤s≤N

(
1− z

vizs

)
, Ŵi (z) :=

ai∏
r=1

(
1− z

wi,r

)
, Ŵi,r (z) :=

s �=r∏
1≤s≤ai

(
1− z

wi,s

)
.

The following is the key result of this section.

Theorem 7.1 There exists a unique C(v)[z±1
1 , . . . , z±1

N ]-algebra homomorphism

�̃
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] −→ Ãv
frac[z±1

1 , . . . , z±1
N ],
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such that

ei(z) �→ −vi

1− v2
i

ai∏
t=1

wi,t

∏
j→i

aj∏
t=1

w
cji /2
j,t ·

ai∑
r=1

δ

(
wi,r

z

)
Zi(wi,r )

Wi,r (wi,r )

∏
j→i

−cji∏
p=1

Wj(v
−cji−2p
j z)D−1

i,r ,

fi (z) �→ 1

1− v2
i

∏
j←i

aj∏
t=1

w
cji/2
j,t

·
ai∑
r=1

δ

(
v2
i
wi,r
z

)
1

Wi,r (wi,r )

∏
j←i

−cji∏
p=1

Wj (v
−cji−2p
j

z)Di,r ,

ψ±i (z) �→
ai∏
t=1

wi,t

∏
j−i

aj∏
t=1

w
cji/2
j,t ·

⎛⎝ Zi(z)

Wi(z)Wi(v
−2
i z)

∏
j−i

−cji∏
p=1

Wj(v
−cji−2p
j z)

⎞⎠± ,
(φ+i )

±1 �→
ai∏
t=1

w±1/2
i,t , (φ−i )

±1 �→ (−vi )
∓ai

ai∏
t=1

w∓1/2
i,t .

We write γ (z)± for the expansion of a rational function γ (z) in z∓1, respectively.

In the unshifted case, more precisely for Uv(Lg), this result was stated (without
a proof) in [31]. The above formulas simplify for simply-laced g, in which case this
result can be viewed as a v-version of [10, Corollary B.17]. We present the proof in
Appendix C.

7.2 Homomorphism �̃λ
μ in ABC Generators

Generalizing the construction of Sect. 6, we define new Cartan generators
{A±i,±r }r≥0

i∈I of Uad
0,μ[z±1

1 , . . . , z±1
N ] via

A±i,0 := (φ±i )
−1,

ψ+i (z)
Zi(z)

=
∏
j−i
∏−cji
p=1 A

+
j (v

−cji−2p
j z)

A+i (z)A
+
i (v

−2
i z)

,

zα
∨
i (μ)ψ−i (z)∏

s:is=i (−vizs) · Ẑi(z)
=
∏
j−i
∏−cji
p=1 A

−
j (v

−cji−2p
j z)

A−i (z)A
−
i (v

−2
i z)

,

where we setA±i (z) :=
∑

r≥0 A
±
i,±r z∓r .We also define the generating seriesB±i (z),

C±i (z), and D±i (z) via formulas (6.2), (6.3), and (6.4), respectively.
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Lemma 7.2 For antidominant μ ∈ �−, the generating series
A±i (z), B

±
i (z), C

±
i (z),D

±
i (z) satisfy relations (6.7–6.15).

Proof Let c be the determinant of the Cartan matrix of g. Choose unique λ+i (z) ∈
1+ z−1C(v)[z±1

1 , . . . , z±1
N ][[z−1]], such that Zi(z) = λ+i (z)λ

+
i (v

−2
i z)∏

j−i
∏−cji
p=1 λ+j (v

−cji−2p

j z)
. Also

choose λ−i (z) ∈ C(v1/c)[z±1/c
1 , . . . , z±1/c

N ][[z]], such that Ẑi(z) ·∏s:is=i (−vizs) =
λ−i (z)λ

−
i (v

−2
i z)∏

j−i
∏−cji
p=1 λ−j (v

−cji−2p

j z)
.

Then, the series λ±i (z)−1X±i (z) for X = A,B,C,D are those of Sect. 6.
The result follows from Theorem 6.6(a) (compare with the proof of [44,
Proposition 5.5]). ��
Corollary 7.3 The following equalities hold in Uad

0,μ[z±1
1 , . . . , z±1

N ]:

B+i (z) = [ei,0, A+i (z)]v−1
i
, C+i (z) = [z−1A+i (z), fi,1]v−1

i
,

B−i (z) = [ei,−1, zA
−
i (z)]vi , C−i (z) = [A−i (z), fi,0]vi .

Proof The above formula for B+i (z) (resp. C+i (z)) follows by evaluating the terms
of degree 1 (resp. 0) in w in the equality (6.10) (resp. (6.11)) with ε = ε′ = +.

The formulas for B−i (z), C
−
i (z) are proved analogously. ��

The following result is straightforward.

Proposition 7.4 The homomorphism �̃
λ
μ maps the ABC currents as follows:

A+i (z) �→
ai∏
t=1

w−1/2
i,t ·Wi(z), A

−
i (z) �→ (−vi )

ai

ai∏
t=1

w1/2
i,t · Ŵi(z),

B+
i
(z) �→

ai∏
t=1

w1/2
i,t

∏
j→i

aj∏
t=1

w
cji/2
j,t

·
ai∑
r=1

Wi,r (z)Zi(wi,r )
Wi,r (wi,r )

∏
j→i

−cji∏
p=1

Wj (v
−cji−2p
j

wi,r )D
−1
i,r
,

B−i (z) �→ −(−vi )
ai

ai∏
t=1

w3/2
i,t

∏
j→i

aj∏
t=1

w
cji /2
j,t ·

ai∑
r=1

zŴi,r (z)Zi(wi,r )

wi,rWi,r (wi,r )

∏
j→i

−cji∏
p=1

Wj(v
−cji−2p
j wi,r )D

−1
i,r ,

C+i (z) �→ −
ai∏
t=1

w−1/2
i,t

∏
j←i

aj∏
t=1

w
cji /2
j,t ·

ai∑
r=1

wi,rWi,r (z)

zWi,r (wi,r )

∏
j←i

−cji∏
p=1

Wj(v
−cji−2p
j v2

i wi,r )Di,r ,

C−i (z) �→ (−vi )
ai

ai∏
t=1

w1/2
i,t

∏
j←i

aj∏
t=1

w
cji /2
j,t ·

ai∑
r=1

Ŵi,r (z)

Wi,r (wi,r )

∏
j←i

−cji∏
p=1

Wj(v
−cji−2p
j v2

i wi,r )Di,r .

In particular, all these images belong to Ãv[z±1
1 , . . . , z±1

N ] ⊂ Ãv
frac[z±1

1 , . . . , z±1
N ].
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8 K-theoretic Coulomb Branch

8.1 Quiver Gauge Theories

We follow the notations and setup of [10, Appendix A], so that (GL(V ),N) is a
quiver gauge theory. As in Sect. 7, we fix a sequence (ωi1, . . . , ωiN ) of fundamental
coweights of G which is assumed to be simply-laced for the current discussion.
We choose a basis w1, . . . , wN in W = ⊕

i∈I Wi such that ws ∈ Wis . This
defines a maximal torus TW ⊂ ∏i GL(Wi), and KTW (pt) = C[z±1

1 , . . . , z±1
N ]. We

consider the (quantized)K-theoretic Coulomb branch with flavor deformation Aq =
K(GL(V )×TW )O�C

×
(RGL(V ),N) equipped with the convolution algebra structure as

in [9, Remark 3.9(3)]. It is a KC××TW (pt)-algebra; we denote KC×(pt) = C[q±1].
We will also need v = q1/2, the generator of the equivariant K-theory of a point
with respect to the two-fold cover C̃× → C×. Recall that GL(V ) =∏i∈I GL(Vi).
We will need its 2I -cover G̃L(V ) = ∏

i∈I G̃L(Vi) where G̃L(Vi) := {(g ∈
GL(Vi), y ∈ C×) : det(g) = y2}. We consider the extended Coulomb branch
Av := K(G̃L(V )×TW )O�C̃

×
(RGL(V ),N) = Aq ⊗KGL(V )×C× (pt) KG̃L(V )×C̃×(pt). It is

equipped with an algebra structure as in Sect. 3.7.
Recall from [10] that w∗i,r is the cocharacter of the Lie algebra of GL(V ) =∏
GL(Vi), which is equal to 0 except at the vertex i, and is (0, . . . , 0, 1, 0, . . . , 0)

at i. Here 1 is at the r-th entry (r = 1, . . . , ai = dimVi). We denote the
corresponding coordinates of TV and T ∨V by wi,r and Di,r (i ∈ I, 1 ≤ r ≤ ai).

The roots are wi,rw
−1
i,s (r �= s). Furthermore, K(TV×TW )O�C

×
(RTV ,0) with scalars

extended by v,w±1/2
i,r is nothing but the algebra Âv[z±1

1 , . . . , z±1
N ] := Âv ⊗C[v±1]

C[v±1][z±1
1 , . . . , z±1

N ], where Âv was defined in Sect. 7. We thus have an algebra
embedding

z∗(ι∗)−1 : Av ↪→ Ãv[z±1
1 , . . . , z±1

N ].

Let �i,n be the n-th fundamental coweight of the factor GL(Vi), i.e., w∗i,1 +
. . . + w∗i,n = (1, . . . , 1, 0, . . . , 0) where 1 appears n times (1 ≤ n ≤ ai). Then

Gr
�i,n

GL(V ) is closed and isomorphic to the Grassmannian Gr(Vi, n) of n-dimensional

quotients of Vi . Let Qi be the tautological rank n quotient bundle on Gr
�i,n

GL(V ). Its
pull-back to R�i,n

is also denoted by Qi for brevity. Let �p(Qi ) denote the class
of its p-th external power in Av . More generally, we can consider a class f (Qi )
for a symmetric function f in n variables so that �p(Qi ) corresponds to the p-th
elementary symmetric polynomial ep.

Similarly, we consider � ∗
i,n = −w0�i,n, where the corresponding orbit Gr

� ∗
i,n

GL(V )

is closed and isomorphic to the Grassmannian Gr(n, Vi) of n-dimensional subspaces

in Vi . Let Si be the tautological rank n subbundle on Gr
� ∗
i,n

GL(V ). Its pull-back to R� ∗
i,n
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is also denoted by Si . Now similarly to [10, (A.3), (A.5)], cf. [10, Remark A.8], we
obtain

z∗(ι∗)−1
(
f (Qi )⊗ OR�i,n

)
=

∑
J⊂{1,...,ai }

#J=n

f (wi,J )

∏
j←i
r∈J

aj∏
s=1

(j,s)�=(i,r)

(1− vwi,rw
−1
j,s )

∏
r∈J,s /∈J

(1− wi,sw
−1
i,r )

∏
r∈J

Di,r

(8.1)
(the appearance of v is due to the convention before [9, Remark 2.1]);

z∗(ι∗)−1
(
f (Si )⊗ OR�∗

i,n

)
=

∑
J⊂{1,...,ai }

#J=n

f (v−2wi,J )
∏
r∈J
t :it=i

(1− vztw
−1
i,r )

∏
j→i
r∈J

aj∏
s=1

(j,s) �=(i,r)

(1− vwj,sw
−1
i,r )

∏
r∈J,s /∈J

(1− wi,rw
−1
i,s )

∏
r∈J

D−1
i,r ,

(8.2)

where f (v−2wi,J ) means that we substitute {v−2wi,r }r∈J to f .

Also, for the vector bundles $p
�i,1,$

p

� ∗
i,1

of p-forms on Gr
�i,1
GL(V ),Gr

� ∗
i,1

GL(V ) we

obtain

z∗(ι∗)−1
(
$p
�i,1

⊗ Q
⊗p′
i ⊗ OR�i,1

)
=

∑
1≤r≤ai

wp′−p
i,r

⎛⎜⎜⎝ ∑
J⊂{1,...,ai }\{r}

#J=p

∏
s∈J

wi,s

⎞⎟⎟⎠
∏
j←i

aj∏
s=1

(j,s) �=(i,r)

(1− vwi,rw
−1
j,s )

∏
s �=r

(1− wi,sw
−1
i,r )

Di,r ,

(8.3)

z∗(ι∗)−1
(
$
p

� ∗
i,1
⊗ S

⊗p′
i ⊗ OR�∗

i,1

)
=

∑
1≤r≤ai

v−2p′wp′+p
i,r

∏
t :it=i

(1− vztw
−1
i,r )

⎛⎜⎜⎝ ∑
J⊂{1,...,ai }\{r}

#J=p

∏
s∈J

w−1
i,s

⎞⎟⎟⎠
∏
j→i

aj∏
s=1

(j,s)�=(i,r)

(1− vwj,sw
−1
i,r )

∏
s �=r

(1− wi,rw
−1
i,s )

D−1
i,r .

(8.4)
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8.2 Homomorphism � λ
μ

We set Av
frac := Av ⊗C[v±1] C(v). The key result of this section asserts that

the homomorphism �̃
λ
μ of Theorem 7.1 factors through the above embedding

z∗(ι∗)−1 : Av
frac ↪→ Ãv

frac[z±1
1 , . . . , z±1

N ], similarly to [10, Theorem B.18].

Theorem 8.1 There exists a unique C(v)[z±1
1 , . . . , z±1

N ]-algebra homomorphism

�
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] −→ Av
frac,

such that the following diagram commutes:

Explicitly, �λ
μ maps the generators as follows:

ei,r �→ (−1)aiv

1− v2

∏
j→i

aj∏
t=1

w−1/2
j,t · (v2Si )

⊗(r+ai ) ⊗ OR�∗
i,1
,

fi,r �→ (−v)−
∑

j←i aj

1− v2

∏
j←i

aj∏
t=1

w1/2
j,t · Q

⊗(−∑j←i aj )

i ⊗ (v2Qi )
⊗r ⊗ OR�i,1

,

A+i,r �→ (−1)r
ai∏
t=1

w−1/2
i,t · er({wi,t }ait=1),

A−i,−r �→ (−1)r (−v)ai
ai∏
t=1

w1/2
i,t · er({w−1

i,t }ait=1),

φ+i �→
ai∏
t=1

w1/2
i,t , φ

−
i �→ (−v)−ai

ai∏
t=1

w−1/2
i,t .

Proof For X ∈ {ei,r , fi,r , A±i,±s , φ±i |i ∈ I, r ∈ Z, s ∈ N} con-

sider the assignment X �→ �
λ
μ(X) with the right-hand side defined

as above. Since z∗(ι∗)−1 : Av
frac ↪→ Ãv

frac[z±1
1 , . . . , z±1

N ] is injective and

�̃
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] → Ãv
frac[z±1

1 , . . . , z±1
N ] is an algebra homomorphism,
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it suffices to check that z∗(ι∗)−1
(
�
λ
μ(X)

)
= �̃

λ
μ(X) for X as above. This is a

straightforward verification based on formulas (8.1) and (8.2). ��
Combining Proposition 7.4 with formulas (8.3) and (8.4), we immediately find

the images of the generators {B+i,r , C+i,r+1}r≥0
i∈I under �λ

μ.

Corollary 8.2 For r ∈ N, we have

�
λ
μ(B

+
i,r ) = (−1)r+ai+1v2r

ai∏
t=1

w1/2
i,t

∏
j→i

aj∏
t=1

w−1/2
j,t ·

(
$
ai−1−r
� ∗
i,1

⊗ S⊗ri ⊗ OR�∗
i,1

)
,

�
λ
μ(C

+
i,r+1) = (−1)r+1(−v)−

∑
j←i aj

ai∏
t=1

w−1/2
i,t

∏
j←i

aj∏
t=1

w1/2
j,t

·
(
$r
�i,1

⊗ Q
⊗(r+1−∑j←i aj )

i ⊗ OR�i,1

)
.

In particular, the images of {A+i,r , B+i,r , C+i,r+1, φ
+
i }r∈Ni∈I under �λ

μ belong to Av ⊂
Av

frac. In fact, the images of {A−i,−r , B−i,−r−1, C
−
i,−r , φ

−
i }r∈Ni∈I under �λ

μ also belong
to Av .

Remark 8.3 (A. Weekes) In the case of shifted Yangians, the images of the generat-
ing series Bi(z), Ci(z) [44, Section 5.3] in the quantized (cohomological) Coulomb
branch Ah̄ under the homomorphism �

λ
μ of [10, Theorem B.18] are equal to

�
λ
μ(Bi(z)) = (−1)ai z−1 · c(Q̃i ,−z−1) ∩ [R� ∗

i,1
],

�
λ
μ(Ci(z)) = (−1)

∑
j←i aj z−1 · c(Si ,−z−1) ∩ [R�i,1],

where c(F, z) denotes the Chern polynomial of a vector bundle F. Here we view
Qi , Si as rank n − 1 vector bundles on R� ∗

i,1
,R�i,1 , respectively, while Q̃i denotes

the vector bundle Qi with the equivariance structure twisted by h̄.

Remark 8.4 Note that Gr
�i,1
GL(V ) � Pai−1 � Gr

� ∗
i,1

GL(V ), and if we forget the

equivariance, then up to sign, �λ
μ(fi,r ), 1 ≤ r ≤ ai , is the collection of classes of

pull-backs of the line bundles O
P
ai−1(1 −∑j←i aj ), . . . ,OP

ai−1(ai −∑j←i aj ),

while �λ
μ(C

+
i,r ), 1 ≤ r ≤ ai , is the collection of classes of pull-backs of the

vector bundles$r−1
P
ai−1(r−

∑
j←i aj ). These two collections are the dual exceptional

collections of vector bundles on Pai−1 (more precisely, the former collection is left



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 175

dual to the latter one). In fact, this is the historically first example of dual exceptional
collections, [3]. Similarly, up to sign and forgetting equivariance, �λ

μ(ei,r ), 0 ≤
r < ai , are the classes of the exceptional collection of line bundles right dual to the
exceptional collection of vector bundles whose classes are �λ

μ(B
+
i,r ), 0 ≤ r < ai .

Remark 8.5 An action of the quantized K-theoretic Coulomb branch Av
frac of the

type A quiver gauge theory on the localized equivariant K-theory of parabolic Lau-
mon spaces was constructed in [4]. Combining this construction with Theorem 8.1,
we see that there should be a natural action of Uad

0,μ[z±1
1 , . . . , z±1

N ] (with g = sln) on
the aforementionedK-theory. We construct explicitly such an action of Usc

0,μ in The-
orem 12.2 by adapting the arguments of [61] to the current setting (the adjoint ver-
sion is achieved by considering equivariant K-theory with respect to a larger torus).

8.3 Truncated Shifted Quantum Affine Algebras

We consider a 2-sided ideal I
λ
μ of Uad

0,μ[z±1
1 , . . . , z±1

N ] generated over

C(v)[z±1
1 , . . . , z±1

N ] by the following elements:

A±i,±s (s > ai), A
+
i,0A

+
i,ai
− (−1)ai , A−i,0A

−
i,−ai − (−1)aiv2ai

i , (8.5)

A−i,−r − v
ai
i A

+
i,ai−r (0 ≤ r ≤ ai). (8.6)

Definition 8.6 U
λ
μ := Uad

0,μ[z±1
1 , . . . , z±1

N ]/Iλμ is called the truncated shifted
quantum affine algebra.

Note that the homomorphism �̃
λ
μ : Uad

0,μ[z±1
1 , . . . , z±1

N ] → Ãv
frac[z±1

1 , . . . , z±1
N ]

factors through the same named homomorphism �̃
λ
μ : Uλμ → Ãv

frac[z±1
1 , . . . , z±1

N ],
due to Proposition 7.4. Similarly to [10, Remark B.21], we expect this homomor-
phism to be injective:

Conjecture 8.7 �̃
λ
μ : Uλμ ↪→ Ãv

frac[z±1
1 , . . . , z±1

N ].
Remark 8.8 As a first indication of the validity of this conjecture, we note that
the elements {B+i,r , C+i,r+1, B

−
i,−r−1, C

−
i,−r }r≥aii∈I which belong to Ker(�̃λ

μ) (due to

Proposition 7.4) also belong to I
λ
μ, due to Corollary 7.3 and relation (U10).

Moreover, we expect the following result:

Conjecture 8.9 �
λ
μ : Uλμ ∼−→Av

frac.
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8.4 Truncated Shifted v-Yangians

Recall that g is assumed to be simply-laced. Recall an explicit identification of
the Drinfeld-Jimbo and the new Drinfeld realizations of the standard quantum
loop algebra Uv(Lg). To this end, choose a decomposition of the highest root θ
of g into a sum of simple roots θ = α∨i1 + α∨i2 + . . . + α∨ih−1

such that εk :=
〈αik+1 , α

∨
i1
+. . .+α∨ik 〉 ∈ Z<0 for any 1 ≤ k ≤ h−2 (here h is the Coxeter number of

g). We encode a choice of such a decomposition by a sequence i = (i1, . . . , ih−1).
Let UDJ

v (Lg) denote the Drinfeld-Jimbo quantum group of ĝ (affinization of g) with
a trivial central charge, generated by {Ei, Fi,K±1

i }i∈Ĩ (here Ĩ = I ∪ {i0} is the
vertex set of the extended Dynkin diagram), see [50]. The following result is due
to [16] (proved in [41]).

Theorem 8.10 There is a C(v)-algebra isomorphism UDJ
v (Lg) ∼−→Uv(Lg), such

that

Ei �→ ei,0, Fi �→ fi,0, K
±1
i �→ ψ±i,0 for i ∈ I,

Ei0 �→ [fih−1,0, [fih−2,0, · · · , [fi2,0, fi1,1]vε1 · · · ]vεh−3 ]vεh−2 · ψ−θ ,

Fi0 �→ (−v)−εψ+θ · [eih−1,0, [eih−2,0, · · · , [ei2,0, ei1,−1]vε1 · · · ]vεh−3 ]vεh−2 ,

K±i0 �→ ψ∓θ ,

where ψ±θ := ψ±i1,0 · · ·ψ±ih−1,0
, ε := ε1 + . . .+ εh−2.

In particular, the image of the negative Drinfeld-Jimbo Borel subalgebra
of UDJ

v (Lg) generated by {Fi,K±1
i }i∈Ĩ under the above isomorphism is the

subalgebra U−v of Uv(Lg), generated by {fi,0, (ψ−i,0)±1, F }i∈I with F :=
[eih−1,0, [eih−2,0, · · · , [ei2,0, ei1,−1]vε1 · · · ]vεh−3 ]vεh−2 . Motivated by this observa-
tion, we introduce the following definition.

Definition 8.11

(a) Fix i = (i1, . . . , ih−1) as above. The shifted v-Yangian iY
v
μ[z±1

1 , . . . , z±1
N ]

is the C(v)[z±1
1 , . . . , z±1

N ]-subalgebra of Uad
0,μ[z±1

1 , . . . , z±1
N ] generated by

{fi,0, (ψ−i,bi )±1, F̂ }i∈I , where

F̂ := [eih−1,bih−1
, [eih−2,bih−2

, · · · , [ei2,bi2 , ei1,bi1−1]vε1 · · · ]vεh−3 ]vεh−2

and bi := α∨i (μ).

(b) The truncated shifted v-Yangian iY
λ
μ is the quotient of iY

v
μ[z±1

1 , . . . , z±1
N ] by the

2-sided ideal iI
λ,+
μ := I

λ
μ ∩ iY

v
μ[z±1

1 , . . . , z±1
N ].



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 177

Remark 8.12 For g = gln and μ = 0, our definition of the v-Yangian is consistent
with that of the quantum Yangian Yq(gln) of [54] (in particular, independent of the
choice of i). The latter is defined via the RTT presentation, see our discussion in
Appendix G, and corresponds to the subalgebra generated by the coefficients of the
matrix T −(z).

Conjecture 8.13 �
λ
μ : iY

λ
μ

∼−→Av
frac.

8.5 Integral Forms

If we believe Conjectures 8.9 and 8.13, we can transfer the integral forms Av ⊂
Av

frac to the truncated shifted quantum affine algebras and the truncated shifted v-

Yangians to obtain the C[v±1]-subalgebras ′Uλμ ⊂ U
λ
μ and ′

iY
λ
μ ⊂ iY

λ
μ. Finally,

we define the integral form ′Uad
0,μ ⊂ Uad

0,μ as an intersection of all the preimages

of ′Uλμ|z1=...=zN=1 under projections Uad
0,μ[z±1

1 , . . . , z±1
N ] � U

λ
μ as λ varies, and

′
iY

v
μ := ′Uad

0,μ ∩ iY
v
μ[z±1

1 , . . . , z±1
N ]|z1=...=zN=1. Unfortunately, we cannot define

these integral forms by generators and relations in general. In the case of sl2
see Sect. 9.1.

Recall that ∗ stands for the involution μ �→ −w0μ of the coweight lattice �.
Similarly to [10, Remark 3.17], one can construct an isomorphism from the non-
quantized extended K-theoretic Coulomb branch SpecK(G̃L(V )×TW )O(RGL(V ),N)
of Sect. 8.1 to the multiplicative slice cover †Ŵ

λ∗
μ∗ of Sect. 4.6. Its quantization is the

subject of the following

Conjecture 8.14

(a) The shifted v-Yangian ′
iY

v
μ is a quantization of the thick multiplicative slice

†Wμ∗ of Sect. 4.8, that is ′iYv
μ|v=1 � C[†Wμ∗ ].

(b) The truncated shifted v-Yangian ′
iY
λ
μ and the truncated shifted quantum affine

algebra ′Uλμ are quantizations of the multiplicative slice cover †Ŵ
λ∗
μ∗ of Sect. 4.6,

that is ′iY
λ
μ|v=1 � ′Uλμ|v=1 � C[†Ŵλ∗

μ∗ ].

8.6 An Example

Let g = sln, μ = 0, λ = (ω1, . . . , ω1) (the first fundamental coweight taken
n times). Note that the symmetric group Sn acts naturally on ′Uλμ, permuting the

parameters z1, . . . , zn. This action induces the one on the quotient algebra ′Uλμ
by the relation z1 · · · zn = 1. Then we expect that the evaluation homomorphism
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Uv(Lsln) � Uv(sln) [40] gives rise to an isomorphism (′Uλμ)Sn ∼−→AOloc, where
AO is the integral form of the quantum coordinate algebra of SL(N) introduced
in [50, 29.5.2], and AOloc stands for its localization by inverting the quantum minors
{cν}ν∈�+ , see [42, 9.1.10].

9 Shifted Quantum Affine sl2 and Nil-DAHA for GL(n)

9.1 Integral Form

In this section g = sl2, whence we denote A±i,r , B
±
i,r , C

±
i,r , φ

±
i simply by

A±r , B±r , C±r , φ±. The shift μ ∈ � = Z is an integer. Furthermore, λ =
(ω1, . . . , ω1) (a collection of N copies of the fundamental coweight). The
corresponding shifted quantum affine algebra is Uad

0,μ[z±1
1 , . . . , z±1

N ]. We define

a C[v±1]-subalgebra Uad
0,μ[z±1

1 , . . . , z±1
N ] ⊂ Uad

0,μ[z±1
1 , . . . , z±1

N ] generated by

{A±±r , B+r , B−−r−1, C
+
r+1, C

−−r , φ±}r∈N and its quotient algebra (an integral version
of the truncated shifted quantum affine algebra)

U
λ
μ := Uad

0,μ[z±1
1 , . . . , z±1

N ]/(Iλμ ∩ Uad
0,μ[z±1

1 , . . . , z±1
N ]).

Let V = Cn, W = CN . According to Corollary 8.2, the homomorphism

�N
N−2n : Uad

0,N−2n[z±1
1 , . . . , z±1

N ] −→ Av
frac = K(G̃L(V )×TW )O�C̃

×
(RGL(V ),Hom(W,V ))⊗C[v±1] C(v)

takes Uad
0,N−2n[z±1

1 , . . . , z±1
N ] ⊂ Uad

0,N−2n[z±1
1 , . . . , z±1

N ] to Av ⊂ Av
frac.

In particular, we have Uad
0,N−2n[z±1

1 , . . . , z±1
N ] ⊂ ′Uad

0,N−2n[z±1
1 , . . . , z±1

N ]
(cf. Sect. 8.5). We also define a C[v±1]-subalgebra Yv

N−2n[z±1
1 , . . . , z±1

N ] ⊂
Yv
N−2n[z±1

1 , . . . , z±1
N ] generated by {A−−r , B−−r−1, C

−−r , φ−}r∈N. Furthermore,

we define the shifted Borel v-Yangian Yv
N−2n,−[z±1

1 , . . . , z±1
N ] as the C[v±1]-

subalgebra of Yv
N−2n[z±1

1 , . . . , z±1
N ] generated by {A−−r , C−−r , φ−}r∈N. Finally, we

have their truncated quotients Yλ

N−2n, Y
λ

N−2n,−. We expect that

Uad
0,N−2n[z±1

1 , . . . , z±1
N ] = ′Uad

0,N−2n[z±1
1 , . . . , z±1

N ],
Yv
N−2n[z±1

1 , . . . , z±1
N ] = ′Yv

N−2n[z±1
1 , . . . , z±1

N ],
U
λ

N−2n = ′UλN−2n, Y
λ

N−2n = ′Yλ

N−2n.

Conjecture 9.1 The natural homomorphisms induce isomorphisms

Y
λ

N−2n
∼−→U

λ

N−2n
∼−→Av.
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From now on, we specialize to the case N = 0, μ = −2n. According to Corol-
lary 3.14, the corresponding Coulomb branch Av = KG̃L(n,O)�C̃

×
(GrGL(n)) is

nothing but the spherical extended nil-DAHA HH
sph
e (GL(n)). We define C[v±1]loc

inverting (1− v2m), m = 1, 2, . . . , n. We extend the scalars to C[v±1]loc to obtain

�0
−2n,loc : Uad

0,−2n,loc −→ K
G̃L(n,O)�C̃

×
loc (GrGL(n)).

The following theorem and Proposition 9.8 is a supportive evidence in favor of
Conjecture 9.1.

Theorem 9.2 �0
−2n,loc : Uad

0,−2n,loc → K
G̃L(n,O)�C̃

×
loc (GrGL(n)) is surjective.6

Proof We must prove that KGL(n,O)�C
×

loc (GrGL(n)) is generated by KGL(n)(pt) =
R(GL(n)), and O(a)�1 ,O(a)� ∗

1
, a ∈ Z. Here �1 = (1, 0, . . . , 0) denotes the first

fundamental coweight of GL(n), and Gr�1 � Pn−1 is the corresponding minuscule
orbit, so that Gr�

∗
1 � P̌n−1. Finally, Q is the tautological quotient bundle on Gr�1 ,

isomorphic to the ample line bundle O(1) on Pn−1, and O(a)�1 stands for Q⊗a .
Similarly, S is the tautological line subbundle on Gr�

∗
1 isomorphic to O(−1) on

P̌n−1, and O(a)� ∗
1

stands for S⊗−a . Note that O(1)�1 ,O(1)� ∗
1

are isomorphic to
the restrictions of the determinant line bundle on GrGL(n).

Given an arbitrary sequence ν1, . . . , νN with νi ∈ {�1, . . . ,�n,�
∗
1 , . . . ,�

∗
n },

the equivariant K-theory of the iterated convolution diagram

KGL(n,O)�C
×
(Grν1×̃ . . . ×̃GrνN )

is isomorphic to

KGL(n,O)�C
×
(Grν1)⊗KGL(n,O)�C× (pt) · · · ⊗KGL(n,O)�C× (pt) K

GL(n,O)�C
×
(GrνN ).

By the projection formula and rationality of singularities of Grν1+...+νN , the
convolution pushforward morphism

m∗ : KGL(n,O)�C
×
(Grν1×̃ . . . ×̃GrνN ) −→ KGL(n,O)�C

×
(Grν1+...+νN )

is surjective. Hence in order to prove the surjectivity statement of the theorem, it

suffices to express KGL(n,O)�C
×

loc (Grν), ν ∈ {�1, . . . ,�n,�
∗
1 , . . . ,�

∗
n }, in terms

of O(a)�1 ,O(a)� ∗
1
, a ∈ Z, and KGL(n)(pt). We will consider ν = �m, 1 ≤ m ≤

n, the case of � ∗
m being similar. Note that O�n is the structure sheaf of a point

GL(n,O)-orbit corresponding to the coweight (1, . . . , 1). We argue by induction
in m.

6A stronger version of the theorem (over Z[v±1] as opposed to over C[v±1]loc) is proved
independently in [15, Corollary 2.21, Remark 2.22].
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For ν as above, the Picard group of Grν is Z, and we denote the ample generator
by O(1)ν . It is isomorphic to the restriction of the determinant line bundle on
GrGL(n). We start with an explicit expression for O�m := OGr�m , 1 ≤ m ≤ n,

in terms of O(a)�1 , a ∈ Z. Recall that �0
−2n(fr) = v2r

1−v2 O(r)�1 and �0
−2n(er ) =

(−1)nv2r+2n+1

1−v2 O(−r − n)� ∗
1

. We denote advr

x y := [x, y]vr = xy − vryx.

Proposition 9.3 For any 1 ≤ m ≤ n, we have

O�m = (−1)
m(m−1)

2 (1− v2)�0
−2n(adv2m

f1−m adv2(m−1)

f3−m · · · adv4

fm−3
fm−1), (9.1)

O� ∗
m
= (−1)nm+

m(m+1)
2 +1vm

2−2(1− v2)×
�0
−2n(adv−2m

e−n+1−m adv−2(m−1)

e−n+3−m · · · adv−4

e−n+m−3
e−n+m−1). (9.2)

Proof We prove (9.1); the proof of (9.2) is similar. We will compare the images of
the LHS and the RHS in Ãv

frac. According to (8.1), the image of the LHS equals

∑
#J=m

s �∈J∏
r∈J

(1− wsw−1
r )−1

∏
r∈J

Dr . (9.3)

Here J ⊂ {1, . . . , n} is a subset of cardinality m. Let us denote the iterated
v-commutator adv2m

f1−m adv2(m−1)

f3−m · · · adv4

fm−3
fm−1 by Fm. We want to prove

�̃0
−2n(Fm) = (−1)

m(m−1)
2 (1− v2)−1 ·

∑
#J=m

s �∈J∏
r∈J

(1− wsw−1
r )−1

∏
r∈J

Dr . (9.4)

The proof proceeds by induction in m. So we assume (9.4) known for an integer
k < n, and want to deduce (9.4) for m = k + 1. We introduce a “shifted”
v-commutator F ′k := adv2k

f2−k adv2(k−1)

f4−k · · · adv4

fk−2
fk . Then

�̃0
−2n(F

′
k) = (−1)

k(k−1)
2 (1− v2)−1v2k ·

∑
#J=k

∏
r∈J

wr

s �∈J∏
r∈J

(
1− ws

wr

)−1 ∏
r∈J

Dr .

Now

�̃0
−2n(Fk+1) = �̃0

−2n([f−k, F ′k]v2(k+1) ) = [�̃0
−2n(f−k), �̃

0
−2n(F

′
k)]v2(k+1) =

(−1)
k(k−1)

2 (1− v2)−2v2k ·

⎡⎢⎢⎣ n∑
p=1

(v2wp)
−k∏

t �=p

(
1− wt

wp

)Dp,
∑

#J=k

∏
r∈J

wr

s �∈J∏
r∈J

(
1− ws

wr

)−1 ∏
r∈J

Dr

⎤⎥⎥⎦
v2(k+1)

.
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First we check that the summands corresponding to p ∈ J vanish. Due to the
symmetry reasons, we may assume p = 1, J = {1, 2, . . . , k}. Then⎡⎢⎢⎣ (v2w1)

−k∏
t>1

(
1− wt

w1

)D1,

k∏
r=1

wr

s>k∏
r≤k

(
1− ws

wr

)−1

D1 · · ·Dk

⎤⎥⎥⎦
v2(k+1)

=

⎡⎢⎢⎢⎣ (v2w1)
−k∏

t>k

(
1− wt

w1

) ∏
1<r≤k

(
1− wr

w1

)D1,
w1 · · ·wk∏

s>k

(
1− ws

w1

) s>k∏
1<r≤k

(
1− ws

wr

)D1 · · ·Dk

⎤⎥⎥⎥⎦
v2(k+1)

=

⎛⎜⎜⎜⎝ (v2w1)
−kv2w1 · · ·wk∏

t>k

(
1− wt

w1

) ∏
1<r≤k

(
1− wr

w1

) ∏
s>k

(
1− v−2 ws

w1

) s>k∏
1<r≤k

(
1− ws

wr

)−

− v2(k+1)w1 · · ·wk(v
2w1)

−kv−2k∏
s>k

(
1− ws

w1

) s>k∏
1<r≤k

(
1− ws

wr

) ∏
t>k

(
1− v−2 wt

w1

) ∏
1<r≤k

(
1− wr

w1

)
⎞⎟⎟⎟⎠D2

1D2 · · ·Dk = 0.

Therefore,

(−1)
k(k−1)

2 (1− v2)2�̃0
−2n(Fk+1) =

p �∈J∑
#J=k

⎡⎣ (v2wp)
−k∏

t �=p
(

1− wt

wp

)Dp, v
2k
∏
r∈J

wr

s �∈J∏
r∈J

(
1− ws

wr

)−1 ∏
r∈J

Dr

⎤⎦
v2(k+1)

.

We expand this combination of v2(k+1)-commutators as a sum∑
#J=k+1

φJ (w1, . . . ,wn)
∏
r∈J

Dr .

For the symmetry reasons, it suffices to calculate the rational function φJ for a single
J = {1, . . . , k + 1}. We have

φJ (w1, . . . ,wn)D1 · · ·Dk+1 =

k+1∑
r=1

⎡⎢⎢⎢⎣ (v2wr )
−k∏

t �=r

(
1− wt

wr

)Dr,
v2kw1 · · · ŵr · · ·wk+1

t>k+1∏
r �=p≤k+1

(
1− wt

wp

) ∏
r �=p≤k+1

(
1− wr

wp

)D1 · · · D̂r · · ·Dk+1

⎤⎥⎥⎥⎦
v2(k+1)

=
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k+1∑
r=1

⎛⎜⎜⎜⎝ w−kr w1 · · · ŵr · · ·wk+1∏
t>k+1

(
1− wt

wr

) ∏
r �=p≤k+1

(
1− wp

wr

) t>k+1∏
r �=p≤k+1

(
1− wt

wp

) ∏
r �=p≤k+1

(
1− v2wr

wp

)−

− v2(k+1)w−kr w1 · · · ŵr · · ·wk+1

t>k+1∏
r �=p≤k+1

(
1− wt

wp

) ∏
r �=p≤k+1

(
1− wr

wp

) ∏
t>k+1

(
1− wt

wr

) ∏
r �=p≤k+1

(
1− v2wp

wr

)
⎞⎟⎟⎟⎠D1 · · ·Dk+1 =

−v2(k+1)w1 · · ·wk+1

t>k+1∏
r≤k+1

(
1− wt

wr

)−1

×

k+1∑
r=1

⎛⎜⎜⎝ w−k−1
r∏

r �=p≤k+1

(
1− wr

wp

) (
1− v2wp

wr

) − v−2(k+1)w−k−1
r∏

r �=p≤k+1

(
1− wp

wr

) (
1− v2wr

wp

)
⎞⎟⎟⎠D1 · · ·Dk+1.

This is equal to the following expression, by Lemma 9.4 below:

− v2(k+1)w1 · · ·wk+1

t>k+1∏
r≤k+1

(
1− wt

wr

)−1
(−1)k(v2 − 1)

v2(k+1)
∏

r≤k+1
wr

D1 · · ·Dk+1 =

(−1)k(1− v2)

t>k+1∏
r≤k+1

(
1− wt

wr

)−1

D1 · · ·Dk+1.

We conclude that

�̃0
−2n(Fk+1) = (−1)

k(k+1)
2 (1− v2)−1 ·

∑
#J=k+1

s �∈J∏
r∈J

(1− wsw−1
r )−1

∏
r∈J

Dr,

and (9.4) is proved. It remains to check

Lemma 9.4 We have

k+1∑
r=1

⎛⎜⎝ w−k−1
r∏

s �=r
(1− wr /ws )(1− v2ws/wr )

− v−2(k+1)w−k−1
r∏

s �=r
(1− ws/wr )(1− v2wr /ws )

⎞⎟⎠ = (−1)k(v2 − 1)

v2(k+1)
k+1∏
r=1

wr

.

Proof The LHS is a degree −k − 1 rational function of w1, . . . ,wk+1 with poles
at the hyperplanes given by equations wr − ws , wr − v2ws , wr (1 ≤ r �= s ≤
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k + 1). One can check Reswr−ws LHS = Reswr−v2ws
LHS = 0, so that LHS =

f ·∏1≤r≤k+1 w−1
r for a rational function f ∈ C(v). To compute f , we specialize

w1 �→ 0 in the equality

f =
k+1∏
t=1

wt ·
k+1∑
r=1

⎛⎜⎝
∏
s �=r

ws∏
s �=r

(ws − wr )(wr − v2ws)
· 1

wr

−
v−2(k+1) ∏

s �=r
ws∏

s �=r
(wr − ws)(ws − v2wr )

· 1

wr

⎞⎟⎠ .
The only summands surviving under this specialization correspond to r = 1, and so
we get

f =
k+1∏
t=2

wt ·

⎛⎜⎜⎜⎝
k+1∏
s=2

ws

(−v2)k ·
k+1∏
s=2

w2
s

−
v−2(k+1) ·

k+1∏
s=2

ws

(−1)k ·
k+1∏
s=2

w2
s

⎞⎟⎟⎟⎠ = (−1)k(v−2k − v−2(k+1)).

The lemma is proved. ��
The proposition is proved. ��

Returning to the proof of Theorem 9.2, we need to prove that

K
GL(n,O)�C

×
loc (Gr�m) lies in the image �0

−2n,loc(U
ad
0,−2n,loc) for 1 ≤ m ≤ n.

We know that the class of the structure sheaf O�m ∈ K
GL(n,O)�C

×
loc (Gr�m)

lies in �0
−2n,loc(U

ad
0,−2n,loc). It is also known that KGL(n,O)�C

×
(Gr�m) as a

left KGL(n,O)�C×(pt)-module is generated by the classes �λ(Q) where Q

is the tautological quotient bundle on Gr�m � Gr(m, n), and �λ is the
polynomial Schur functor corresponding to a Young diagram λ with ≤ m rows
(in fact, it is enough to consider λ’s with ≤ n − m columns). Given such

λ, it suffices to check that Sym

(
wλ1

1 · · ·wλm
m

s>m∏
r≤m

(
1− ws

wr

)−1
D1 · · ·Dm

)
lies

in �̃0
−2n,loc(U

ad
0,−2n,loc) (here Sym stands for the symmetrization with respect

to the symmetric group Sn). More generally, for a Young diagram μ with

≤ n rows we will show that Sym

(
wμ1

1 · · ·wμn
n ·

s>m∏
r≤m

(
1− ws

wr

)−1
D1 · · ·Dm

)
lies in �̃0

−2n,loc(U
ad
0,−2n,loc). To this end, we use the right multiplication by

KGL(n,O)�C×(pt). It suffices to check that the KGL(n,O)�C×(pt)loc-bimodule

generated by X1,m := Sym

(
s>m∏
r≤m

(
1− ws

wr

)−1
D1 · · ·Dm

)
contains elements

XF,m := Sym

(
F
s>m∏
r≤m

(
1− ws

wr

)−1
D1 · · ·Dm

)
for any polynomial F ∈

C[w1, . . . ,wn]. We can assume that F ∈ C[w1, . . . ,wn]Sm×Sn−m, where the
symmetric groups act by permuting {wr , 1 ≤ r ≤ m} and {ws , m + 1 ≤
s ≤ n}. Note that C[w1, . . . ,wn]Sm×Sn−m is generated by C[w1, . . . ,wm]Sm
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as a left C[w1, . . . ,wn]Sn-module. Hence, it suffices to treat the case F ∈
C[w1, . . . ,wm]Sm = C[p1, . . . , pm], where pk := ∑m

r=1 wk
r . The latter case

follows from the equality[
n∑
r=1

wk
r , XF,m

]
= (1− v2k)XFpk,m

for F ∈ C[w1, . . . ,wm]Sm .
The theorem is proved. ��

Remark 9.5 The end of our proof of Theorem 9.2 is a variation of the following
argument we learned from P. Etingof. We define C[v±1]Loc inverting (1−vm), m ∈
Z. We consider a C[v±1]Loc-algebra A of finite difference operators with gen-
erators {w±1

i , D±1
i }ni=1 and defining relations Diwj = v2δijwjDi, [Di,Dj ] =

[wi ,wj ] = 0. Then the algebra of Sn-invariants ASn is generated by its subalgebras
C[v±1]Loc[D±1

1 , . . . , D±1
n ]Sn and C[v±1]Loc[w±1

1 , . . . ,w±1
n ]Sn .

Indeed, let B be the C[v±1]Loc-algebra generated by w±1,D±1 subject toDw =
v2wD. Then A = B⊗n (tensor product over C[v±1]Loc), and ASn = SymnB
(symmetric power over C[v±1]Loc). Now SymnB is spanned by the elements
{b⊗n}b∈B, and hence SymnB is generated by the elements {b(1) + . . .+ b(n)}b∈B,
where b(r) = 1⊗· · ·⊗1⊗b⊗1⊗· · ·⊗1 (b at the r-th entry). Indeed, it suffices to
verify the generation claim for an algebra C[v±1]Loc[b] where it is nothing but the
fundamental theorem on symmetric functions.

We conclude that SymnB is generated by the elements {pm,k =∑n
r=1 wm

r D
k
r }m,k∈Z. However, pm,k = (v2mk − 1)−1[∑n

r=1 D
k
r ,
∑n

s=1 wm
s ] for

m �= 0 �= k.

Remark 9.6 Motivated by [10, Remark 3.5] we call O�n ∈ KGL(n,O)�C
×
(GrGL(n))

the quantum resultant. In fact, it is a quantization of the boundary equation for the
trigonometric zastava †◦ZnSL(2) which is nothing but the resultant of two polynomials.

Note that, up to multiplication by an element of C[v±1], the quantum resultant is
uniquely characterized by the property

O�n�
0
−2n(A

±±r ) = v±(2r−n)�0
−2n(A

±±r )O�n, O�n�
0
−2n(fp) = v2p�0

−2n(fp)O�n.

(9.5)

Remark 9.7 Here is a geometric explanation of the equality

O(−k−1)�1∗O�k
−v2(k+1)O�k

∗O(−k−1)�1 = (−1)k(1−v2)v−2(k+1)O(−1)�k+1 ,

(9.6)
established as an induction step during our proof of Proposition 9.3. We have the
convolution morphisms

Gr�1×̃Gr�k
m−→ Gr�1+�k

m′←− Gr�k ×̃Gr�1 ,



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 185

and Gr�1+�k = Gr�1+�k �Gr�k+1 . Let us consider the transversal slice W�1+�k
�k+1 ⊂

Gr�1+�k through the point �k+1 = (1, . . . , 1, 0, . . . , 0) (k + 1 1’s). It suffices to
check that

m∗
(
O(−k − 1)�1�̃O�k

|
m−1W

�1+�k
�k+1

)
− v2(k+1)m′∗

(
O�k

�̃O(−k − 1)�1 |m′−1W
�1+�k
�k+1

)
=

(−1)k(1− v2)v−2(k+1)w−1
1 · · ·w−1

k+1,

where we view v−2(k+1)w−1
1 · · ·w−1

k+1 as a character of T × C× (T ⊂ GL(n) is

the diagonal Cartan torus). According to [52, Corollary 3.4], W�1+�k
�k+1 is naturally

isomorphic to the slice Wθ
0 ⊂ GrGL(k+1)×(C×)n−k−1 where θ = (1, 0, . . . , 0,−1)

is the highest coroot of GL(k + 1). Moreover, the preimages of W
�1+�k
�k+1 in the

two convolution diagrams are isomorphic to the cotangent bundles T ∗Pk and T ∗P̌k ,
respectively. We will keep the following notation for the convolution morphisms
restricted to the slice:

T ∗Pk m−→Wθ
0

m′←− T ∗P̌k.

Note also that Wθ
0 is isomorphic to the minimal nilpotent orbit

closure Omin ⊂ slk+1. Finally, O(−k − 1)�1�̃O�k
|
m−1W

�1+�k
�k+1

and

O�k
�̃O(−k − 1)�1 |m′−1W

�1+�k
�k+1

are isomorphic to the pull-backs of OPk (−k − 1)

and O
P̌k
(−k − 1), respectively, but with nontrivial C×-equivariant structures.

Let us explain our choice of the line bundles. According to [8, Proposition 8.2],
the convolutions in question are GL(k + 1) × C×-equivariant perverse coherent
sheaves on Omin ⊂ slk+1. Since dimHk(T ∗Pk,OT ∗Pk (−k − 1)) = 1, while
Hk(T ∗Pk,OT ∗Pk (k + 1)) = 0, we have an exact sequence of perverse coherent
sheaves7 on Omin ⊂ slk+1:

0 → j!∗OOmin(−k − 1)[k] → m∗OT ∗Pk (−k − 1)[k] → δ0 → 0,

where j : Omin ↪→ Omin is the open embedding, and δ0 is an irreducible skyscraper
sheaf at 0 ∈ Omin with certain C×-equivariant structure. The same exact sequence
holds for m′∗OT ∗P̌k (−k − 1)[k], but the quotient δ0 has a different C×-equivariant
structure.

Proposition 9.8 The restriction of �̃0
−2n to Y0

−2n,− is injective.

Proof Consider an ordering A−0 ≺ A−−1 ≺ . . . ≺ A−−n+1 ≺ C−0 ≺
. . . ≺ C−−n+1. We set (A−0 )−k := ((−v2)−nA−−n)k for k > 0. For

7We are grateful to R. Bezrukavnikov for his explanations about perverse coherent sheaves.
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�r = (r1, . . . , r2n) ∈ Z × N2n−1, we define the ordered monomial m�r :=
(A−0 )r1(A

−
−1)

r2 · · · (A−−n+1)
rn(C−0 )rn+1 · · · (C−−n+1)

r2n .

Lemma 9.9 The ordered monomials {m�r} span Y0
−2n,−.

Proof According to relations (6.7, 6.9), we have [A−t , A−s ] = [C−t , C−s ] = 0 for
s, t ≤ 0. Due to Remark 8.8, we also have C−s = 0 for s ≤ −n. It remains to prove
that all A−t can be taken to the left of all C−s . This is implied by the fact that C−s A−t
can be written as a linear combination of normally ordered monomials A−

t ′C
−
s′ . The

latter claim follows from relation (6.11) by induction in min{−t,−s}. The lemma is
proved. ��

The following result will be proved in Sect. 9.2:

Lemma 9.10

(a) The ordered monomials {m�r} form a KC×(pt)-basis of Y0
−2n,−.

(b) {�0
−2n(m�r )} form a KC×(pt)-basis of �0

−2n(Y
0
−2n,−).

The proposition is proved. ��

9.2 Positive Grassmannian

Recall the positive part of the affine Grassmannian Gr+GL(n) ⊂ GrGL(n) [10,
§ 3(ii)] parametrizing the sublattices in the standard one. Recall also that

K
GL(n,O)�C

×
loc (Gr�1) = K

GL(n,O)�C
×

loc (Pn−1) is generated over KGL(n)(pt) by the
classes of O(a)�1 ,−n + 1 ≤ a ≤ 0. The proof of Theorem 9.2 shows that

�0
−2n,loc : Uad

0,−2n,loc � K
G̃L(n,O)�C̃

×
loc (GrGL(n)) restricts to a surjective homomor-

phism �0
−2n,loc : Y0

−2n,−,loc � K
G̃L(n,O)�C̃

×
loc (Gr+GL(n)).

Proposition 9.11 �0
−2n,loc : Y0

−2n,−,loc
∼−→K

G̃L(n,O)�C̃
×

loc (Gr+GL(n)).

Proof We have to check that �0
−2n,loc : Y0

−2n,−,loc → K
G̃L(n,O)�C̃

×
loc (Gr+GL(n))

is injective. To this end, note that Gr+GL(n) is a union of connected components

numbered by nonnegative integers: Gr+GL(n) =
⊔

r∈N Gr+,rGL(n), where Gr+,rGL(n)

parametrizes the sublattices of codimension r in the standard one. The direct

sum decomposition K
G̃L(n,O)�C̃

×
loc (Gr+GL(n)) = ⊕

r∈NK
G̃L(n,O)�C̃

×
loc (Gr+,rGL(n))

is a grading of the convolution algebra. For any connected component,

K
G̃L(n,O)�C̃

×
loc (Gr+,rGL(n)) is a free KG̃L(n,O)�C̃×(pt)

loc
-module of rank dr , where

dr is the number of T -fixed points in Gr+,rGL(n), that is the number of weights of
the irreducible GL(n)-module with the highest weight (r, 0, . . . , 0), isomorphic to
Symr (Cn). Note that all the weights of Symr (Cn) have multiplicity one; in other
words, dr = dim Symr (Cn).
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According to Lemma 9.9, we can introduce a grading Y0
−2n,−,loc =⊕

r∈NY0,r
−2n,−,loc: a monomialm�r has degree r if rn+1+ . . .+r2n = r . It is immedi-

ate from the relations between A−• , C−• -generators that this grading is well-defined.

Also, it is clear that �0
−2n,loc(Y

0,r
−2n,−,loc) ⊂ K

G̃L(n,O)�C̃
×

loc (Gr+,rGL(n)). Meanwhile,

we know from Theorem 9.2 that �0
−2n,loc(Y

0,r
−2n,−,loc) = K

G̃L(n,O)�C̃
×

loc (Gr+,rGL(n)).

On the other hand, we know from Lemma 9.9 that Y0,r
−2n,−,loc as a left

KG̃L(n,O)�C̃×(pt)
loc

-module has no more than d ′r generators, where d ′r is the number
of compositions of r into n (ordered) summands. Since dr = d ′r , we conclude

that �0
−2n,loc : Y0,r

−2n,−,loc → K
G̃L(n,O)�C̃

×
loc (Gr+,rGL(n)) must be an isomorphism,

and Y0,r
−2n,−,loc is a free left KG̃L(n,O)�C̃×(pt)

loc
-module of rank dr = d ′r . This

completes the proof of Proposition 9.11, Lemma 9.10 (and Proposition 9.8). ��
Remark 9.12 One can check that the natural morphism

KG̃L(n,O)�C̃
×
(Gr+GL(n))[O−1

�n
] → KG̃L(n,O)�C̃

×
(GrGL(n))

is an isomorphism. Now it follows from the proof of Proposition 9.11 and The-
orem 9.2 that in order to check Conjectures 8.7, 8.9 and 8.13 in our case:
Ker(�̃0

−2n,loc) = I0
−2n,loc, it suffices to check the following equality in Uad

0,−2n/I
0
−2n:

−vn
2−2(1−v2)2 ·(adv2n

f1−n adv2(n−1)

f3−n · · · adv4

fn−3
fn−1)(adv−2n

e1−2n
adv−2(n−1)

e3−2n
· · · adv−4

e−3
e−1) = 1.

Remark 9.13 Consider a subalgebra U<0,−2n ⊂ Uad
0,−2n generated by

{(v − v−1)fs}s∈Z. Note that it is independent of n, cf. Proposition 5.1. The image
�0
−2n(U

<
0,−2n) in KG̃L(n,O)�C̃

×
(GrGL(n)) is isomorphic to the M-system algebra

U′n−1 of [18]. In particular, the generators Mm,s ∈ U′n−1 of [18, § 2.1] correspond

to scalar multiples of the classes O(−s)�m ∈ KG̃L(n,O)�C̃
×
(GrGL(n)), cf. (9.1)

and [18, (2.23)].

10 Coproducts on Shifted Quantum Affine Algebras

Throughout this section, we work mainly with simply-connected shifted quantum
affine algebras. However, all the results can be obviously generalized to the adjoint
versions.

10.1 Drinfeld Formal Coproduct

The standard quantum loop algebra Uv(Lg) admits the Drinfeld formal coproduct

�̃ : Uv(Lg) −→ Uv(Lg)⊗̂Uv(Lg),
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defined in the new Drinfeld realization of Uv(Lg) via

�̃(ei(z)) := ei(z)⊗ 1+ ψ−i (z)⊗ ei(z),

�̃(fi(z)) := fi(z)⊗ ψ+i (z)+ 1⊗ fi(z),

�̃(ψ±i (z)) := ψ±i (z)⊗ ψ±i (z).

(10.1)

Remark 10.1 Composing �̃ with the C×-action on the first factor, D. Hernandez
obtained a deformed coproduct �ζ : Uv(Lg) → Uv(Lg) ⊗ Uv(Lg)((ζ )), where ζ
is a formal variable, see [37, Section 6].

This can be obviously generalized to the shifted setting.

Lemma 10.2 For any coweights μ±1 , μ
±
2 ∈ �, there is a C(v)-algebra homomor-

phism

�̃ : Usc
μ+1 +μ+2 ,μ−1 +μ−2

−→ Usc
μ+1 ,μ

−
1
⊗̂Usc

μ+2 ,μ
−
2
,

defined via (10.1).

We call this homomorphism a formal coproduct for shifted quantum affine
algebras. Given two representations V1, V2 of Usc

μ+1 ,μ
−
1
,Usc

μ+2 ,μ
−
2

, respectively, we

will use V1⊗̃V2 to denote the representation of Usc
μ+1 +μ+2 ,μ−1 +μ−2

on the vector space

V1 ⊗ V2 induced by �̃, whenever the action of the infinite sums representing
�̃(ei,r ), �̃(fi,r ) are well-defined. We will discuss a particular example of this
construction in Sect. 12.6.

10.2 Drinfeld-Jimbo Coproduct

The standard quantum loop algebra Uv(Lg) also admits the Drinfeld-Jimbo coprod-
uct

� : Uv(Lg) −→ Uv(Lg)⊗ Uv(Lg),

defined in the Drinfeld-Jimbo realization of Uv(Lg) via

� : Ei �→ Ei⊗Ki+1⊗Ei, Fi �→ Fi⊗1+K−1
i ⊗Fi, K±1

i �→ K±1
i ⊗K±1

i , i ∈ Ĩ .

Recall that Ĩ = I ∪ {i0} is the vertex set of the extended Dynkin diagram
and {Ei, Fi,K±1

i }i∈Ĩ are the standard Drinfeld-Jimbo generators of UDJ
v (Lg) �

Uv(Lg).
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We also denote the Drinfeld-Jimbo coproduct on U ad
v (Lg) by �ad: the natural

inclusion Uv(Lg) ↪→ U ad
v (Lg) intertwines � and �ad, while �ad(φ±i ) = φ±i ⊗φ±i .

The goal of this section is to generalize these coproducts to the shifted setting.
In other words, given g and coweights μ1, μ2 ∈ �, we would like to construct
homomorphisms

�μ1,μ2 : Usc
0,μ1+μ2

−→ Usc
0,μ1

⊗ Usc
0,μ2

,

which coincide with � in the particular case μ1 = μ2 = 0. We provide such a
construction for the simplest case g = sl2 in Sects. 10.3 (μ1, μ2 ∈ �−) and 10.4
(general μ1, μ2). Using the RTT presentation of Uv(Lsln), we generalize this to
obtain �μ1,μ2 for g = sln in Sects. 10.6 (μ1, μ2 ∈ �−) and 10.7 (general μ1, μ2).

Remark 10.3

(a) This result is nontrivial due to an absence of the Drinfeld-Jimbo type presenta-
tion of shifted quantum affine algebras.

(b) A similar coproduct for the shifted Yangians has been constructed in [24] for
arbitrary simply-laced g.

(c) Once �μ1,μ2 is constructed, one should be able to immediately extend it to the
homomorphism �ad

μ1,μ2
: Uad

0,μ1+μ2
→ Uad

0,μ1
⊗ Uad

0,μ2
by setting �ad

μ1,μ2
(φ±i ) =

φ±i ⊗ φ±i .

10.3 Homomorphisms �b1,b2 for b1, b2 ∈ Z≤0, g = sl2

We start this subsection by explicitly computing the Drinfeld-Jimbo coproduct of

the Drinfeld generators e0, e−1, f0, f1, ψ
±
0 ofUv(Lsl2) and h±1 = ±ψ∓0 ψ

±
±1

v−v−1 , which
generate the quantum loop algebra Uv(Lsl2).

Lemma 10.4 We have

�(e0) = e0 ⊗ ψ+0 + 1⊗ e0, �(e−1) = e−1 ⊗ ψ−0 + 1⊗ e−1,

�(f0) = f0 ⊗ 1+ ψ−0 ⊗ f0, �(f1) = f1 ⊗ 1+ ψ+0 ⊗ f1, �(ψ
±
0 ) = ψ±0 ⊗ ψ±0 ,

�(h1) = h1⊗1+1⊗h1−(v2−v−2)e0⊗f1, �(h−1) = h−1⊗1+1⊗h−1+(v2−v−2)e−1⊗f0.

Proof This is a straightforward computation based on the explicit identification
between the Drinfeld-Jimbo and the new Drinfeld realizations of the quantum loop
algebra Uv(Lsl2) of Theorem 8.10: e0 = Ei1 , f0 = Fi1, ψ

±
0 = K±1

i1
, e−1 =

K−1
i1
Fi0, f1 = Ei0Ki1 . ��
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The key result of this subsection provides analogues of � for antidominantly
shifted quantum affine algebras of sl2. For μ1, μ2 ∈ �−, we construct homomor-
phisms �b1,b2 : Usc

0,b1+b2
→ Usc

0,b1
⊗ Usc

0,b2
, where b1 := α∨(μ1), b2 := α∨(μ2) (so

that b1, b2 ∈ Z≤0).

Theorem 10.5 For any b1, b2 ∈ Z≤0, there is a unique C(v)-algebra homomor-
phism

�b1,b2 : Usc
0,b1+b2

−→ Usc
0,b1

⊗ Usc
0,b2

(we will denote � = �b1,b2 when the algebras involved are clear), such that

�(er) = 1⊗ er , �(fs) = fs ⊗ 1 for b2 ≤ r < 0, b1 < s ≤ 0,

�(e0) = e0 ⊗ ψ+0 + 1⊗ e0, �(eb2−1) = e−1 ⊗ ψ−b2
+ 1⊗ eb2−1,

�(f1) = f1 ⊗ 1+ ψ+0 ⊗ f1, �(fb1) = fb1 ⊗ 1+ ψ−b1
⊗ f0,

�((ψ+0 )
±1) = (ψ+0 )

±1 ⊗ (ψ+0 )
±1, �((ψ−b1+b2

)±1) = (ψ−b1
)±1 ⊗ (ψ−b2

)±1,

�(h1) = h1⊗1+1⊗h1−(v2−v−2)e0⊗f1, �(h−1) = h−1⊗1+1⊗h−1+(v2−v−2)e−1⊗f0.

These homomorphisms generalize the Drinfeld-Jimbo coproduct, since we
recover the formulas of Lemma 10.4 for b1 = b2 = 0. The proof of Theorem 10.5
is presented in Appendix D and is crucially based on Theorem 5.5 which provides a
presentation of the shifted quantum affine algebras via a finite number of generators
and relations.

Remark 10.6 The similarity between the formulas for �b1,b2 of The-
orem 10.5 and Drinfeld-Jimbo coproduct � of Lemma 10.4 can be
explained as follows. Let U−v (resp. U

sc,−
0,b1,b2

) be the subalgebra of

Uv(Lsl2) (resp. Usc
0,b1+b2

) generated by {e−1, f0, (ψ
−
0 )
±1}, or equivalently,

by {e−r−1, f−r , (ψ−0 )±1, ψ−−r−1}r∈N (resp. by {eb2−1, fb1 , (ψ
−
b1+b2

)±1}, or

equivalently, by {eb2−r−1, fb1−r , (ψ
−
b1+b2

)±1, ψ−b1+b2−r−1}r∈N). Analogously, let

U+v (resp. Usc,+
0,b1,b2

) be the subalgebra of Uv(Lsl2) (resp. Usc
0,b1+b2

) generated by

{e0, f1, (ψ
+
0 )
±1} in both cases, or equivalently, by {er , fr+1, (ψ

+
0 )
±1, ψ+r+1}r∈N.

Then, there are unique C(v)-algebra homomorphisms j±b1,b2
: U±v → U

sc,±
0,b1,b2

, such
that

j+b1,b2
: e0 �→ e0, f1 �→ f1, (ψ

+
0 )
±1 �→ (ψ+0 )

±1,

j−b1,b2
: e−1 �→ eb2−1, f0 �→ fb1 , (ψ

−
0 )
±1 �→ (ψ−b1+b2

)±1.



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 191

Moreover, the following diagram is commutative:

Remark 10.7 The aforementioned homomorphism�b1,b2 can be naturally extended
to the homomorphism �ad

b1,b2
: Uad

0,b1+b2
→ Uad

0,b1
⊗ Uad

0,b2
by setting �ad

b1,b2
(φ±) =

φ± ⊗ φ±.

10.4 Homomorphisms �b1,b2 for Arbitrary b1, b2 ∈ Z, g = sl2

In this subsection, we generalize the construction of �b1,b2 of Theorem 10.5
(b1, b2 ∈ Z≤0) to the general case b1, b2 ∈ Z. We follow the corresponding
construction for the shifted Yangians of [24, Theorem 4.12].

The key ingredient of our approach are the shift homomorphisms ιn,m1,m2 (the
trigonometric analogues of the shift homomorphisms of [24]).

Proposition 10.8 For any n ∈ Z and m1,m2 ∈ Z≤0, there is a unique C(v)-
algebra homomorphism ιn,m1,m2 : Usc

0,n → Usc
0,n+m1+m2

, which maps the currents
as follows:

e(z) �→ (1−z−1)−m1e(z), f (z) �→ (1−z−1)−m2f (z), ψ±(z) �→ (1−z−1)−m1−m2ψ±(z).

Proof The above assignment is obviously compatible with defining relations (U1–
U8). Moreover, we have ιn,m1,m2 : ψ+0 �→ ψ+0 , ψ−n �→ (−1)m1+m2ψ−n+m1+m2

. ��
These homomorphisms satisfy two important properties:

Lemma 10.9

(a) We have ιn+m1+m2,m
′
1,m

′
2
◦ ιn,m1,m2 = ιn,m1+m′1,m2+m′2 for any n ∈ Z and

m1,m2,m
′
1,m

′
2 ∈ Z≤0.

(b) The homomorphism ιn,m1,m2 is injective for any n ∈ Z and m1,m2 ∈ Z≤0.

Part (a) is obvious, while part (b) is proved in Appendix E and follows from the
PBW property for Usc

0,n (cf. Theorem 10.19). The following is the key result of this
subsection.

Theorem 10.10 For any b1, b2 ∈ Z and b := b1 + b2, there is a unique C(v)-
algebra homomorphism

�b1,b2 : Usc
0,b −→ Usc

0,b1
⊗ Usc

0,b2
,
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such that for any m1,m2 ∈ Z≤0 the following diagram is commutative:

The proof of this theorem is presented in Appendix F and is similar to the proof
of [24, Theorem 4.12].

Corollary 10.11 For any b1, b2 ∈ Z, we have

�b1,b2(h1) = h1 ⊗ 1+ 1⊗ h1 − (v2 − v−2)e0 ⊗ f1,

�b1,b2(h−1) = h−1 ⊗ 1+ 1⊗ h−1 + (v2 − v−2)e−1 ⊗ f0.

Proof In the antidominant case b1, b2 ∈ Z≤0, both equalities are due to our
definition of �b1,b2 of Theorem 10.5. For general b1, b2, choose m1,m2 ∈ Z≤0
such that b1 + m1, b2 + m2 ∈ Z≤0. By the definition of ιb,m2,m1 , we have
ιb,m2,m1(h±1) = h±1 ± m1+m2

v−v−1 . Meanwhile, we also have

ιb1,0,m1 ⊗ ιb2,m2,0(h±1 ⊗ 1+ 1⊗ h±1) = h±1 ⊗ 1+ 1⊗ h±1 ± m1 +m2

v − v−1
,

while ιb1,0,m1(er ) = er , ιb2,m2,0(fs) = fs for any r, s ∈ Z. The result follows
by combining the formula for �b1+m1,b2+m2(h±1) with the commutativity of the
diagram of Theorem 10.10 (we also use injectivity of the vertical arrows, due
to Lemma 10.9(b)). ��

The following result is analogous to [24, Proposition 4.14] and we leave its proof
to the interested reader.

Lemma 10.12 For b = b1 + b2 + b3 with b1, b3 ∈ Z, b2 ∈ Z≤0, the following
diagram is commutative:
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10.5 Drinfeld-Jimbo Coproduct on Uv(Lsln) via Drinfeld
Generators

According to Theorem 5.5, the quantum loop algebra Uv(Lsln) is generated by
the elements {ei,0, fi,0, ei,−1, fi,1, ψ

±
i,0, hi,±1}n−1

i=1 . The key result of this subsection
provides explicit formulas for the action of the Drinfeld-Jimbo coproduct� on these
generators of Uv(Lsln). Since ei,0 = Ei, fi,0 = Fi, ψ

±
i,0 = K±1

i (for i ∈ I =
{1, 2, · · · , n− 1}), we obviously have

�(ei,0) = 1⊗ei,0+ei,0⊗ψ+i,0, �(fi,0) = fi,0⊗1+ψ−i,0⊗fi,0, �(ψ±i,0) = ψ±i,0⊗ψ±i,0.

It remains to compute the coproduct of the remaining generators above.

Theorem 10.13 Let � be the Drinfeld-Jimbo coproduct on Uv(Lsln). Then, we
have

�(hi,1) =
hi,1 ⊗ 1+ 1⊗ hi,1 − (v2 − v−2)E

(0)
i,i+1 ⊗ F

(1)
i+1,i + (v − v−1)

∑
l>i+1

E
(0)
i+1,l ⊗ F

(1)
l,i+1+

(v − v−1)
∑
k<i

vk+1−i Ẽ(0)ki ⊗ F
(1)
ik + v−2(v − v−1)

∑
l>i+1

[E(0)i,i+1, E
(0)
i+1,l]v3 ⊗ F

(1)
li −

(v − v−1)
∑
k<i

vk−i−1[E(0)i,i+1, Ẽ
(0)
ki ]v3 ⊗ F

(1)
i+1,k+

(v − v−1)2
k<i∑
l>i+1

vk−i
(
E
(0)
il Ẽ

(0)
ki − E

(0)
i+1,l Ẽ

(0)
k,i+1

)
⊗ F

(1)
lk ,

(10.2)
�(hi,−1) =
hi,−1 ⊗ 1+ 1⊗ hi,−1 + (v2 − v−2)E

(−1)
i,i+1 ⊗ F

(0)
i+1,i − (v − v−1)

∑
l>i+1

E
(−1)
i+1,l ⊗ F

(0)
l,i+1−

(v − v−1)
∑
k<i

vi−k−1E
(−1)
ki ⊗ F̃

(0)
ik − v2(v − v−1)

∑
l>i+1

E
(−1)
il ⊗ [F (0)

l,i+1, F
(0)
i+1,i ]v−3+

(v − v−1)
∑
k<i

vi+1−kE(−1)
k,i+1 ⊗ [F̃ (0)

ik , F
(0)
i+1,i]v−3−

(v − v−1)2
k<i∑
l>i+1

vi−kE(−1)
kl ⊗

(
F̃
(0)
i+1,kF

(0)
l,i+1 − F̃

(0)
ik F

(0)
li

)
,

(10.3)
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�(ei,−1) = 1⊗ ei,−1 + ei,−1 ⊗ ψ−i,0 − (v − v−1)
∑
l>i+1

E
(−1)
il ⊗ F

(0)
l,i+1ψ

−
i,0+

(v − v−1)
∑
k<i

vi−k−1E
(−1)
k,i+1 ⊗ F̃

(0)
ik ψ

−
i,0 − (v − v−1)2

k<i∑
l>i+1

vi−k−1E
(−1)
kl ⊗ F̃

(0)
ik F

(0)
l,i+1ψ

−
i,0,

(10.4)

�(fi,1) = fi,1 ⊗ 1+ ψ+
i,0 ⊗ fi,1 + v−1(v − v−1)

∑
l>i+1

E
(0)
i+1,lψ

+
i,0 ⊗ F

(1)
li
−

(v − v−1)
∑
k<i

vk−i Ẽ(0)
ki
ψ+
i,0 ⊗ F

(1)
i+1,k − (v − v−1)2

k<i∑
l>i+1

vk−i−1E
(0)
i+1,l Ẽ

(0)
ki
ψ+
i,0 ⊗ F

(1)
lk
,

(10.5)

where for 1 ≤ j < i ≤ n we set

E
(0)
j i := [ei−1,0, · · · , [ej+1,0, ej,0]v−1 · · · ]v−1 = [· · · [ei−1,0, ei−2,0]v−1 , · · · , ej,0]v−1 ,

F
(0)
ij := [fj,0, · · · , [fi−2,0, fi−1,0]v · · · ]v = [· · · [fj,0, fj+1,0]v, · · · , fi−1,0]v,
E
(−1)
j i := [ei−1,0, · · · , [ej+1,0, ej,−1]v−1 · · · ]v−1

= [[· · · [ei−1,0, ei−2,0]v−1 , · · · , ej+1,0]v−1 , ej,−1]v−1 ,

F
(1)
ij := [fj,1, [fj+1,0, · · · , [fi−2,0, fi−1,0]v · · · ]v]v = [· · · [fj,1, fj+1,0]v, · · · , fi−1,0]v,
Ẽ
(0)
j i := [ei−1,0, · · · , [ej+1,0, ej,0]v · · · ]v = [· · · [ei−1,0, ei−2,0]v, · · · , ej,0]v,

F̃
(0)
ij := [fj,0, · · · , [fi−2,0, fi−1,0]v−1 · · · ]v−1 = [· · · [fj,0, fj+1,0]v−1 , · · · , fi−1,0]v−1 .

(10.6)

The proof of this result is based on the RTT realization of Uv(Lsln) and is
presented in Appendix G.

Remark 10.14 The right equalities in each of the lines of (10.6) are not obvious and
are established during our proof of Theorem 10.13. They play an important role in
the proof of Theorem 10.16 below.

Let U>
v (Lg) and U≥v (Lg) (resp. U<

v (Lg) and U≤v (Lg)) be the C(v)-subalgebras
of Uv(Lg) generated by {ei,r }r∈Zi∈I and {ei,r , ψ±i,±s}r∈Z,s∈Ni∈I (resp. {fi,r}r∈Zi∈I and

{fi,r , ψ±i,±s}r∈Z,s∈Ni∈I ).

Corollary 10.15 For any 1 ≤ i < n and r ∈ Z, we have

�(hi,±1)− hi,±1 ⊗ 1− 1⊗ hi,±1 ∈ U>
v (Lsln)⊗ U<

v (Lsln),

�(ei,r )− 1⊗ ei,r ∈ U>
v (Lsln)⊗ U≤v (Lsln),

�(fi,r )− fi,r ⊗ 1 ∈ U≥v (Lsln)⊗ U<
v (Lsln).
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Proof The claim is clear for �(hi,±1),�(ei,−1),�(fi,1), due to (10.2–10.5).
Applying iteratively [�(hi,±1),�(ei,r )] = [2]v · �(ei,r±1), [�(hi,±1),�(fi,r )] =
−[2]v ·�(fi,r±1), we deduce the claim for �(ei,r ) and �(fi,r ). ��

10.6 Homomorphisms �μ1,μ2 for μ1, μ2 ∈ �−, g = sln

In this subsection, we construct homomorphisms �μ1,μ2 : Usc
0,μ1+μ2

→ Usc
0,μ1

⊗
Usc

0,μ2
for μ1, μ2 ∈ �−, which coincide with the Drinfeld-Jimbo coproduct on

Uv(Lsln) for μ1 = μ2 = 0. Set b1,i := α∨i (μ1) and b2,i := α∨i (μ2) (so that
b1,i , b2,i ∈ Z≤0).

Theorem 10.16 For any μ1, μ2 ∈ �−, there is a unique C(v)-algebra homomor-
phism

�μ1,μ2 : Usc
0,μ1+μ2

−→ Usc
0,μ1

⊗ Usc
0,μ2

(we will denote � = �μ1,μ2 when the algebras involved are clear), such that

�(ei,r ) = 1⊗ ei,r , �(fi,s) = fi,s ⊗ 1 for b2,i ≤ r < 0, b1,i < s ≤ 0,

�(ei,0) = 1⊗ ei,0 + ei,0 ⊗ ψ+i,0, �(fi,b1,i ) = fi,b1,i ⊗ 1+ ψ−i,b1,i
⊗ fi,0,

�(ei,b2,i−1) = 1⊗ ei,b2,i−1 + ei,−1 ⊗ ψ−i,b2,i
− (v − v−1)

∑
l>i+1

E
(−1)
il ⊗ F

(0)
l,i+1ψ

−
i,b2,i

+

(v − v−1)
∑
k<i

vi−k−1E
(−1)
k,i+1 ⊗ F̃

(0)
ik ψ

−
i,b2,i

− (v − v−1)2
k<i∑
l>i+1

vi−k−1E
(−1)
kl ⊗ F̃

(0)
ik F

(0)
l,i+1ψ

−
i,b2,i

,

�(fi,1) = fi,1 ⊗ 1+ ψ+i,0 ⊗ fi,1 + v−1(v − v−1)
∑
l>i+1

E
(0)
i+1,lψ

+
i,0 ⊗ F

(1)
li −

(v − v−1)
∑
k<i

vk−i Ẽ(0)ki ψ
+
i,0 ⊗ F

(1)
i+1,k − (v − v−1)2

k<i∑
l>i+1

vk−i−1E
(0)
i+1,l Ẽ

(0)
ki ψ

+
i,0 ⊗ F

(1)
lk ,

�((ψ+i,0)
±1) = (ψ+i,0)

±1⊗ (ψ+i,0)±1, �((ψ−i,b1,i+b2,i
)±1) = (ψ−i,b1,i

)±1⊗ (ψ−i,b2,i
)±1,
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�(hi,1) = hi,1 ⊗ 1+ 1⊗ hi,1 − (v2 − v−2)E
(0)
i,i+1 ⊗ F

(1)
i+1,i + (v − v−1)

∑
l>i+1

E
(0)
i+1,l ⊗ F

(1)
l,i+1+

(v − v−1)
∑
k<i

vk+1−i Ẽ(0)ki ⊗ F
(1)
ik + v−2(v − v−1)

∑
l>i+1

[E(0)i,i+1, E
(0)
i+1,l]v3 ⊗ F

(1)
li −

(v − v−1)
∑
k<i

vk−i−1[E(0)i,i+1, Ẽ
(0)
ki ]v3 ⊗ F

(1)
i+1,k+

(v − v−1)2
k<i∑
l>i+1

vk−i
(
E
(0)
il Ẽ

(0)
ki − E

(0)
i+1,l Ẽ

(0)
k,i+1

)
⊗ F

(1)
lk ,

�(hi,−1) = hi,−1 ⊗ 1+ 1⊗ hi,−1 + (v2 − v−2)E
(−1)
i,i+1 ⊗ F

(0)
i+1,i−

(v − v−1)
∑
l>i+1

E
(−1)
i+1,l ⊗ F

(0)
l,i+1−

(v − v−1)
∑
k<i

vi−k−1E
(−1)
ki ⊗ F̃

(0)
ik − v2(v − v−1)

∑
l>i+1

E
(−1)
il ⊗ [F (0)

l,i+1, F
(0)
i+1,i]v−3+

(v − v−1)
∑
k<i

vi+1−kE(−1)
k,i+1 ⊗ [F̃ (0)

ik , F
(0)
i+1,i]v−3−

(v − v−1)2
k<i∑
l>i+1

vi−kE(−1)
kl ⊗

(
F̃
(0)
i+1,kF

(0)
l,i+1 − F̃

(0)
ik F

(0)
li

)
,

where E(0)j i , Ẽ
(0)
j i , E

(−1)
j i , F

(0)
ij , F̃

(0)
ij , F

(1)
ij are defined as in (10.6).

The proof of this result is similar to our proof of Theorem 10.5, but is much more
tedious; we sketch it in Appendix H.

Remark 10.17 The similarity between the formulas for �μ1,μ2 of Theorem 10.16
and � of Theorem 10.13 can be explained via an analogue of Remark 10.6. To be
more precise, let U±v be the positive/negative Borel subalgebras in the Drinfeld-
Jimbo presentation of Uv(Lsln), while their analogues U

sc,±
0,μ1,μ2

(subalgebras of
Usc

0,μ1+μ2
) will be introduced in Appendix H. There are natural C(v)-algebra

homomorphisms j±μ1,μ2
: U±v → U

sc,±
0,μ1,μ2

, see Proposition H.1. According to
Proposition H.16, the following diagram is commutative:
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10.7 Homomorphisms �μ1,μ2 for Arbitrary μ1, μ2 ∈ �,
g = sln

Let us first generalize the shift homomorphisms of Proposition 10.8.

Lemma 10.18 For any μ ∈ � and ν1, ν2 ∈ �−, there is a unique C(v)-algebra
homomorphism ιμ,ν1,ν2 : Usc

0,μ → Usc
0,μ+ν1+ν2

, which maps the currents as follows:

ιμ,ν1,ν2 : ei(z) �→ (1− z−1)−α∨i (ν1)ei(z), fi(z) �→ (1− z−1)−α∨i (ν2)fi(z),

ψ±i (z) �→ (1− z−1)−α∨i (ν1+ν2)ψ±i (z).

Proof The proof is analogous to that of Proposition 10.8. ��
The proof of the following technical result is presented in Appendix I and is based

on the shuffle realization of the quantum loop algebra Uv(Lsln), see [53] (cf. [63]).

Theorem 10.19 The homomorphism ιμ,ν1,ν2 is injective for any μ∈� and
ν1, ν2 ∈ �−.

Combining this theorem with Corollary 10.15 and our arguments from the proof
of Theorem 10.10, we get the key result of this section.

Theorem 10.20 For any μ1, μ2 ∈ � and μ := μ1 + μ2, there is a unique C(v)-
algebra homomorphism

�μ1,μ2 : Usc
0,μ −→ Usc

0,μ1
⊗ Usc

0,μ2
,

such that for any ν1, ν2 ∈ �− the following diagram is commutative:

The following is proved analogously to Corollary 10.11:

Proposition 10.21 For arbitrary μ1, μ2 ∈ �, the images �μ1,μ2(hi,±1) are given
by formulas (10.2) and (10.3).
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10.8 Open Problems

Following [24], we expect that homomorphisms �μ1,μ2 : Usc
0,μ1+μ2

→ Usc
0,μ1

⊗
Usc

0,μ2
(specializing to the Drinfeld-Jimbo coproduct for μ1 = μ2 = 0) exist for

any simply-laced Lie algebra g and its two coweights μ1, μ2 ∈ �. Moreover,
their construction should proceed in the same way as for the aforementioned case
g = sln. To be more precise, for antidominant μ1, μ2 ∈ �−, we expect that the
homomorphism �μ1,μ2 is characterized by the following two properties:

(a) �μ1,μ2(ei,r ) = 1⊗ei,r , �μ1,μ2(fi,s) = fi,s⊗1 for α∨i (μ2) ≤ r < 0, α∨i (μ1) <

s ≤ 0;
(b) an analogue of the commutative diagram of Remark 10.17 holds.

For general μ1, μ2, we expect that the construction of �μ1,μ2 should be eas-
ily deduced from the antidominant case with the help of shift homomorphisms
ιμ,ν1,ν2 (μ ∈ �, ν1, ν2 ∈ �−) as in Theorems 10.10 and 10.20.

The outlined construction of�μ1,μ2 for a general g lacks explicit formulas for the
Drinfeld-Jimbo coproduct of {ei,0, ei,−1, fi,0, fi,1, ψ

±
i,0, hi,±1}i∈I–the generators of

Uv(Lg), similar to those of Lemma 10.4 and Theorem 10.13.

11 Ubiquity of RTT Relations

11.1 Rational Lax Matrix

Before we proceed to the trigonometric setting, let us recall the classical relation
between rational Lax matrices and type A quantum open Toda systems, which goes
back to [28].

Let Rrat(z) ∈ End(C2 ⊗ C2) be the standard rational R-matrix:

Rrat(z) = Id+ h̄

z
P, where P ∈ End(C2 ⊗ C2) is the permutation map.

Let Âh̄
n be the associative C[h̄]-algebra generated by {u±1

i , wi}ni=1 with the defining
relations [ui ,uj ] = [wi,wj ] = 0,u±1

i u∓1
i = 1, [ui , wj ] = δij h̄ui . Define the

(local) rational Lax matrix

L
h̄
i (z) =

(
z− wi u−1

i

−ui 0

)
∈ Mat(2, Âh̄

n[z]) (11.1)

and introduce the complete monodromy matrix T h̄n (z) := Lh̄n(z) · · ·Lh̄1(z). Then, the
monodromy matrix T h̄n (z) satisfies the rational RTT-relation:

Rrat(z− w)(T h̄n (z)⊗ 1)(1⊗ T h̄n (w)) = (1⊗ T h̄n (w))(T
h̄
n (z)⊗ 1)Rrat(z− w).
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Due to this relation, the coefficients (in z) of the matrix element T h̄n (z)11 generate
a commutative subalgebra of Âh̄

n, known as the quantum open Toda system of gln.
The coefficient of zn−2 equals

Hrat
2 = 1

2

(
n∑
i=1

wi

)2

− 1

2

n∑
i=1

w2
i −

n−1∑
i=1

uiu
−1
i+1. (11.2)

We recover the standard quantum open Toda hamiltonian of sln once we set w1 +
. . .+ wn = 0.

11.2 Trigonometric/Relativistic Lax Matrices

Let Rtrig(z) ∈ End(C2 ⊗ C2) be the standard trigonometric R-matrix (see [17,
(3.7)]):

Rtrig(z) =

⎛⎜⎜⎜⎝
1 0 0 0

0 z−1
vz−v−1

z(v−v−1)

vz−v−1 0

0 v−v−1

vz−v−1
z−1

vz−v−1 0

0 0 0 1

⎞⎟⎟⎟⎠ . (11.3)

Let Âv
n be the associative C(v)-algebra generated by {w̃±1

i , D±1
i }ni=1 with the

defining relations [w̃i , w̃j ] = [Di,Dj ] = 0, w̃±1
i w̃∓1

i = D±1
i D∓1

i = 1, Diw̃j =
vδij w̃jDi . If we set w±1

i = w̃±2
i , we see that Âv

n is a particular example of the

algebras Âv
frac of Sect. 7. Define the (local) relativistic Lax matrix

L
v,0
i (z) =

(
w̃−1
i z1/2 − w̃iz

−1/2 D−1
i z1/2

−Diz
−1/2 0

)
∈ Mat(2, z−1/2Âv

n[z]) (11.4)

and introduce the complete monodromy matrix T v,0
n (z) := L

v,0
n (z) · · ·Lv,0

1 (z).

Lemma 11.1 The monodromy matrix T
v,0
n (z) satisfies the trigonometric RTT-

relation:

Rtrig(z/w)(T
v,0
n (z)⊗ 1)(1⊗ T v,0

n (w)) = (1⊗ T v,0
n (w))(T v,0

n (z)⊗ 1)Rtrig(z/w).

Proof It suffices to check the above relation for n = 1. The proof in the latter case
is straightforward. ��
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Corollary 11.2 The coefficients (in z) of the matrix element zn/2T v,0
n (z)11 generate

a commutative subalgebra of Âv
n. The coefficient of z equals

H0
2 = (−1)n−1w̃1 · · · w̃n ·

(
n∑
i=1

w̃−2
i +

n−1∑
i=1

w̃−1
i w̃−1

i+1DiD
−1
i+1

)
. (11.5)

This hamiltonian is equivalent to the quadratic hamiltonian of the q-difference
quantum Toda lattice of [19, (5.7)] (see also [56]) once we set w̃1 · · · w̃n = 1.

Remark 11.3 The notion of a relativistic Lax matrix goes back to [43]. In particular,
our choice of Lv,0

i (z) is a slight variation of their construction, which is adapted to
a different choice of the trigonometric R-matrix.

Now let us consider two (local) trigonometric Lax matrices

L
v,−1
i (z) =

(
w̃−1
i − w̃iz

−1 w̃iD
−1
i

−w̃iDiz
−1 w̃i

)
∈ Mat(2, z−1Âv

n[z]), (11.6)

L
v,1
i (z) =

(
w̃−1
i z− w̃i w̃−1

i D−1
i z

−w̃−1
i Di −w̃−1

i

)
∈ Mat(2, Âv

n[z]). (11.7)

Lemma 11.4 The Lax matrices Lv,±1
i (z) satisfy the trigonometric RTT-relation:

Rtrig(z/w)(L
v,±1
i (z)⊗1)(1⊗Lv,±1

i (w)) = (1⊗Lv,±1
i (w))(L

v,±1
i (z)⊗1)Rtrig(z/w).

Proof The proof is straightforward. ��

11.3 Mixed Toda Hamiltonians

Now we construct 3n Hamiltonians generalizing H0
2 in spirit of [21, (90)], cf.

also [11, (1.1) and Section 2]. For any �k = (kn, . . . , k1) ∈ {−1, 0, 1}n, define the
mixed complete monodromy matrix

T v
�k (z) := Lv,kn

n (z) · · ·Lv,k1
1 (z).

In particular, T v
�0 (z) = T

v,0
n (z). Since all three matrices Lv,−1

i (z), L
v,0
i (z), L

v,1
i (z)

satisfy the RTT-relation with the same R-matrix Rtrig(z), the same is true for T v
�k (z).

Hence, the coefficients (in z) of the matrix element T v
�k (z)11 generate a commutative

subalgebra of Âv
n. We have

T v
�k (z)11 = H�k1z

s + H�k2z
s+1 + higher powers of z,
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where s = ∑n
i=1

ki−1
2 . Here H�k1 = (−1)nw̃1 · · · w̃n, while the hamiltonian H�k2

equals

H�k2 = (−1)n−1w̃1 · · · w̃n·
⎛⎝ n∑
i=1

w̃−2
i +

n−1∑
i=1

σi,i+1DiD
−1
i+1 +

ki+1=...=kj−1=1∑
1≤i<j−1<n

σi,jDiD
−1
j

⎞⎠ ,
(11.8)

where σi,j := w̃−ki−1
i w̃−ki+1−1

i+1 · · · w̃−kj−1
j .

Remark 11.5 At the classical level, the birational Bäcklund-Darboux transforma-
tions interchanging various hamiltonians H�k2 are given in [34, Theorem 6.1].

Lemma 11.6 For any �k, set �k′ = (0, kn−1, . . . , k2, 0). Then, H�k2 is equivalent

to H�k′2 .

Proof It is straightforward to see that H�k′2 = Ad(F (w̃1, . . . , w̃n))H
�k
2,

where F(w̃1, . . . , w̃n) = exp(k1f−(log(w̃1)) + knf+(log(w̃n))) with

f±(t) = ± t2

2 log(v) + t
2 . ��

Remark 11.7 It follows that among the aforementioned 3n mixed Toda hamiltonians

H�k2, parameterized by �k ∈ {−1, 0, 1}n, there are no more than 3n−2 different up to
equivalence. In [35] these hamiltonians are identified with the modified versions
of the q-Toda hamiltonian in [19, 56], which now depend on a choice of two
orientations of the Dynkin diagram of type An−1 (equivalently, a choice of a pair of
Coxeter elements). There are 4n−2 such choices, but some of them are equivalent
leading to exactly 3n−2 inequivalent hamiltonians, which turn out to be equivalent

to the aforementioned H�k2. All the q-Toda hamiltonians of [19, 56] correspond to
the pairs of coinciding orientations, i.e. to �k = (0, . . . , 0), and they share the same
eigenfunction J [22, Section 3], while our mixed Toda hamiltonians do not admit
the common eigenfunctions. We are grateful to P. Etingof for his suggestion to study
the construction of [56] for pairs of different orientations.

11.4 Shifted RTT Algebras of sl2

Fix n ∈ N. Following [17] (cf. also Remark G.1), we introduce the (trigonometric)
shifted RTT algebras of sl2, denoted by Urtt

0,−2n. These are associative C(v)-algebras
generated by

{t+11[r], t+12[r], t+21[r + 1], t+22[r], t−11[−m], t−12[−m− 1], t−21[−m], t−22[−m− 1+ δn,0]}m≥−nr≥0 ∪
{(t+11[0])−1, (t−11[n])−1}
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subject to the following defining relations:

(t+11[0])±1(t+11[0])∓1 = 1, (t−11[n])±1(t−11[n])∓1 = 1, (R1)

Rtrig(z/w)(T
ε(z)⊗1)(1⊗T ε′(w)) = (1⊗T ε′(w))(T ε(z)⊗1)Rtrig(z/w), (R2)

qdet T ±(z) = 1 (R3)

for all ε, ε′ ∈ {±}, where the two-by-two matrices T ±(z) are given by

T ±(z) =
(
T ±11(z) T

±
12(z)

T ±21(z) T
±
22(z)

)
with T ±ij (z) :=

∑
r

t±ij [r]z−r ,

and the quantum determinant qdet is defined in a standard way as8

qdet T ±(z) := T ±11(z)T
±
22(v

−2z)− v−1T ±12(z)T
±
21(v

−2z).

Note that T ±(z) admits the following unique Gauss decomposition:

T ±(z) =
(

1 0
f̃±(z) 1

)(
g̃±1 (z) 0

0 g̃±2 (z)

)(
1 ẽ±(z)
0 1

)
,

where coefficients of the half-currents ẽ±(z), f̃±(z), g̃±1 (z), g̃
±
2 (z) are elements of

Urtt
0,−2n.

To establish the relation between Urtt
0,−2n and Uad

0,−2n (adjoint version of the
shifted quantum affine algebra of sl2), recall Drinfeld half-currents e±(z), f±(z)
of (6.5).

Theorem 11.8

(a) The currents g̃±1 (z), g̃
±
2 (z) pairwise commute and satisfy

g̃±2 (z)g̃
±
1 (v

−2z) = 1.

(b) There exists a unique C(v)-algebra homomorphismϒ0,−2n : Uad
0,−2n → Urtt

0,−2n,
defined by

e±(z) �→ ẽ±(z)/(v − v−1), f±(z) �→ f̃±(z)/(v − v−1),

ψ±(z) �→ g̃±2 (z)g̃
±
1 (z)

−1, (φ+)±1 �→ (t+11[0])∓1, (φ−)±1 �→ v∓n(t−11[n])∓1.

8It is instructive to point out the difference with [51], where the author uses a different
trigonometric R-matrix given by RM

trig(z/w) = (Rtrig(z/w)
t )−1 as well as TM,±(z) = T ±(z)t . For

this reason, the quantum determinant qdetM of [51, Exercise 1.6] is consistent with our definition of
qdet, that is, qdetM TM,±(z) := T

M,±
11 (z)T

M,±
22 (v−2z)− v−1T

M,±
21 (z)T

M,±
12 (v−2z) = qdet T ±(z).
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(c) For any b1, b2 ∈ Z≤0, there exists a unique C(v)-algebra homomorphism

�rtt
2b1,2b2

: Urtt
0,2b1+2b2

−→ Urtt
0,2b1

⊗ Urtt
0,2b2

,

defined by T ±(z) �→ T ±(z)⊗ T ±(z).

Remark 11.9 The n = 0 case of this theorem was proved in [17], cf. Remark G.1.

Proof The verification of part (b) is analogous to the one for n = 0, dealt with
in [17]. Once (b) is established, it is easy to see that qdet T ±(z) = g̃±2 (z)g̃

±
1 (v

−2z),
hence (a). It is clear that �rtt

2b1,2b2
is well-defined on the generators. The compati-

bility of �rtt
2b1,2b2

with the defining relations (R1–R3) is checked analogously to the
case n = 0. ��

Recall the generating series A±(z), B±(z), C±(z),D±(z) with coefficients in
Uad

0,−2n, introduced in Sect. 6.

Corollary 11.10 The homomorphism ϒ0,−2n maps these generating series as
follows:

A+(z) �→ T +11(z), B
+(z) �→ T +12(z), C

+(z) �→ T +21(z),D
+(z) �→ T +22(z),

A−(z) �→ (vz)nT −11(z), B
−(z) �→ (vz)nT −12(z), C

−(z) �→ (vz)nT −21(z),D
−(z) �→ (vz)nT −22(z).

Proof Due to Theorem 11.8(a, b), we have

ϒ0,−2n(ψ
±(z)) = 1/g̃±1 (z)g̃

±
1 (v

−2z), ϒ0,−2n((φ
+)−1) = t+11[0], ϒ0,−2n((φ

−)−1) = vnt−11[n].

Combining this with ψ+(z) = 1
A+(z)A+(v−2z)

, ψ−(z) = z2n

A−(z)A−(v−2z)
, and A±0 =

(φ±)−1, we get ϒ0,−2n(A
+(z)) = g̃+1 (z) = T +11(z), ϒ0,−2n(A

−(z)) =
(vz)ng̃−1 (z) = (vz)nT −11(z). The computation of the images of the
remaining generating series is straightforward, e.g. ϒ0,−2n(B

−(z)) =
(v − v−1)ϒ0,−2n(A

−(z))ϒ0,−2n(e
−(z)) = (vz)ng̃−1 (z)ẽ−(z) = (vz)nT −12(z). ��

The following is the key result of this subsection.

Theorem 11.11 For n ∈ N,ϒ0,−2n : Uad
0,−2n → Urtt

0,−2n is an isomorphism of C(v)-
algebras.

Proof Due to Theorem 11.8 and Corollary 11.10, it suffices to prove that there exists
a C(v)-algebra homomorphism Urtt

0,−2n → Uad
0,−2n, such that

(t+11[0])−1 �→ φ+, (t−11[n])−1 �→ vnφ−,

T +11(z) �→ A+(z), T +12(z) �→ B+(z), T +21(z) �→ C+(z), T +22(z) �→ D+(z),

T −11(z) �→ (vz)−nA−(z), T −12(z) �→ (vz)−nB−(z),

T −21(z) �→ (vz)−nC−(z), T −22(z) �→ (vz)−nD−(z).
(11.9)
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This amounts to verifying that the assignment (11.9) preserves defining rela-
tions (R1–R3). Relation (R1) is preserved, due to A±0 φ± = φ±A±0 = 1, while (R3)
is preserved, due to relation (6.16). Finally, (R2) is an equality in End(C2 ⊗ C2)⊗
Uad

0,−2n and thus can be viewed as a collection of 16 relations in Uad
0,−2n for each

choice of ε, ε′ ∈ {±}. It is straightforward to see that 6 of these relations follow from
the rest, while the remaining 10 relations exactly match the 10 relations of (6.7, 6.9–
6.15) under the assignment (11.9). ��
Remark 11.12 The results of this subsection admit natural generalizations to the
case of arbitrary b1, b2 ∈ Z≤0 such that b1 + b2 is even. In other words, one can
define an analogous shifted RTT algebra of sl2, denoted Urtt

b1,b2
, and construct a

C(v)-algebra isomorphism ϒb1,b2 : Uad
b1,b2

∼−→Urtt
b1,b2

. This observation is used in
Remark 11.14 below, where we provide an alternative interpretation of the Lax
matrices Lv,−1

1 (z), L
v,0
1 (z), L

v,1
1 (z) from Sect. 11.2.

11.5 Relation Between Two Different Appearances of RTT

Recall the local trigonometric Lax matrix L
v,−1
1 (z) of (11.6). Combining the

equality qdet Lv,−1
1 (z) = 1 with Lemma 11.4, we see that Lv,−1

1 (z) gives rise to

an algebra homomorphism �rtt
0,−2 : Urtt

0,−2 → Âv
1 defined by T ±(z) �→ L

v,−1
1 (z).

Recall the homomorphism �̃0
−2 : Uad

0,−2 → Âv
1 of Theorem 7.1 (where w1/2 = w̃).

The following is straightforward.

Lemma 11.13 The composition �rtt
0,−2 ◦ ϒ0,−2 coincides with �̃0

−2.

Remark 11.14 Let us provide a similar interpretation of the other two Lax matrices
L

v,0
1 (z) and Lv,1

1 (z). Recall that the algebras Uad
0,−2 and Uad

b,−2−b are isomorphic for

any b ∈ Z. In particular, one can pull back the homomorphism �̃0
−2 to obtain a

homomorphism �̃b,−2−b : Uad
b,−2−b → Âv

1, explicitly given by

e(z) �→ w̃2+b

v − v−1 δ

(
w̃2

z

)
D−1, f (z) �→ w̃b

1− v2 δ

(
v2w̃2

z

)
D,

ψ±(z) �→
(

v−bw̃2zb

(1−w̃2/z)(1−v2w̃2/z)

)±
, (φ+)±1 �→ v∓b/2w̃±1, (φ−)±1 �→ −v∓(b/2+1)w̃∓1.

Due to Remark 11.12, the algebra Uad
b,−2−b admits an RTT realization, that is

there is an isomorphism ϒb,−2−b : Uad
b,−2−b

∼−→Urtt
b,−2−b, only for b = 0,−1,−2.

Analogously to Lemma 11.13, recasting the homomorphisms �̃b,−2−b as the
homomorphisms Urtt

b,−2−b → Âv
1, we recover the Lax matrix Lv,0

1 (z) (for b = −1)

and Lv,1
1 (z) (for b = −2). Moreover, this also explains why we had exactly three

Lax matrices in Sect. 11.2.
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Fix n ≥ 1 and consider the complete monodromy matrix T
v,−1
n (z) =

L
v,−1
n (z) · · ·Lv,−1

1 (z). Applying iteratively �rtt•,• of Theorem 11.8(c), we
get �rtt

n : Urtt
0,−2n → (Urtt

0,−2)
⊗n. Composing it with the homomorphism

(�rtt
0,−2)

⊗n : (Urtt
0,−2)

⊗n → (Âv
1)
⊗n � Âv

n, we obtain the homomorphism

�rtt
0,−2n : Urtt

0,−2n → Âv
n. The following is straightforward.

Lemma 11.15 We have �rtt
0,−2n(T

±(z)) = T
v,−1
n (z).

Remark 11.16 For n > 1, the composition �rtt
0,−2n ◦ϒ0,−2n does not coincide with

the homomorphism �̃0
−2n of Theorem 7.1.

Remark 11.17 The result of Lemma 11.13 admits a natural rational counterpart.
Let Y−2 be the shifted Yangian of sl2 with the shift −α. Recall the homomorphism
�0
−2 : Y−2 → Âh̄

1 of [10, Corollary B.17]. Consider a slight modification of it

�̂−2 : E(z) �→ (z−w)−1u−1, F (z) �→ −(z−w−h̄)−1u, H(z) �→ (z−w)−1(z−w−h̄)−1.

One can also define a (rational) shifted RTT algebra of sl2, denoted by Yrtt
−2. This

is an associative C[h̄]-algebra generated by {t11[r − 1], t12[r], t21[r], t22[r + 1],
(t11[−1])−1}r≥0 and with the defining relations (t11[−1])±1(t11[−1])∓1= 1,
T11(z)T22(z − h̄) − T12(z)T21(z − h̄) = 1, Rrat(z − w)(T (z) ⊗ 1)(1 ⊗ T (w)) =
(1 ⊗ T (w))(T (z) ⊗ 1)Rrat(z − w), where T (z) = (Tij (z))

2
i,j=1 with Tij (z) :=∑

r tij [r]z−r . Consider the Gauss decomposition of T (z):

T (z) =
(

1 0
f̃ (z) 1

)(
g̃1(z) 0

0 g̃2(z)

)(
1 ẽ(z)
0 1

)
.

Analogously to Theorem 11.8(b), there is a C[h̄]-algebra homomorphism
ϒ rat
−2 : Y−2 → Yrtt

−2, defined by E(z) �→ ẽ(z), F (z) �→ f̃ (z),H(z) �→
g̃2(z)g̃1(z)

−1. Composing ϒ rat
−2 with the homomorphism Yrtt

−2 → Âh̄
1 given by

T (z) �→ L
h̄
1(z), we recover �̂−2 from above.

11.6 Homomorphism �b1,b2 (b1, b2 ∈ Z≤0) via Drinfeld
Half-Currents, g = sl2

Recall the currents e±(z), f±(z), ψ±(z) of (6.5).



206 M. Finkelberg and A. Tsymbaliuk

Proposition 11.18 Let � be the Drinfeld-Jimbo coproduct on Uv(Lsl2). Then, we
have

�(e±(z)) = 1⊗ e±(z)+
∞∑
r=0

(−v)r (v − v−1)2r · e±(z)r+1 ⊗ f±(v2z)rψ±(z),

(11.10)

�(f±(z)) = f±(z)⊗ 1+
∞∑
r=0

(−v)−r (v − v−1)2r · ψ±(z)e±(v2z)r ⊗ f±(z)r+1,

(11.11)

�(ψ±(z)) =
∞∑
r=0

(−1)r [r + 1]v(v − v−1)2r · ψ±(z)e±(v2z)r ⊗ f±(v2z)rψ±(z).

(11.12)

These formulas are analogous to those for the Yangian Yh̄(sl2) of [51,
Exercise 3.2]. The proof of this result is based on the RTT realization of Uv(Lsl2)
and is presented in Appendix J.

Proposition 11.19 Let b1, b2 ∈ Z≤0 and b = b1 + b2. Then, the homomorphism
�b1,b2 : Usc

0,b → Usc
0,b1
⊗Usc

0,b2
from Theorem 10.5 also satisfies the formulas (11.10–

11.12), where by abuse of notation e±(z), f±(z), ψ±(z) denote the generating
series for each respective algebra.

Proof Our proof is based on the commutative diagram of Remark 10.6:

Since j+•,• : e+(z) �→ e+(z), f+(z) �→ f+(z), ψ+(z) �→ ψ+(z), we immedi-
ately get the validity of (11.10–11.12) for the currents e+(z), f+(z), ψ+(z) and the
homomorphism �b1,b2 .

Let us now treat the case of e−(z), f−(z), ψ−(z). Combining the commutativity
of the above diagram (in the “−” case) with equality (11.10) yields

�b1,b2,(e
−(z)) = 1⊗ e−(z)+

∞∑
r=0

(−v)r (v− v−1)2r · e−(z)r+1⊗ f−(v2z)rψ−(z),

where e−(z) := e−(z) + ∑−1
r=b2

erz
−r . Meanwhile, �b1,b2(er ) = 1 ⊗ er for

b2 ≤ r ≤ −1. Hence, �b1,b2(e
−(z)) is given by the right-hand side of (11.10).

Likewise, we get the validity of (11.11), (11.12) for the currents f−(z), ψ−(z) and
the homomorphism �b1,b2 . ��
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Since our proof of (11.10–11.12) in Appendix J is based on the RTT-type
coproduct �rtt

0,0, we immediately get

Corollary 11.20 Let b1, b2 ∈ Z≤0 and b = b1 + b2. The following diagram is
commutative:

11.7 Coproduct for Truncated Shifted Algebras, g = sl2

For b1, b2 ∈ Z≤0 and b = b1 + b2, recall the homomorphism �ad
2b1,2b2

: Uad
0,2b →

Uad
0,2b1

⊗ Uad
0,2b2

of Remark 10.7. Consider the truncated versions of the algebras

involved U0
2b,U

0
2b1
,U0

2b2
, see Definition 8.6. The goal of this subsection is to prove

the following result.

Proposition 11.21 For b1, b2 ≤ 0, the homomorphism �ad
2b1,2b2

descends to the

same named homomorphism U0
2b → U0

2b1
⊗ U0

2b2
.

Proof Define a 2-sided ideal I ⊂ Uad
0,2b1

⊗Uad
0,2b2

via I := I0
2b1
⊗Uad

0,2b2
+Uad

0,2b1
⊗

I0
2b2

. It suffices to show that �ad
2b1,2b2

(X) ∈ I for every generator X of the ideal I0
2b

of (8.5–8.6). To achieve this, recall the commutative diagram of Corollary 11.20.

Case X = A+s (s > −b) Applying the aforementioned commutative diagram to the
equality �rtt

2b1,2b2
(t+11[s]) =

∑s1+s2=s
s1,s2≥0 t+11[s1] ⊗ t+11[s2] +

∑s1+s2=s
s1,s2≥0 t+12[s1] ⊗ t+21[s2],

we get �ad
2b1,2b2

(A+s ) =
∑s1+s2=s

s1,s2≥0 A+s1 ⊗ A+s2 +
∑s1+s2=s

s1,s2≥0 B+s1 ⊗ C+s2 . For s1 + s2 =
s > −b, either s1 > −b1 or s2 > −b2. Hence, each summand in the right-hand side
belongs to I, due to Remark 8.8.

Case X = A+0 A
+
−b − (−1)b As above �ad

2b1,2b2
(A+−b) ≡ A+−b1

⊗ A+−b2
, where

the notation x ≡ y is used to denote x − y ∈ I. We also have �ad
2b1,2b2

(A+0 ) =
A+0 ⊗ A+0 . Thus �ad

2b1,2b2
(A+0 A

+
−b − (−1)b) ≡ A+0 A

+
−b1

⊗ A+0 A
+
−b2

− (−1)b =
(A+0 A

+
−b1

− (−1)b1) ⊗ A+0 A
+
−b2

+ (−1)b1 ⊗ (A+0 A
+
−b2

− (−1)b2) ≡ 0. Hence,

�ad
2b1,2b2

(A+0 A
+
−b − (−1)b) ∈ I.

Case X = A−−r − v−bA+−b−r (0 ≤ r ≤ −b) Analogously to the first

case considered above, we have �ad
2b1,2b2

(A+−b−r ) ≡ ∑r1+r2=r
0≤r1≤−b1
0≤r2≤−b2

A+−b1−r1 ⊗
A+−b2−r2 +

∑r1+r2=r
1≤r1≤−b1

0≤r2≤−b2−1

B+−b1−r1 ⊗ C+−b2−r2 , where the lower bounds on r1, r2

are due to Remark 8.8. Completely analogously, we obtain �ad
2b1,2b2

(A−−r ) ≡
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∑r1+r2=r
0≤r1≤−b1
0≤r2≤−b2

A−−r1 ⊗ A−−r2 +
∑r1+r2=r

1≤r1≤−b1
0≤r2≤−b2−1

B−−r1 ⊗ C−−r2 . Hence,

�ad
2b1,2b2

(A−−r − v−bA+−b−r ) ≡
r1+r2=r∑

0≤r1≤−b1
0≤r2≤−b2

(A−−r1 ⊗ A−−r2 − v−bA+−b1−r1 ⊗ A+−b2−r2)+

r1+r2=r∑
1≤r1≤−b1

0≤r2≤−b2−1

(B−−r1 ⊗ C−−r2 − v−bB+−b1−r1 ⊗ C+−b2−r2).

(11.13)
The first sum of (11.13) belongs to I as A−−r1 ⊗ A−−r2 − v−bA+−b1−r1 ⊗ A+−b2−r2 =
(A−−r1 − v−b1A+−b1−r1) ⊗ A−−r2 + v−b1A+−b1−r1 ⊗ (A−−r2 − v−b2A+−b2−r2) ∈ I.

Completely analogously, B−−r1 ⊗ C−−r2 − v−bB+−b1−r1 ⊗ C+−b2−r2 = (B−−r1 −
v−b1B+−b1−r1) ⊗ C−−r2 + v−b1B+−b1−r1 ⊗ (C−−r2 − v−b2C+−b2−r2). To complete the
proof, it suffices to show

B−−r1 − v−b1B+−b1−r1 ∈ I0
2b1

for 1 ≤ r1 ≤ −b1,

C−−r2 − v−b2C+−b2−r2 ∈ I0
2b2

for 0 ≤ r2 ≤ −b2 − 1.
(11.14)

To prove the first inclusion of (11.14), recall that B+(z) = [e0, A
+(z)]v−1 , due to

Corollary 7.3. Likewise (comparing the terms of degree 1 in w in the equality (6.10)
with ε = −, ε′ = +), we obtain B−(z) = [e0, A

−(z)]v−1 . Therefore,

B−−r1 − v−b1B+−b1−r1 = [e0, A
−−r1 − v−b1A+−b1−r1 ]v−1 ∈ I0

2b1
.

Similarly, applying the equalities zC±(z) = [A±(z), f1]v−1 , we obtain

C−−r2 − v−b2C+−b2−r2 = [A−−r2−1 − v−b2A+−b2−r2−1, f1]v−1 ∈ I0
2b2
,

which implies the second inclusion of (11.14). Thus,�ad
2b1,2b2

(A−−r−v−bA+−b−r )∈I.
The cases when X is one of A−−s(s > −b), A−0 A−b − (−v2)−b are treated

analogously to the above first two cases. This completes our proof. ��

11.8 Coproduct for Truncated Shifted Algebras, General g

Recall the homomorphism �μ1,μ2 : Usc
0,μ → Usc

0,μ1
⊗Usc

0,μ2
of Theorem 10.20 (μ =

μ1 + μ2, g = sln). Given N = N1 +N2, this coproduct extends to

�ad
μ1,μ2

: Uad
0,μ[z±1

1 , . . . , z±1
N ] −→ Uad

0,μ1
[z±1

1 , . . . , z±1
N1
] ⊗ Uad

0,μ2
[z±1
N1+1, . . . , z

±1
N ]
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as in Remark 10.3(c). Given two sequences λ(1) = (ωi1 , . . . , ωiN1
), λ(2) =

(ωiN1+1, . . . , ωiN ), we concatenate them to λ = (ωi1 , . . . , ωiN ) and consider the

corresponding truncated shifted algebras Uλμ,U
λ(1)

μ1 ,U
λ(2)

μ2 as in Definition 8.6.

Conjecture 11.22 The aforementioned homomorphism �ad
μ1,μ2

descends to the

same named homomorphism �ad
μ1,μ2

: Uλμ → U
λ(1)

μ1 ⊗ U
λ(2)

μ2 .

We hope that the comultiplication �ad
μ1,μ2

can be defined for arbitrary simply-
laced g (see Sect. 10.8) and descends to the truncated shifted algebras.

12 K-theory of Parabolic Laumon Spaces

12.1 Parabolic Laumon Spaces

We recall the setup of [7]. Let C be a smooth projective curve of genus zero. We fix
a coordinate z on C, and consider the action of C× on C such that v(z) = v−2z. We
have CC

× = {0,∞}.
We consider an N -dimensional vector space W with a basis w1, . . . , wN . This

defines a Cartan torus T ⊂ G = GL(N) = GL(W). We also consider its 2N -fold
cover, the bigger torus T̃ , acting on W as follows: for T̃ � t = (t1, . . . , tN ) we have
t(wi) = t2i wi .

We fix an n-tuple of positive integers π = (p1, . . . , pn) ∈ Zn>0 such that
p1 + . . . + pn = N . Let P ⊂ G be a parabolic subgroup preserving the flag
0 ⊂ W1 := 〈w1, . . . , wp1〉 ⊂ W2 := 〈w1, . . . , wp1+p2〉 ⊂ · · · ⊂ Wn−1 :=
〈w1, . . . , wp1+...+pn−1〉 ⊂ Wn := W. Let B := G/P be the corresponding partial
flag variety.

Given an (n− 1)-tuple of nonnegative integers d = (d1, . . . , dn−1) ∈ Nn−1, we
consider the Laumon parabolic quasiflags’ space Qd , see [46, § 4.2]. It is the moduli
space of flags of locally free subsheaves

0 ⊂W1 ⊂ · · · ⊂Wn−1 ⊂W = W ⊗ OC

such that rank(Wi ) = p1+ . . .+pi and deg(Wi ) = −di . It is known to be a smooth
connected projective variety of dimension dimB +∑n−1

i=1 di(pi + pi+1), see [46,
§ 2.10].

We consider the following locally closed subvariety Qd ⊂ Qd (parabolic
quasiflags based at∞ ∈ C) formed by the flags

0 ⊂W1 ⊂ · · · ⊂Wn−1 ⊂W = W ⊗ OC
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such that Wi ⊂W is a vector subbundle in a neighborhood of∞ ∈ C, and the fiber
of Wi at ∞ equals the span 〈w1, . . . , wp1+...+pi 〉 ⊂ W . It is known to be a smooth
connected quasiprojective variety of dimension

∑n−1
i=1 di(pi + pi+1).

12.2 Fixed Points

The group G × C× acts naturally on Qd , and the group T̃ × C× acts naturally on
Qd . The set of fixed points of T̃ × C× on Qd is finite; its description is given in
[7, § 4.4].

Let �d be a collection of nonnegative integral vectors �dij = (d
(1)
ij , . . . , d

(pj )

ij ),

n − 1 ≥ i ≥ j ≥ 1, such that di = ∑i
j=1 |dij | =

∑i
j=1

∑pj
a=1 d

(a)
ij , and for

i ≥ k ≥ j we have �dkj ≥ �dij , i.e., d(a)kj ≥ d
(a)
ij for any 1 ≤ a ≤ pj . Abusing

notation, we denote by �d the corresponding T̃ × C×-fixed point in Qd :

W1 = OC(−d(1)11 · 0)w1 ⊕ · · · ⊕ OC(−d(p1)

11 · 0)wp1 ,

W2 = OC(−d(1)21 · 0)w1 ⊕ · · · ⊕OC(−d(p1)

21 · 0)wp1 ⊕OC(−d(1)22 · 0)wp1+1 ⊕ · · · ⊕
OC(−d(p2)

22 · 0)wp1+p2 ,

...

Wn−1 = OC(−d(1)n−1,1 · 0)w1 ⊕ · · · ⊕ OC(−d(p1)

n−1,1 · 0)wp1 ⊕ · · ·
· · · ⊕ OC(−d(1)n−1,n−1 · 0)wp1+...+pn−2+1 ⊕ · · · ⊕ OC(−d(pn−1)

n−1,n−1 · 0)wp1+...+pn−1 .

Notation Given a collection �d as above, we will denote by �d ± δ
(p)
ij the collection

�d ′, such that d ′(p)ij = d
(p)
ij ± 1, while d ′(a)kl = d

(a)
kl for (a, k, l) �= (p, i, j).

12.3 Correspondences

For i ∈ {1, . . . , n − 1} and d = (d1, . . . , dn−1), we set d + i := (d1, . . . , di +
1, . . . , dn−1). We have a correspondence Ed,i ⊂ Qd × Qd+i formed by the pairs
(W•,W′•) such that W′

i ⊂ Wi and we have Wj = W′
j for j �= i, see [7, § 4.5]. In

other words, Ed,i is the moduli space of flags of locally free sheaves

0 ⊂W1 ⊂ · · · ⊂Wi−1 ⊂W′
i ⊂Wi ⊂Wi+1 ⊂ · · · ⊂Wn−1 ⊂W

such that rank(Wj ) = p1 + . . . + pj and deg(Wj ) = −dj , while rank(W′
i ) =

p1 + . . .+ pi and deg(W′
i ) = −di − 1. According to [46, § 2.10], Ed,i is a smooth

projective algebraic variety of dimension dimB+∑n−1
i=1 di(pi + pi+1)+ pi .

We denote by p (resp. q) the natural projection Ed,i → Qd (resp. Ed,i → Qd+i).
We also have a map s : Ed,i → C,

(0 ⊂W1 ⊂ · · · ⊂Wi−1 ⊂W′
i ⊂Wi ⊂Wi+1 ⊂ · · · ⊂Wn−1 ⊂W) �→ supp(Wi/W

′
i ).
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The correspondence Ed,i comes equipped with a natural line bundle Li whose fiber
at a point

(0 ⊂W1 ⊂ · · · ⊂Wi−1 ⊂W′
i ⊂Wi ⊂Wi+1 ⊂ · · · ⊂Wn−1 ⊂W)

equals  (C,Wi/W
′
i ). Finally, we have a transposed correspondence TEd,i ⊂

Qd+i × Qd .
Restricting to Qd ⊂ Qd , we obtain the correspondence Ed,i ⊂ Qd × Qd+i

together with the line bundle Li and the natural maps p : Ed,i → Qd , q : Ed,i →
Qd+i , s : Ed,i → C\{∞}. We also have a transposed correspondence TEd,i ⊂
Qd+i × Qd . It is a smooth quasiprojective variety of dimension

∑n−1
i=1 di(pi +

pi+1)+ pi .

12.4 Equivariant K-groups

We denote by ′M(π) the direct sum of equivariant (complexified) K-groups:

′M(π) =
⊕
d

KT̃×C×(Qd).

It is a module over KT̃×C×(pt) = C[T̃ × C×] = C[t±1
1 , . . . , t±1

N , v±1]. We define

M(π) := ′M(π)⊗KT̃×C× (pt) Frac(KT̃×C×(pt)).

It is naturally graded

M(π) = ⊕dM(π)d, where M(π)d = KT̃×C×(Qd)⊗KT̃×C× (pt) Frac(KT̃×C×(pt)).

According to the Thomason localization theorem, restriction to the T̃ ×C×-fixed
point set induces an isomorphism

KT̃×C× (Qd )⊗KT̃×C× (pt) Frac(KT̃×C× (pt)) ∼−→KT̃×C× (QT̃×C×
d )⊗KT̃×C× (pt) Frac(KT̃×C× (pt)).

The classes of the structure sheaves [�d] of the T̃ × C×-fixed points �d
(see Sect. 12.2) form a basis in

⊕
d K

T̃×C×(QT̃×C×
d )⊗KT̃×C× (pt) Frac(KT̃×C×(pt)).

The embedding of a point �d into Qd is a proper morphism, so the direct image in the
equivariant K-theory is well-defined, and we will denote by [�d] ∈ M(π)d the direct
image of the structure sheaf of the point �d . The set {[�d]} forms a basis of M(π).
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12.5 Action of Uv
π on M(π)

From now on, we will denote by Uv
π the shifted quantum affine algebra Usc

0,μ for

g = sln and μ = ∑n−1
j=1(pj+1 − pj )ωj . We will also need the characters Ti of

T̃ × C× defined via Ti := ∏p1+...+pi
j=p1+...+pi−1+1 tj . Let v stand for the character of

T̃ × C× : (t, v) �→ v.
For any 0 ≤ i ≤ n, we will denote by Wi the tautological (p1 + . . . + pi)-

dimensional vector bundle on Qd × C. Let � : Qd × (C\{∞}) → Qd denote the
standard projection. We define the generating series bi (z) with coefficients in the
equivariant K-theory of Qd as follows:

bi (z) := �•−1/z(�∗(Wi |C\{∞})) = 1+
∑
r≥1

�r(�∗(Wi |C\{∞}))(−z−1)r .

We also define the operators

ei,r := T −1
i+1v

di+1−di+2−ip∗((viLi )⊗r ⊗ q∗) : M(π)d → M(π)d−i , (12.1)

fi,r := T −1
i vdi−di−1+iq∗((−Li )⊗pi ⊗ (viLi )⊗r ⊗ p∗) : M(π)d → M(π)d+i ,

(12.2)

and consider the following generating series of operators on M(π):

ei(z) =
∞∑

r=−∞
ei,r z

−r : M(π)d → M(π)d−i[[z, z−1]], (12.3)

fi(z) =
∞∑

r=−∞
fi,rz

−r : M(π)d → M(π)d+i[[z, z−1]]. (12.4)

We define ψ+i (z) : M(π)d → M(π)d [[z−1]] and ψ−i (z) : M(π)d →
zpi−pi+1M(π)d [[z]] via

ψ±i (z) := T −1
i+1Tiv

di+1−2di+di−1 ·
(

bi+1(zv
−i−2)bi−1(zv

−i )
bi (zv−i−2)bi (zv−i )

)±
, (12.5)

where as before γ (z)± denotes the expansion of a rational function γ (z) in z∓1,
respectively.

Notation To each �d, we assign a collection of T̃ × C×-weights

s
(a)
ij := t2p1+...+pj−1+av

−2d(a)ij .
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Proposition 12.1

(a) The matrix coefficients of the operators fi,r , ei,r in the fixed point basis {[�d]} of
M(π) are as follows:

f
i,r[�d,�d ′] = T −1

i vdi−di−1+i (1−v2)−1(−s(a)ij )
pi (s

(a)
ij vi )r

∏a′≤pj ′
j ′≤i−1(1− s

(a)
ij /s

(a′)
i−1,j ′)∏(j ′,a′)�=(j,a)

j ′≤i,a′≤pj ′ (1− s
(a)
ij /s

(a′)
ij ′ )

if �d ′ = �d + δ
(a)
ij for certain j ≤ i, 1 ≤ a ≤ pj ;

e
i,r[�d,�d ′] = T −1

i+1v
di+1−di+2−i (1−v2)−1(s

(a)
ij vi+2)r

∏a′≤pj ′
j ′≤i+1(1− s

(a′)
i+1,j ′/s

(a)
ij )∏(j ′,a′) �=(j,a)

j ′≤i,a′≤pj ′ (1− s
(a′)
ij ′ /s

(a)
ij )

if �d ′ = �d − δ
(a)
ij for certain j ≤ i, 1 ≤ a ≤ pj .

All the other matrix coefficients of ei,r , fi,r vanish.
(b) The eigenvalue ψ±i (z)|�d of ψ±i (z) on [�d] equals

T −1
i+1Tiv

di+1−2di+di−1

⎛⎝∏a≤pj
j≤i+1(1− z−1vi+2s

(a)
i+1,j )

∏a≤pj
j≤i−1(1− z−1vi s

(a)
i−1,j )∏a≤pj

j≤i (1− z−1vi+2s
(a)
ij )

∏a≤pj
j≤i (1− z−1vi s

(a)
ij )

⎞⎠± .
The proof is straightforward and is analogous to that of [61, Proposition 2.15].
The following is the key result of this section.

Theorem 12.2 The generating series of operators {ψ±i (z), ei(z), fi(z)}n−1
i=1

of (12.3–12.5) acting on M(π) satisfy the relations in Uv
π , i.e., they give rise to

the action of Uv
π on M(π).

In the particular case π = 1n, we recover [61, Theorem 2.12].

Proof First, note that ψ+i (z) contains only nonpositive powers of z, while ψ−i (z)
contains only powers of z bigger or equal to pi − pi+1 (this follows from
Proposition 12.1(b)). Moreover, the coefficients of z0 in ψ+i (z) and of zpi−pi+1 in
ψ−i (z) are invertible operators.

Applying Proposition 12.1, the verification of all the defining relations of Uv
π ,

except for (U6), boils down to routine straightforward computations in the fixed
point basis (compare to the proof of [61, Theorem 2.12]). The same arguments
can be used to show that [ei(z), fj (w)] = 0 for i �= j . It remains to prove
(v − v−1)[ei(z), fi(w)] = δ

(
z
w

) (
ψ+i (z)− ψ−i (z)

)
. Applying Proposition 12.1(a),

we see that the left-hand side is diagonal in the fixed point basis and its eigenvalue
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on [�d] equals

T −1
i+1T

−1
i vdi+1−di−1(1− v2)−1 · δ

( z
w

)
×

a≤pj∑
j≤i

(−s(a)ij )
pi

⎧⎨⎩v2pi

∏a′≤pj ′
j ′≤i+1(1− s

(a′)
i+1,j ′/s

(a)
ij )

∏a′≤pj ′
j ′≤i−1(1− v2s

(a)
ij /s

(a′)
i−1,j ′ )∏(j ′,a′)�=(j,a)

j ′≤i,a′≤pj ′ (1− s
(a′)
ij ′ /s

(a)
ij )(1− v2s

(a)
ij /s

(a′)
ij ′ )

δ

(
z

vi+2s
(a)
ij

)
−

∏a′≤pj ′
j ′≤i+1(1− v2s

(a′)
i+1,j ′/s

(a)
ij )

∏a′≤pj ′
j ′≤i−1(1− s

(a)
ij /s

(a′)
i−1,j ′)∏(j ′,a′) �=(j,a)

j ′≤i,a′≤pj ′ (1− v2s
(a′)
ij ′ /s

(a)
ij )(1− s

(a)
ij /s

(a′)
ij ′ )

δ

(
z

vi s
(a)
ij

)⎫⎬⎭ .
To compare this expression with the eigenvalue of ψ+i (z)−ψ−i (z) on [�d], it suffices
to apply Lemma C.1 below to the particular case of γ (z) chosen to be the rational
function of Proposition 12.1(b).

The theorem is proved. ��
Remark 12.3

(a) The above verification of (U6) by applying Lemma C.1 significantly simplifies
our original indirect proof of this relation in [61].

(b) For π = pn, this produces the action of the quantum loop algebra Uv(Lsln) on
M(π).

(c) According to [4], there is an action of Av
frac on M(π). Its pull-back along

the homomorphism �
λ
μ (λ = (ωn−1, . . . , ωn−1) taken N times) yields essen-

tially the action of Uv
π on M(π) established above. In particular, the kernel

Ker(�λ
μ) = Ker(�̃λ

μ) acts trivially onM(π). The first instance of that is the fact
that the generators {A±i,±r : r > p1 + . . . + pi} of Uv

π (see Remark 6.7(b)) act

trivially on M(π), due to the observation that the eigenvalue of A±i (z) on [�d]
equals

∏a≤pj
j≤i (1− (z−1vi s

(a)
ij )

±1).

12.6 Tensor Products

Fix two n-tuples π ′ = (p′1, . . . , p′n), π ′′ = (p′′1 , . . . , p′′n) ∈ Zn>0 and define
π = (p1, . . . , pn) via pi := p′i+p′′i ∈ Z>0. Let Uv

π ′ ,U
v
π ′′ ,U

v
π be the corresponding

shifted quantum affine algebras of sln as defined in Sect. 12.5. According to
Theorem 12.2, we have natural actions of Uv

π on M(π), of Uv
π ′ on M(π ′), and

of Uv
π ′′ on M(π ′′). The vector spaces M(π) and M(π ′) ⊗ M(π ′′) have natural

fixed point bases {[�d]} and {[�d ′] ⊗ [�d ′′]}, parameterized by �d and pairs (�d ′, �d ′′) with
�d, �d ′, �d ′′ satisfying the conditions of Sect. 12.2. The assignment (�d ′, �d ′′) �→ �d ′ ∪ �d ′′
defined via (d ′∪d ′′)(a)ij = d

′(a)
ij , (d ′∪d ′′)(p

′
j+b)

ij = d
′′(b)
ij for 1 ≤ a ≤ p′j , 1 ≤ b ≤ p′′j

provides a bijection between such pairs (�d ′, �d ′′) and �d. We also identify
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T̃ ′ × T̃ ′′ ∼−→ T̃ via tp1+...+pj−1+a = t ′
p′1+...+p′j−1+a, tp1+...+pj−1+p′j+b =

t ′′
p′′1+...+p′′j−1+b for a, b as above. Finally, we use �0 to denote the collection of

zero vectors.
Recall the Drinfeld formal coproduct �̃ : Uv

π → Uv
π ′ ⊗̂Uv

π ′′ of Lemma 10.2.

Theorem 12.4 There is a unique collection of c�d ′,�d ′′ ∈ Frac(KT̃×C×(pt)) with

c�0,�0 = 1, such that the map [�d ′]⊗ [�d ′′] �→ c�d ′,�d ′′ · [�d ′ ∪ �d ′′] induces an isomorphism

M(π ′)⊗̃M(π ′′) ∼−→M(π) of Uv
π -representations.

First let us make sense of the Uv
π -module M(π ′)⊗̃M(π ′′). The action of

ei(z) in the fixed point basis {[�d ′′]} of M(π ′′) can be written as ei(z)[�d ′′] =∑a≤pj
j≤i a�d ′′,δ(a)ij

δ(s
(a)
ij vi+2/z)[�d ′′ − δ

(a)
ij ] for certain a�d ′′,δ(a)ij

∈ Frac(KT̃ ′′×C×(pt)).

According to the comultiplication formula (10.1), we have �̃(ei(z))([�d ′] ⊗ [�d ′′]) =
ei(z)([�d ′])⊗[�d ′′]+ψ−i (z)([�d ′])⊗ei(z)([�d ′′]). The first summand is well-defined. To
make sense of the second summand, we just need to apply the formula γ (z)δ(a/z) =
γ (a)δ(a/z) to the rational function γ (z) chosen to be the eigenvalue of ψ−i (z) on
[�d ′]. The action of fi(z) on M(π ′)⊗̃M(π ′′) is defined analogously. Finally, the
formula �̃(ψ±i (z)) = ψ±i (z) ⊗ ψ±i (z) provides a well-defined action of ψ±i (z).
These formulas endow M(π ′)⊗M(π ′′) with a well-defined action of Uv

π .

Proof According to Proposition 12.1(b), the eigenvalue of �̃(ψ±i (z)) = ψ±i (z) ⊗
ψ±i (z) on [�d ′] ⊗ [�d ′′] ∈ M(π ′) ⊗ M(π)′′ equals the eigenvalue of ψ±i (z) on
[�d ′ ∪ �d ′′] ∈ M(π). Hence, the map [�d ′] ⊗ [�d ′′] �→ c�d ′,�d ′′ · [�d ′ ∪ �d ′′] intertwines

actions of ψ±i (z) for any c�d ′,�d ′′ ∈ Frac(KT̃×C×(pt)).
Consider c�d ′,�d ′′ ∈ Frac(KT̃×C×(pt)) such that c�0,�0 = 1 and

c�d ′−δ(a)ij ,
�d ′′

c�d ′,�d ′′
= (T ′′i+1)

−1vd
′′
i+1−d ′′i ·

∏a′≤p′′
j ′

j ′≤i+1(1− s
′′(a′)
i+1,j ′/s

′(a)
ij )∏a′≤p′′

j ′
j ′≤i (1− s

′′(a′)
ij ′ /s

′(a)
ij )

,

c�d ′,�d ′′−δ(a)ij

c�d ′,�d ′′
= (T ′i )−1vd

′
i−d ′i−1 ·

∏a′≤p′
j ′

j ′≤i (1− v−2s
′(a′)
ij ′ /s

′′(a)
ij )∏a′≤p′

j ′
j ′≤i−1(1− v−2s

′(a′)
i−1,j ′/s

′′(a)
ij )

.

(12.6)

The existence of c�d ′,�d ′′ satisfying these relations as well as a verification that [�d ′] ⊗
[�d ′′] �→ c�d ′,�d ′′ · [�d ′ ∪ �d ′′] intertwines actions of ei,r and fi,r are left to the interested
reader. ��

Remark 12.5 In the particular case p1 = . . . = pn = p, this implies the iso-
morphism M(pn) � M(1n)⊗̃p of Uv(Lsln)-representations. This isomorphism is
reminiscent of the isomorphism between the action of the quantum toroidal algebra
of gl1 on the equivariant K-theory of the Gieseker moduli spaces M(r, n) and the
r-fold tensor product of such representation for r = 1, see [62, Theorem 4.6].
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12.7 Shifted Quantum Affine Algebras of gln

Let Uv(ĝln) be the quantum affine algebra of gln as defined in [17, Definition 3.1],
and let Uv(Lgln) be the quantum loop algebra of gln, that is, Uv(Lgln) :=
Uv(ĝln)/(v

±c/2 − 1). This is an associative C(v)-algebra generated by

{X±i,r , k±j,∓s±j |i = 1, . . . , n− 1, j = 1, . . . , n, r ∈ Z, s±j ∈ N}

and with the defining relations as in [17, (3.3, 3.4)]. There is a natural injective
C(v)-algebra homomorphism Uv(Lsln) ↪→ Uv(Lgln), defined by

ei(z) �→ X−i (viz)
v − v−1 , fi(z) �→

X+i (viz)
v − v−1 , ψ

±
i (z) �→ (k∓i (v

iz))−1k∓i+1(v
iz).

(12.7)

For π = (p1, . . . , pn) ∈ Zn>0, define the shifted quantum affine algebra Uv
π (gln)

in the same way as Uv(Lgln) except that now s+j ≥ −pj and we formally add

inverse elements {(k−j,0)−1, (k+j,pj )
−1}nj=1 (as we no longer require k−j,0k

+
j,pj

= 1).

Note that the assignment (12.7) still gives rise to an injective9 homomorphism
� : Uv

π ↪→ Uv
π (gln).

Consider the following generating series of operators on M(π):

X+i (z) := (v − v−1)fi(v
−iz) : M(π)d → M(π)d+i[[z, z−1]],

X−i (z) := (v − v−1)ei(v
−iz) : M(π)d → M(π)d−i[[z, z−1]],

k−j (z) := T −1
j vdj−dj−1 · (bj (zv−2j )/bj−1(zv

−2j ))+ : M(π)d → M(π)d [[z−1]],

k+j (z) := T −1
j vdj−dj−1 · (bj (zv−2j )/bj−1(zv

−2j ))− : M(π)d → z−pjM(π)d [[z]]

with ei(z), fi(z),bj (z) defined in Sect. 12.5.
The following is a simple generalization of Theorem 12.2.

Theorem 12.6 The generating series of operators X±i (z), k
±
j (z) acting on M(π)

satisfy the relations of Uv
π (gln), i.e., they give rise to the action of Uv

π (gln) onM(π).

The restriction of this action to the subalgebra Uv
π (embedded into Uv

π (gln) via
�) recovers the action of Uv

π on M(π) of Theorem 12.2.

9One can prove the injectivity of � by using Proposition 5.1 for both algebras. Indeed, the
homomorphism � is “glued” from three homomorphisms: �> : Uv,>

π → Uv,>
π (gln), �

< : Uv,<
π →

Uv,<
π (gln), �

0 : Uv,0
π → Uv,0

π (gln). The homomorphisms �>, �< are isomorphisms due to
Proposition 5.1(b), while the injectivity of �0 is clear.
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12.8 The Cohomology Case Revisited

The above results can be immediately generalized to the cohomological setting. Let
V (π) be the direct sum of localized T × C×-equivariant cohomology of type π
Laumon parabolic based quasiflags’ spaces:

V (π) :=
⊕
d

H •
T×C×(Qd)⊗H •

T×C× (pt) Frac(H •
T×C×(pt)).

It is a module over Frac(H •
T×C×(pt)), where H •

T×C×(pt) = C[Lie(T × C×)] =
C[x1, . . . , xN , h̄].

Let Yh̄π = Yπ ⊗C[h̄] C(h̄), where Yπ is the shifted Yangian of sln in the
sense of [10, Appendix B(i)]. It is the associative C(h̄)-algebra generated by
{E(r+1)

i , F
(r+1)
i , H

(r+1+pi−pi+1)

i }r∈N1≤i<n with the same defining relations as in the
standard Yangian Yh̄(sln).

We define the generating series ai (z)with coefficients in the equivariant coho-
mology of Qd as follows:

ai (z) := zp1+...+pi · c(�∗(Wi |C\{∞}), (−zh̄)−1),

where c(V, x) denotes the Chern polynomial (in x) of V. We also define the
operators

E
(r+1)
i := p∗((c1(Li )+ ih̄/2)r · q∗) : V (π)d → V (π)d−i , (12.8)

F
(r+1)
i := (−1)piq∗((c1(Li )+ ih̄/2)r · p∗) : V (π)d → V (π)d+i . (12.9)

We define Hi(z) = zpi+1−pi +∑r>pi−pi+1
H
(r)
i h̄−r+pi−pi+1+1z−r via

Hi(z) :=
(

ai+1(z− i+2
2 )ai−1(z− i

2 )

ai (z− i+2
2 )ai (z− i

2 )

)+
: V (π)d → zpi+1−piV (π)d [[z−1]].

(12.10)

The following result is completely analogous to Theorem 12.2.

Theorem 12.7 The operators {E(r+1)
i , F

(r+1)
i , H

(r+1+pi−pi+1)

i }r∈N1≤i<n of (12.8–

12.10) acting on V (π) satisfy the defining relations of Yh̄π , i.e., they give rise to
the action of Yh̄π on V (π).

A slight refinement of this theorem in the dominant case p1 ≤ . . . ≤
pn constituted the key result of [7]. In loc. cit., the authors constructed the
action of the shifted Yangian of gln, denoted by Yh̄π (gln), on V (π). There is

a natural (injective) homomorphism Yh̄π → Yh̄π (gln), such that F
(r+1)
i �→
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∑r
s=0

(
r
s

) ( 2−i
2 h̄
)r−s

f(s+1)
i , E

(r+1)
i �→ ∑r

s=0

(
r
s

) ( 2−i
2 h̄
)r−s

e(s+1+pi+1−pi)
i . The

pull-back of the action of [7] along this homomorphism recovers the action Yh̄π on
V (π) of Theorem 12.7.

The proof of [7] was based on an explicit identification of the geometric action
in the fixed point basis with the formulas of [27] for the action of Yh̄π (gln) in the
Gelfand-Tsetlin basis. The benefits of our straightforward proof of Theorem 12.7
are two-fold:

(1) we eliminate the crucial assumption p1 ≤ . . . ≤ pn of [7],
(2) we obtain an alternative proof of the formulas of [27] (cf. Proposition 12.8

below).

Moreover, we can derive v-analogues of the Gelfand-Tsetlin formulas of [27] via
a certain specialization of the parameters in Proposition 12.1 as explained below.

We set tl = vβl for 1 ≤ l ≤ N . To a collection �d = (d
(a)
ij )

1≤a≤pj
1≤j≤i≤n−1, we

associate a Gelfand-Tsetlin pattern � = �(�d) = (λ
(a)
ij )

1≤a≤pj
1≤j≤i≤n as follows: λ(a)nj =

βp1+...+pj−1+a+j−1, λ(a)ij = βp1+...+pj−1+a+j−1−d(a)ij . Set λ(a)j := λ
(a)
nj , which

is independent of �d . Note that the vector spaceM(π) has a basis {[�]} parametrized

by � = (λ
(a)
ij )

1≤a≤pj
1≤j≤i≤n with λ

(a)
nj = λ

(a)
j and λ

(a)
i+1,j − λ

(a)
ij ∈ N. Consider a

specialization of {βl}1≤l≤N such that λ(a)j − λ
(a)
j+1 ∈ N, while λ(a)i − λ

(b)
j /∈ Z if

a �= b. Let S be the subset of those � from above such that λ(a)ij − λ
(a)
i+1,j+1 ∈ N

(note that S is finite), while S̄ will denote the set of the remaining Gelfand-Tsetlin
patterns �.

As before, we define

A±i (z) := k∓1 (v
2−iz)k∓2 (v

4−iz) · · · k∓i (viz),

B±i (z) := (v − v−1)A±i (z)e
±
i (z),

C±i (z) := (v − v−1)f±i (z)A
±
i (z).

We set λij (z) := ∏pj
a=1(v

−λ(a)ij − v
λ
(a)
ij z−1). The next result follows from Proposi-

tion 12.1.

Proposition 12.8

(a) The vector subspace of M(π) spanned by {[�]}�∈S̄ is Uv
π (gln)-invariant. We

denote by L(π) the corresponding quotient of M(π).
(b) Let {ξ�}�∈S be the basis of L(π) inherited from {[�]}�∈S . Then, we have:

A±i (v
iz)ξ� = vmiλi1(z)λi2(v

2z) · · · λii(v2(i−1)z)ξ�,
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B±i (v
i · v2l(a)ij )ξ� = −vmi+1−i · λi+1,1(v

2l(a)ij )λi+1,2(v
2(l(a)ij +1)

) · · · λi+1,i+1(v
2(l(a)ij +i))ξ

�+δ(a)ij

,

C±i (v
i ·v2l(a)ij )ξ� = vmi−1+i−1·λi−1,1(v

2l(a)ij )λi−1,2(v
2(l(a)ij +1)

) · · · λi−1,i−1(v
2(l(a)ij +i−2)

)ξ
�−δ(a)ij

,

where mj :=∑j

j ′=1(j
′ − 1)pj ′ and l(a)ij := λ

(a)
ij − j + 1.

Remark 12.9

(a) In the simplest case π = 1n, the above homomorphism Yh̄π → Yh̄π (gln) is the
classical embedding of the Yangian of sln into the Yangian of gln.

(b) The injectivity of the above homomorphism Yh̄π → Yh̄π (gln) follows from the
PBW property for Yh̄π (see [24, Corollary 3.15]) and its analogue for Yh̄π (gln).

(c) We take this opportunity to correct the sign in [7, (4.2)], where the ‘−’ sign
should be replaced by (−1)pk , that is, f(r+1)

k := (−1)pkq∗(c1(L
′
k)
r · p∗).

(d) We take this opportunity to correct the typos in [23]. First, the formulas for
the eigenvalues of hi (u) and ami(u) of Theorem 3.20 and its proof should be
corrected by replacing pi′j ′ � h̄−1pi′j ′ . Second, the formulas defining am(u)
(Section 2.11), ami(u) (Section 2.13), ami(u) (Section 3.17) should be modified
by ignoring p∗,q∗.

Remark 12.10 Let eπ ∈ glN be a nilpotent element of Jordan type π . For p1 ≤
. . . ≤ pn, Brundan-Kleshchev proved that the finite W-algebra W(glN, eπ ) is the
quotient of Yh̄π (gln) by the 2-sided ideal generated by {d(r)1 }r>p1 , see [12]. Together
with Theorem 12.7 this yields a natural action ofW(glN, eπ ) on V (π), referred to as
a finite analogue of the AGT relation in [7]. We expect that the truncated version of
Uv
π (gln) with λ = Nωn−1 should be isomorphic to the v-version of the W -algebra

W(glN, eπ ) as defined by Sevostyanov in [57].

12.9 Shifted Quantum Toroidal sln and Parabolic Affine
Laumon Spaces

The second main result of [61] provides the action of the quantum toroidal algebra
Uv,u(ŝln) (denoted Üv(ŝln) in loc. cit.) on the direct sum of localized equivariant
K-groups of the affine Laumon spaces Pd . The cohomological counterpart of this
was established in [23], where the action of the affine Yangian Yh̄,h̄′(ŝln) (denoted
Ŷ in loc. cit.) on the direct sum of localized equivariant cohomology of Pd was
constructed.

Likewise, the results of Theorems 12.2 and 12.7 can be naturally generalized
to provide the actions of the shifted quantum toroidal algebra Uv,u

π (resp. shifted
affine Yangian Yh̄,h̄

′
π ) on the direct sum of localized equivariant K-groups (resp.

cohomology) of parabolic affine Laumon spaces. Here Uv,u
π is the associative
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C(v, u)-algebra generated by {ei,r , fi,r , ψ±
i,±s±i

|1 ≤ i ≤ n, r ∈ Z, s+i ≥ 0, s−i ≥
pi − pi+1} and with the same defining relations as for Uv,u(ŝln), while Yh̄,h̄

′
π is

the associative C(h̄, h̄′)-algebra generated by {E(r+1)
i , F

(r+1)
i , H

(r+1+pi−pi+1)

i |1 ≤
i ≤ n, r ∈ N} and with the same defining relations as for Yh̄,h̄′(ŝln) (here we set
pn+1 := p1). On the geometric side, the parabolic affine Laumon spaces of type π
are defined similarly to the case π = 1n. We leave details to the interested reader.

12.10 Whittaker Vector

Consider the Whittaker vector

m :=
∑
d

[OQd
] ∈ M(π)∧,

where M(π)∧ :=∏d M(π)d . We also define the operators

e′i,r := p∗((viLi )⊗r ⊗ q∗) = vi−1(k−i+1,0)
−1ei,r : M(π)d → M(π)d−i .

Proposition 12.11 For 1 ≤ i ≤ n− 1, we have

e′i,0(m) = (1− v2)−1m and e′i,1(m) = . . . = e′i,pi−1(m) = 0.

Proof According to the Bott-Lefschetz formula, we have:

(1) m =∑�d a�d [�d], where a�d =
∏
w∈T�dQd

(1− w)−1;

(2)
a�d′
a�d

p∗((viLi )⊗r ⊗ q∗)[�d ′,�d] = q∗((viLi )⊗r ⊗ p∗)[�d,�d ′].
Set Ci,0 := (1− v2)−1 and Ci,r := 0 for 0 < r < pi . It suffices to prove the

equality Ci,r = ∑a≤pj
j≤i q∗((viLi )⊗r ⊗ p∗)[�d,�d+δ(a)ij ] for any �d and any 1 ≤ i ≤

n− 1, 0 ≤ r ≤ pi − 1. According to Proposition 12.1(a), we have

q∗((viLi )⊗r ⊗ p∗)[�d,�d+δ(a)ij ] = (1− v2)−1(s
(a)
ij vi )r

∏a′≤pj ′
j ′≤i−1(1− s

(a)
ij /s

(a′)
i−1,j ′)∏(j ′,a′)�=(j,a)

j ′≤i,a′≤pj ′ (1− s
(a)
ij /s

(a′)
ij ′ )

=

vi

1− v2

∏a′≤pj ′
j ′≤i s

(a′)
ij ′∏a′≤pj ′

j ′≤i−1 s
(a′)
i−1,j ′

· (s(a)ij vi )r−1

∏a′≤pj ′
j ′≤i−1(s

(a′)
i−1,j ′ − s

(a)
ij )∏(j ′,a′)�=(j,a)

j ′≤i,a′≤pj ′ (s
(a′)
ij ′ − s

(a)
ij )

.
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For 1 ≤ r ≤ pi − 1, the sum

a≤pj∑
j≤i

(s
(a)
ij vi )r−1

∏a′≤pj ′
j ′≤i−1(s

(a′)
i−1,j ′ − s

(a)
ij )∏(j ′,a′) �=(j,a)

j ′≤i,a′≤pj ′ (s
(a′)
ij ′ − s

(a)
ij )

is a rational function in {s(a′)
ij ′ }

a′≤pj ′
j ′≤i of degree r − pi < 0 and without poles.

Hence, it is zero. For r = 0, the same arguments imply

a≤pj∑
j≤i

(s
(a)
ij vi )−1

∏a′≤pj ′
j ′≤i−1(s

(a′)
i−1,j ′ − s

(a)
ij )∏(j ′,a′)�=(j,a)

j ′≤i,a′≤pj ′ (s
(a′)
ij ′ − s

(a)
ij )

=
a≤pj∑
j≤i

(s
(a)
ij vi )−1

∏a′≤pj ′
j ′≤i−1 s

(a′)
i−1,j ′∏(j ′,a′)�=(j,a)

j ′≤i,a′≤pj ′ (s
(a′)
ij ′ − s

(a)
ij )

.

It remains to compute
∑a≤pj

j≤i
∏(j ′,a′) �=(j,a)
j ′≤i,a′≤pj ′

s
(a′)
ij ′

s
(a′)
ij ′ −s

(a)
ij

, which is a rational

function in {s(a′)
ij ′ }

a′≤pj ′
j ′≤i of degree 0 and without poles, hence, a constant.

Specializing s(1)i1 �→ 0, we see that this constant is equal to 1 (note that only
one summand is nonzero under this specialization).

The proposition is proved. ��
Remark 12.12

(a) For π = 1n, this result was proved in [6, Proposition 2.31].

(b) By the same arguments, we also find e′′i,pi (m) = (−1)pi−1vipi

1−v2 m, where e′′i,r :=
(k−i,0)2e′i,r .

(c) Likewise, one can prove that E(1)i (v) = . . . = E
(pi−1)
i (v) = 0, E(pi)i (v) =

h̄−1v, where v := ∑
d [Qd ] ∈ V (π)∧. This result was established in [7,

Proposition 5.1].

Appendix A Proof of Theorem 5.5 and Its Modification

To prove Theorem 5.5, let us first note that relations (Û1–Û9) hold in Usc
0,μ. Hence,

there exists an algebra homomorphism ε : Ûμ1,μ2 → Usc
0,μ such that ei,r �→

ei,r , fi,s �→ fi,s , (ψ
+
i,0)

±1 �→ (ψ+i,0)±1, (ψ−i,bi )
±1 �→ (ψ−i,bi )

±1, hi,±1 �→ hi,±1
for i ∈ I, b2,i − 1 ≤ r ≤ 0, b1,i ≤ s ≤ 1. Moreover, the way we defined
ei,r , fi,r , ψ

±
i,r ∈ Ûμ1,μ2 right before Theorem 5.5, it is clear that ε : ei,r �→

ei,r , fi,r �→ fi,r , ψ
±
i,±s±i

�→ ψ±
i,±s±i

for i ∈ I, r ∈ Z, s+i ≥ 0, s−i ≥ −bi . In

particular, ε is surjective. Injectivity of ε is equivalent to showing that relations (U1–
U8) hold in Ûμ1,μ2 . This occupies the rest of this Appendix until A(iv), where we
consider a slight modification of this presentation, see Theorem A.3 and its proof.
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A(i) Derivation of Some Useful Relations in Ûμ1,μ2

First, we note that (Û1, Û4, Û5) together with our definition of ei,r , fi,r , ψ
+
i,r imply:

ψ+i,0ej,r = v
cij
i ej,rψ

+
i,0, ψ

−
i,bi
ej,r = v

−cij
i ej,rψ

−
i,bi
, [hi,±1, ej,r ] = [cij ]vi · ej,r±1,

(v1)
ψ+i,0fj,r = v

−cij
i fj,rψ

+
i,0, ψ

−
i,bi
fj,r = v

cij
i fj,rψ

−
i,bi
, [hi,±1, fj,r ] = −[cij ]vi ·fj,r±1,

(v2)

[ψ+i,0, ψ±j,±s±j ] = 0, [ψ−i,bi , ψ±j,±s±j ] = 0 (v3)

for any i, j ∈ I, r ∈ Z, s+j ≥ 0, s−j ≥ −bj .

Second, combining relations (Û1, Û4, Û5, Û6), we get

[ei,1, fi,0] = [ei,0, fi,1] = ψ+i,1/(vi − v−1
i ),

[ei,b2,i , fi,b1,i−1] = [ei,b2,i−1, fi,b1,i ] = ψ−i,bi−1/(v
−1
i − vi ).

(v4)

Note that ψ+i,1 = (vi−v−1
i )[ei,0, fi,1] = (vi−v−1

i )ψ+i,0hi,1. Hence, [hi,1, ψ+i,1] = 0.

Combining this further with (v1, v2, v4) and our definition of ψ+i,2, we obtain

[ei,2, fi,0] = [ei,1, fi,1] = [ei,0, fi,2] = ψ+i,2/(vi − v−1
i ). (v5)

Likewise, we also get

[ei,b2,i , fi,b1,i−2] = [ei,b2,i−1, fi,b1,i−1] = [ei,b2,i−2, fi,b1,i ] = ψ−i,bi−2/(v
−1
i − vi ).

(v6)

Third, let us point out that relation (Û9) is equivalent to

[hi,1, ψ+i,2] = 0, [hi,−1, ψ
−
i,bi−2] = 0. (v7)

According to the above relations, for any i, j ∈ I we also have

[hj,−1, ψ
+
i,2] = 0, [hj,1, ψ−i,bi−2] = 0. (v8)
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Finally, we define elements hi,±2 ∈ Ûμ1,μ2 as follows:

hi,2 := (ψ+i,0)
−1ψ+i,2/(vi − v−1

i )− (vi − v−1
i )h2

i,1/2,

hi,−2 := (ψ−i,bi )
−1ψ−i,bi−2/(v

−1
i − vi )− (v−1

i − vi )h
2
i,−1/2.

(A.1)

Due to relations (Û1, v7, v8), for every i, j ∈ I we have

[hi,±1, hi,±2] = 0, [hj,∓1, hi,±2] = 0. (v9)

Lemma A.1 For any i ∈ I, r ∈ Z, we have

[hi,±2, ei,r ] = [4]vi
2
· ei,r±2, [hi,±2, fi,r ] = −[4]vi

2
· fi,r±2.

Proof Due to (Û2), we have [ei,0, ei,−1]v2
i
= 0. Commuting this with hi,1 and

applying relation (Û4), we obtain ei,1ei,−1−v2
i e

2
i,0 = v2

i ei,−1ei,1−e2
i,0. Commuting

this further with fi,1 and applying relation (Û6), we obtain

ψ+i,2ei,−1 − v2
i ψ

+
i,1ei,0 + ei,1ψ

+
i,0 − v2

i ei,0ψ
+
i,1 − δbi ,0ei,1ψ

−
i,bi
=

v2
i ei,−1ψ

+
i,2 − ei,0ψ

+
i,1 + v2

i ψ
+
i,0ei,1 − ψ+i,1ei,0 − v2

i δbi ,0ψ
−
i,bi
ei,1.

First, note that ei,1ψ
−
i,bi
= v2

i ψ
−
i,bi
ei,1, due to (Û4). Second, we have

ei,1ψ
+
i,0 − v2

i ei,0ψ
+
i,1 = v2

i ψ
+
i,0ei,1 − ψ+i,1ei,0. (v10)

Indeed, due to the equality ψ+i,1 = (vi − v−1
i )ψ+i,0hi,1 and relations (Û1, v1), we

have

ψ+i,1ei,0 − v2
i ei,0ψ

+
i,1 = v2

i (vi − v−1
i )[2]vi · ei,1ψ+i,0 = (v4

i − 1)ei,1ψ
+
i,0 = v2

i ψ
+
i,0ei,1 − ei,1ψ+i,0.

Therefore, we get

ψ+i,2ei,−1 − v2
i ψ

+
i,1ei,0 = v2

i ei,−1ψ
+
i,2 − ei,0ψ

+
i,1. (v11)

Combining the formulas ψ+i,1 = (vi − v−1
i )ψ+i,0hi,1, ψ

+
i,2 = (vi − v−1

i )ψ+i,0(hi,2 +
vi−v−1

i

2 h2
i,1) with relations (Û1, v1, v11), we finally get [hi,2, ei,−1] = [4]vi

2 ei,1.
Commuting this relation with hi,±1 and using (v1, v9), we obtain [hi,2, ei,r ] =
[4]vi

2 ei,r+2 for any r ∈ Z.
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Likewise, starting from the relation [ei,b2,i , ei,b2,i−1]v2
i
= 0 and commuting it

first with hi,−1 and then with fi,b1,i , we recover [hi,−2, ei,b2,i ] = [4]vi
2 ei,b2,i−2.

Commuting this further with hi,±1, we get [hi,−2, ei,r ] = [4]vi
2 ei,r−2 for any r ∈ Z.

The proof of [hi,±2, fi,r ] = −[4]vi2 · fi,r±2 is completely analogous. ��

A(ii) Verification of Relations (U1–U6) with i = j for Ûμ1,μ2

A(ii).a Verification of (U2)

We need to prove X+(i; r, s) = 0 for any r, s ∈ Z, where

X+(i; r, s) := [ei,r+1, ei,s]v2
i
+ [ei,s+1, ei,r ]v2

i
.

Note that X+(i; r, s) = X+(i; s, r), and X+(i;−1,−1) = 0 due to relation (Û2).
For a ∈ {±1,±2}, we define Li,a := a/[2a]vi · ad(hi,a) ∈ End(Ûμ1,μ2). Then,

we have Li,a(X+(i; r, s)) = X+(i; r+a, s)+X+(i; r, s+a). Set L±i := 1
2 (L

2
i,±1−

Li,±2). Then L±i (X+(i; r, s)) = X+(i; r ± 1, s ± 1). Applying iteratively L+i to
the equality X+(i;−1,−1) = 0, we get X+(i; r, r) = 0 for any r ≥ −1. Since
2X+(i;−1, 0) = Li,1(X

+(i;−1,−1)) = 0, we analogously getX+(i; r, r+1) = 0
for r ≥ −1. Fix s ∈ Z>0 and assume by induction that X+(i; r, r +N) = 0 for any
r ≥ −1, 0 ≤ N ≤ s. Then X+(i;−1, s) = Li,1(X

+(i;−1, s − 1))−X+(i; 0, s −
1) = 0, due to the above assumption. Applying (L+i )r+1 to the latter equality, we
get X+(i; r, r + s + 1) = 0 for r ≥ −1. An induction in s completes the proof
of X+(i; r, s) = 0 for any r, s ≥ −1. Finally, applying iteratively L−i , we obtain
X+(i; r, s) = 0 for any r, s ∈ Z.

A(ii).b Verification of (U3)

This relation is verified completely analogously to (U2).

A(ii).c Verification of (U4)

We consider the case ε = + (the case ε = − is completely analogous). We need to
prove Y+(i; r, s) = 0 for any r ∈ N, s ∈ Z, where

Y+(i; r, s) := [ψ+i,r+1, ei,s]v2
i
+ [ei,s+1, ψ

+
i,r ]v2

i
.

The r = s = 0 case is due to (v10) from our proof of Lemma A.1. Moreover, the
same argument also yields Y+(i; 0, s) = 0 for any s ∈ Z.
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Note that Y+(i; r, s−1)+Y+(i; s, r−1) = (vi−v−1
i )[X+(i; r−1, s−1), fi,1] =

0 for r, s ≥ 0. The first equality is due to (v1) and our definition of ψ+i,r , while the
second equality follows from X+(i; r − 1, s − 1) = 0 proved above. In particular,
Y+(i; r,−1)+ Y+(i; 0, r − 1) = 0 for r ∈ N.

Combining the above two observations, we find

Y+(i; r,−1) = 0 for any r ∈ N. (v12)

Commuting iteratively the equality Y+(i; 1,−1) = 0 with hi,±1, we get
Y+(i; 1, s) = 0 for any s ∈ Z, due to (Û1, v1, v9).

Next, we prove the following five statements by induction in N ∈ Z+:
(AN ) [hi,1, ψ+i,r ] = 0 for 0 ≤ r ≤ N + 1;

(BN ) [hi,−1, ψ
+
i,r ] = 0 for 0 ≤ r ≤ N + 1;

(CN ) [ei,r , fi,s] = ψ+i,r+s/(vi − v−1
i ) for any r, s ∈ N with 1 ≤ r + s ≤ N + 2;

(DN ) Y+(i; r, s) = 0 for any 0 ≤ r ≤ N, s ∈ Z;
(EN ) [ψ+i,r , ψ+i,s] = 0 for any r, s ≥ 0 with r + s ≤ N + 2.

Base of Induction (N = 1) The assertions (A1, B1, D1, E1) have been already
proved above, while (C1) follows immediately from [hi,1, ψ+i,2] = 0 (cf. (v7))
and (v1, v2, v4, v5).

Induction Step Assuming (AN–EN ) for a given N ∈ Z>0, we prove (AN+1–
EN+1).

Proof of the Induction Step Consider a polynomial algebra B := C(v)[{xr}∞r=1],
which is N-graded via deg(xr ) = r . Define elements {hr}∞r=1 of B via

exp
(
(vi − v−1

i )
∑∞

r=1 hr z−r
)
= 1 + ∑∞

r=1 xrz
−r . Then, hr = xr

vi−v−1
i

+
pr(x1, . . . , xr−1) with polynomials pr satisfying deg(pr(x1, . . . , xr−1)) = r .

Using the above polynomials pr , we define hi,1, . . . , hi,N+1 ∈ Ûμ1,μ2 via

hi,r :=
(ψ+i,0)−1ψ+i,r

vi − v−1
i

+ pr((ψ
+
i,0)

−1ψ+i,1, . . . , (ψ
+
i,0)

−1ψ+i,r−1) for 1 ≤ r ≤ N + 1.

(A.2)

These hi,r are well-defined and are independent of the choice of N > r − 1, due to
the assumption (EN ) and the aforementioned degree condition on pr . The following
is straightforward:10

[hi,r , ei,s] = [2r]vi
r

· ei,s+r for 1 ≤ r ≤ N + 1, s ∈ Z. (v13)

10If we knew that [ψ+i,a, ψ+i,b] = 0 for any 0 ≤ a, b ≤ N + 1, then (v13) would immediately
follow from (DN ) by the standard arguments. However, every monomial appearing in pr involves
only pairwise commuting ψ+i,a’s, due to the degree condition on pr and the assumption (EN ).
Hence, the equality (v13) follows formally from its validity in the aforementioned simpler case
([ψ+i,a, ψ+i,b] = 0 for any 0 ≤ a, b ≤ N + 1).
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Validity of (AN+1) We need to prove [hi,1, ψ+i,N+2] = 0. According to (CN ), we

have ψ+i,N+2 = (vi − v−1
i )[ei,N+2−r , fi,r ] for 0 ≤ r ≤ N + 2. Hence,

[hi,1, ψ+i,N+2]/(v2
i −v−2

i ) = [ei,N+3−r , fi,r ]−[ei,N+2−r , fi,r+1] for 0 ≤ r ≤ N+2.
(v14)

Adding up these equalities for r = 0, 1 and using Lemma A.1 together with the
assumption (CN), we get

2[hi,1, ψ+i,N+2]
v2
i − v−2

i

= [ei,N+3, fi,0] − [ei,N+1, fi,2]

= 2

[4]vi
· [hi,2, [ei,N+1, fi,0]] =

2[hi,2, ψ+i,N+1]
v4
i − v−4

i

.

Likewise, adding up the equality (v14) for r = 0, 1, . . . , N and using (v13), we
obtain

N + 1

v2
i − v−2

i

[hi,1, ψ+i,N+2] =
N + 1

[2(N + 1)]vi
·[hi,N+1, [ei,2, fi,0]] =

(N + 1)[hi,N+1, ψ
+
i,2]

v
2(N+1)
i − v

−2(N+1)
i

.

Comparing the above two equalities, we find

[hi,1, ψ+i,N+2] =
v2
i − v−2

i

v4
i − v−4

i

[hi,2, ψ+i,N+1] =
v2
i − v−2

i

v
2(N+1)
i − v

−2(N+1)
i

[hi,N+1, ψ
+
i,2].
(v15)

On the other hand, combining (A.2) with the assumption (EN ), we get

[hi,s, ψ+i,N+3−s] = (ψ+i,0)
−1[ψ+i,s , ψ+i,N+3−s]/(vi − v−1

i ) for 1 ≤ s ≤ N + 1.

Hence,

[hi,1, ψ+i,N+2] =
(ψ+i,0)−1[ψ+i,2, ψ+i,N+1]

(vi − v−1
i )[2]v2

i

= (ψ+i,0)−1[ψ+i,2, ψ+i,N+1]
(vi − v−1

i )[−N − 1]v2
i

. (v16)

Since [2]v2
i
�= [−N − 1]v2

i
, the second equality of (v16) implies [ψ+i,2, ψ+i,N+1] = 0.

Hence, [hi,1, ψ+i,N+2] = 0, and (AN+1) follows.

Validity of (BN+1) We need to prove [hi,−1, ψ
+
i,N+2] = 0. This follows from

[hi,−1, ψ
+
i,N+2] = (vi − v−1

i )[2]vi · ([ei,N , fi,1] − [ei,N+1, fi,0]) = 0, where we
used (v1, v2) in the first equality and (CN ) in the second one. Hence, (BN+1) holds.
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Validity of (CN+1) According to (CN ), we have ψ+i,N+2 = (vi −
v−1
i )[ei,r , fi,N+2−r ] for any 0 ≤ r ≤ N + 2. Therefore, [hi,1, ψ+i,N+2] =
(v2
i − v−2

i )([ei,r+1, fi,N+2−r ] − [ei,r , fi,N+3−r ]) due to (v1, v2). The left-hand
side is zero due to (AN+1) established above, hence

[ei,N+3, fi,0] = [ei,N+2, fi,1] = . . . = [ei,1, fi,N+2] = [ei,0, fi,N+3].

Combining this with our definitionψ+i,N+3 = (vi−v−1
i )[ei,N+2, fi,1] yields (CN+1).

Validity of (DN+1) Due to (AN+1) and (BN+1) established above, we have
[hi,±1, Y

+(i;N + 1, s)] = [2]vi · Y+(i;N + 1, s ± 1). Combining this with (v12),
we see that Y+(i;N + 1, s) = 0 for any s ∈ Z. Hence, (DN+1) holds.

Validity of (EN+1) We need to prove [ψ+i,r , ψ+i,N+3−r ] = 0 for any 1 ≤ r ≤ N +
1. Equivalently, it suffices to prove [hi,r , ψ+i,N+3−r ] = 0 for 1 ≤ r ≤ N + 1.

According to (CN ), we have ψ+i,N+3−r = (vi − v−1
i )[ei,N+3−r , fi,0]. Therefore,

[hi,r , ψ+i,N+3−r ] = v2r
i −v−2r

i

r
· ([ei,N+3, fi,0]− [eN+3−r , fi,r ]) = 0, due to (v13) and

the assertion (CN+1) proved above. ��
The induction step is accomplished. In particular, (DN ) completes our verifica-

tion of (U4) with i = j .

A(ii).d Verification of (U5)

This relation is verified completely analogously to (U4).

A(ii).e Verification of (U6)

We need to prove

[ei,r , fi,N−r ] = 1

vi − v−1
i

·

⎧⎪⎪⎨⎪⎪⎩
ψ+i,N − δN,0δbi ,0ψ

−
i,bi

if N ≥ 0,

−ψ−i,N + δN,0δbi ,0ψ
+
i,0 if N ≤ bi,

0 if bi < N < 0.

Note that given any value of N ∈ Z, we know this equality for a certain value of
r ∈ Z.

Case N > 0 If 0 ≤ r ≤ N , then [ei,r , fi,N−r ] = ψ+i,N/(vi − v−1
i ), due to

(CN ). For r < 0, we proceed by induction in |r|. Due to (v1, v2), we have
[ei,r , fi,N−r ] = [2]−1

vi
· [[hi,−1, ei,r+1], fi,N−r ] = [2]−1

vi
· [hi,−1, [ei,r+1, fi,N−r ]] +

[ei,r+1, fi,N−r−1] = ψ+i,N , where in the last equality we used the induction
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assumption and the equality [hi,−1, ψ
+
i,N+1] = 0, due to (BN ). The case l :=

N − r < 0 is treated in the same way.

Case N ≤ 0 We proceed by induction in |N |. For any r ∈ Z, we have

[ei,r , fi,N−r ] = [2]−1
vi
·[hi,−1, [ei,r+1, fi,N−r ]]+[ei,r+1, fi,N−r−1] = [ei,r+1, fi,N−r−1],

where we used the induction assumption together with (Û1, v1, v2) and
[hi,−1, ψ

−
i (z)] = 0 (the latter is proved completely analogously to (AN )). Hence,

the expression [ei,r , fi,N−r ] is independent of r ∈ Z. The result follows since we
know the equality holds for a certain value of r .

A(ii).f Verification of (U1)

We consider the case ε = + (the case ε = − is completely analogous). We need
to prove [ψ+i,r , ψ+i,s+i ] = [ψ+i,r , ψ−i,−s−i ] = 0 for any r, s+i ≥ 0, s−i ≥ −bi . This is

clear for r = 0 or s+i = 0, or s−i = −bi , due to (v3). Therefore, it remains to prove
[hi,r , ψ+

i,s+i
] = 0 and [hi,r , ψ−

i,−s−i
] = 0 for r > 0, s+i > 0, s−i > −bi .

For s+i > 0, we have ψ+
i,s+i

= (vi − v−1
i )[ei,s+i −1, fi,1], so that

[hi,r , ψ+
i,s+i
] = [2r]vi

r
(vi − v−1

i ) · ([ei,s+i +r−1, fi,1] − [ei,s+i −1, fi,r+1]) = 0,

where the first equality is due to (v13), while the second equality is due to
relation (U6) with i = j proved above.

For s−i > −bi , we have ψ−
i,−s−i

= (v−1
i − vi )[ei,−b1,i−s−i , fi,b1,i ], so that

[hi,r , ψ−
i,−s−i

] = [2r]vi
r

(v−1
i − vi ) · ([ei,r−b1,i−s−i , fi,b1,i ] − [ei,−b1,i−s−i , fi,r+b1,i ]) = 0,

where the first equality is due to (v13), while the second equality is due to
relation (U6) with i = j proved above.

This completes our verification of relations (U1–U6) with i = j for Ûμ1,μ2 .

A(iii) Verification of Relations (U1–U8) with i �= j for Ûμ1,μ2

A(iii).a Verification of (U2)

We need to prove X+(i, j ; r, s) = 0 for any r, s ∈ Z, where

X+(i, j ; r, s) := [ei,r+1, ej,s]vciji + [ej,s+1, ei,r ]vciji .
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First, the equality X+(i, j ;−1,−1) = 0 follows from (Û2). Second, due to (v1) we
have

[hi,1, X+(i, j ; r, s)] = [cii]vi ·X+(i, j ; r + 1, s)+ [cij ]vi ·X+(i, j ; r, s + 1),

[hj,1, X+(i, j ; r, s)] = [cji]vj ·X+(i, j ; r + 1, s)+ [cjj ]vj ·X+(i, j ; r, s + 1).

Combining these equalities with nondegeneracy of the matrix Aij :=[ [cii]vi [cij ]vi
[cji]vj [cjj ]vj

]
, we see that X+(i, j ; r, s) = 0 ⇒ X+(i, j ; r + 1, s) =

0, X+(i, j ; r, s + 1) = 0. Since X+(i, j ;−1,−1) = 0, we get X+(i, j ; r, s) = 0
for r, s ≥ −1 by induction in r, s.

A similar reasoning with hi,−1, hj,−1 used instead of hi,1, hj,1 yields the
implication

X+(i, j ; r, s) = 0 (⇒ X+(i, j ; r − 1, s) = 0, X+(i, j ; r, s − 1) = 0.

Hence, an induction argument completes the proof of X+(i, j ; r, s) = 0 for any
r, s ∈ Z.

A(iii).b Verification of (U3)

We need to prove X−(i, j ; r, s) = 0 for any r, s ∈ Z, where

X−(i, j ; r, s) := [fi,r+1, fj,s]
v
−cij
i

+ [fj,s+1, fi,r ]
v
−cij
i

.

The r = s = 0 case follows from (Û3). The general case follows from

X−(i, j ; r, s) = 0 (⇒ X−(i, j ; r ± 1, s) = 0, X−(i, j ; r, s ± 1) = 0

applied iteratively toX−(i, j ; 0, 0) = 0, in the same vein as in the above verification
of (U2).

A(iii).c Verification of (U6)

We need to prove X(i, j ; r, s) = 0 for any r, s ∈ Z, where

X(i, j ; r, s) := [ei,r , fj,s].
First, the equality X(i, j ; 0, 0) = 0 follows from (Û6). Second, due to (v1, v2) we
have

[hi,±1, X(i, j ; r, s)] = [cii]vi ·X(i, j ; r ± 1, s)− [cij ]vi ·X(i, j ; r, s ± 1),

[hj,±1, X(i, j ; r, s)] = [cji]vj ·X(i, j ; r ± 1, s)− [cjj ]vj ·X(i, j ; r, s ± 1).
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Combining these equalities with nondegeneracy of the matrix Bij :=[ [cii]vi −[cij ]vi
[cji]vj −[cjj ]vj

]
, we see that X(i, j ; r, s) = 0 ⇒ X(i, j ; r ± 1, s) =

0, X(i, j ; r, s ± 1) = 0. Hence, the equality X(i, j ; r, s) = 0 for any r, s ∈ Z
follows from the r = s = 0 case considered above.

A(iii).d Verification of (U4)

We consider the case ε = + (the case ε = − is completely analogous). We need to
prove Y+(i, j ; r, s) = 0 for any r ∈ N, s ∈ Z, where

Y+(i, j ; r, s) := [ψ+i,r+1, ej,s]vciji + [ej,s+1, ψ
+
i,r ]vciji .

Due to relation (U6) (established already both for i = j and i �= j ), we have

(vi − v−1
i )[[ei,r+1, ej,s]vciji , fi,0] = [ψ+i,r+1, ej,s]vciji ,

(vi − v−1
i )[[ej,s+1, ei,r ]vciji , fi,0] = [ej,s+1, ψ

+
i,r − δr,0δbi ,0ψ

−
i,−bi ]vciji = [ej,s+1, ψ

+
i,r ]vciji .

Therefore, Y+(i, j ; r, s) = (vi − v−1
i )[X+(i, j ; r, s), fi,0] = 0, where the last

equality follows from X+(i, j ; r, s) = 0 proved above.

A(iii).e Verification of (U5)

We consider the case ε = + (the case ε = − is completely analogous). We need to
prove Y−(i, j ; r, s) = 0 for any r ∈ N, s ∈ Z, where

Y−(i, j ; r, s) := [ψ+i,r+1, fj,s]v−ciji

+ [fj,s+1, ψ
+
i,r ]v−ciji

.

Analogously to our verification of (U4), we have Y−(i, j ; r, s) = (vi −
v−1
i )[ei,0, X−(i, j ; r, s)]. Thus, the equality Y−(i, j ; r, s) = 0 follows from
X−(i, j ; r, s) = 0 proved above.

A(iii).f Verification of (U1)

We consider the case ε = ε′ = + (other cases are completely analogous). Due to
relation (v3), it suffices to prove [hi,r , ψ+j,s] = 0 for r, s ∈ Z>0, where the elements
{hi,r}∞r=1 were defined in (A.2).

Analogously to (v13), relations (U4, U5) imply

[hi,r , ej,s] = [rcij ]vi
r

· ej,s+r , [hi,r , fj,s] = −[rcij ]vi
r

· fj,s+r for any r ∈ Z>0, s ∈ Z.
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Hence, we have

[hi,r , ψ+j,s ] = (vi−v−1
i )[hi,r , [ej,s , fj,0]] = (vi−v−1

i )
[rcij ]vi
r

·([ej,s+r , fj,0]−[ej,s , fj,r ]) = 0,

where the first and the last equalities follow from (U6) with i = j established above.

A(iii).g Verification of (U7)

In the simplest case cij = 0, we need to prove [ei,r , ej,s] = 0 for any r, s ∈ Z.
The equality [ei,0, ej,0] = 0 is due to (Û7), while commuting it iteratively with
hi,±1, hj,±1, we get [ei,r , ej,s] = 0, due to (v1, v2).

In general, we set m := 1 − cij . For any �r = (r1, . . . , rm) ∈ Zm and s ∈ Z,
define

Z+(i, j ; �r, s) :=
∑
π∈Sm

m∑
t=0

(−1)t
[
m

t

]
vi

ei,rπ(1) · · · ei,rπ(t)ej,sei,rπ(t+1) · · · ei,rπ(m) .

To check (U7), we need to prove Z+(i, j ; �r, s) = 0 for any �r ∈ Zm, s ∈ Z.
Let �0 = (0, . . . , 0) ∈ Zm. The equality Z+(i, j ; �0, 0) = 0 follows from (Û7)

(cf. Remark 5.4). Commuting Z+(i, j ; �0, s) with hi,±1, hj,±1, and using nondegen-
eracy of the matrix Aij , we get Z+(i, j ; �0, s) = 0 ⇒ Z+(i, j ; �0, s ± 1) = 0.
Therefore, Z+(i, j ; �0, s) = 0 for any s ∈ Z.

Next, we prove that Z+(i, j ; �r, s) = 0 for any �r = (r1, . . . , rk, 0, . . . , 0) ∈
Zm, s ∈ Z by induction in 0 ≤ k ≤ m. The base case k = 0 was just treated
above. For the induction step, note that the commutator [hi,r ′ , Z+(i, j ; �r, s)] equals
(m−k)·[2r ′]vi

r ′ Z+(i, j ; (r1, . . . , rk, r ′, 0, . . . , 0), s) plus some other terms which are
zero by the induction assumption. Hence, Z+(i, j ; �r, s) = 0 for any �r ∈ Zm, s ∈ Z.

A(iii).h Verification of (U8)

Set m := 1− cij . For any �r ∈ Zm, s ∈ Z, define

Z−(i, j ; �r, s) :=
∑
π∈Sm

m∑
t=0

(−1)t
[
m

t

]
vi

fi,rπ(1) · · · fi,rπ(t)fj,sfi,rπ(t+1) · · · fi,rπ(m) .

Then, we need to show Z−(i, j ; �r, s) = 0. This is proved completely analogously
to (U7).

This completes our proof of Theorem 5.5.
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Remark A.2

(a) Specializing v �→ v ∈ C× from the beginning and viewing all algebras as C-
algebras, the statement of Theorem 5.5 still holds as long as v is not a root of
unity.

(b) A slightly different proof can be obtained by following the arguments in [47].
(c) We note that both Theorem 5.5 and its proof are valid also for all affine Lie

algebras, except for the type A(1)1 .

A(iv) An Alternative Presentation of Usc
0,μ

for μ ∈ �−

Inspired by the recent result [33, Theorem 2.13], we provide another realization of
Usc

0,μ (with μ ∈ �−) without the defining relation (Û9). Following the notations of

Sect. 5.2, denote by Ũμ1,μ2 the associative C(v)-algebra generated by

{ei,r , fi,s , (ψ+i,0)±1, (ψ−i,bi )
±1, hi,±1|i ∈ I, b2,i − 1 ≤ r ≤ 1, b1,i − 1 ≤ s ≤ 1}

with the defining relations (Û1–Û8). Define inductively ei,r , fi,r , ψ
±
i,r as it was done

for Ûμ1,μ2 right before Theorem 5.5.

Theorem A.3 There is a unique C(v)-algebra isomorphism Ũμ1,μ2
∼−→Usc

0,μ, such
that

ei,r �→ ei,r , fi,r �→ fi,r , ψ
±
i,±s±i

�→ ψ±
i,±s±i

for i ∈ I, r ∈ Z, s+i ≥ 0, s−i ≥ −bi .

Proof Due to Theorem 5.5, it suffices to show that (Û9) can be derived from (Û1–
Û8). We will treat only the first relation of (Û9) (the second is completely
analogous).

First, we note that relations (v1–v5) and (U2, U3, U6) with i �= j hold in Ũμ1,μ2 ,
since their proofs for the algebra Ûμ1,μ2 were solely based on relations (Û1–Û6).
Likewise, the equalities Y±(i, j ; r, s) = 0 from our verifications of (U4, U5) for
i �= j still hold for r ∈ {0, 1}, s ∈ Z.

Second, we have

[ψ+i,2, ei,0]v2
i
+ [ei,1, ψ+i,1]v2

i
= 0, [ψ+i,2, fi,0]v−2

i
+ [fi,1, ψ+i,1]v−2

i
= 0. (v18)

These equalities are proved completely analogously to (v11) from our proof of
Lemma A.1, but now we start from the equality [ei,1, ei,0]v2

i
= 0 rather than

[ei,0, ei,−1]v2
i
= 0 (commuting it first with hi,1 and then further with fi,0).
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Recall hi,2 of (A.1). Analogously to Lemma A.1, we see that (v18) implies11

[hi,2, ei,0] = [4]vi
2
· ei,2, [hi,2, fi,0] = −[4]vi

2
· fi,2. (v19)

Likewise, the aforementioned equalities Y±(i, j ; 1, s) = 0 for i �= j, s ∈ Z, also
imply

[hi,2, ej,s] = [2cij ]vi
2

· ej,s+2, [hi,2, fj,s] = −[2cij ]vi
2

· fj,s+2 for i �= j, s ∈ Z.

(v20)

Finally, due to (Û7, Û8, v1, v2, v19, v20), we also get [ei,r , ej,s] = [fi,r , fj,s] = 0
if cij = 0 and Z±(i, j ; r ′, 0, s) = Z±(i, j ; 1, 1, s) = 0 if cij = −1 for r, s ∈
Z, r ′ ∈ {0, 1, 2}.

In the simply-laced case, the rest of the proof follows from the next result.

Lemma A.4 Let i, j ∈ I be such that cij = −1. Then [ψ+i,1, ψ+i,2] = 0.

Proof As just proved, we have [fi,1, [fi,1, fj,0]v−1
i
]vi = 0. Commuting this

equality with ej,1 and applying (v4) together with (U6) for i �= j , we get
[fi,1, [fi,1, ψ+j,1]v−1

i
]vi = 0. Combining the latter equality with ψ+j,1 = (vj −

v−1
j )ψ+j,0hj,1 = (vi − v−1

i )ψ+j,0hj,1 and using (v2), we find

[fi,1, [fi,1, hj,1]]v2
i
= 0 (⇒ [fi,1, fi,2]v2

i
= 0 (⇒ [fi,2, fi,1]v−2

i
= 0.

Commuting this further with ei,0, we obtain

[ψ+i,2, fi,1]v−2
i
+ [fi,2, ψ+i,1]v−2

i
= 0.

Finally, we apply [ei,0,−]v−2
i

to the latter equality. In the left-hand side we get two

summands computed below.

(1) We have [ei,0, [fi,2, ψ+i,1]v−2
i
]
v−2
i
=[[ei,0, fi,2], ψ+i,1]v−4

i
+[fi,2, [ei,0, ψ+i,1]v−2

i
]
v−2
i
.

Due to (Û4), [ei,0, ψ+i,1]v−2
i
= (v−2

i − v2
i )ei,1ψ

+
i,0 ⇒ [fi,2, [ei,0, ψ+i,1]v−2

i
]
v−2
i
=

(v−2
i − v2

i )[fi,2, ei,1]v−4
i
ψ+i,0. Combining this with (v5), we thus get

[ei,0, [fi,2, ψ+i,1]v−2
i
]
v−2
i
= [ψ+i,2, ψ+i,1]v−4

i
/(vi−v−1

i )+(v−2
i −v2

i )[fi,2, ei,1]v−4
i
ψ+i,0.

(v21)

11Note that we cannot deduce the statement of Lemma A.1 due to the absence of (Û9).
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(2) We have [ei,0, [ψ+i,2, fi,1]v−2
i
]
v−2
i

= [[ei,0, ψ+i,2]v−2
i
, fi,1]v−2

i
+

v−2
i [ψ+i,2, [ei,0, fi,1]]. By (v18): [ei,0, ψ+i,2]v−2

i
= −v−2

i [ψ+i,2, ei,0]v2
i
=

v−2
i [ei,1, ψ+i,1]v2

i
= v−2

i (vi − v−1
i )[ei,1, hi,1]v4

i
ψ+i,0. Hence,

[[ei,0, ψ+i,2]v−2
i
, fi,1]v−2

i
= v−4

i (vi − v−1
i )[ei,1hi,1 − v4

i hi,1ei,1, fi,1]ψ+i,0 =
v−4
i (vi − v−1

i )([ψ+i,2, hi,1]v4
i
/(vi − v−1

i )− (vi + v−1
i )[ei,1, fi,2]v4

i
)ψ+i,0.

Therefore,

[ei,0, [ψ+i,2, fi,1]v−2
i
]
v−2
i
= [ψ+i,2, ψ+i,1]

v2
i (vi − v−1

i )
+ (v2

i − v−2
i )[fi,2, ei,1]v−4

i
ψ+i,0 +

[ψ+i,2, ψ+i,1]v4
i

v4
i (vi − v−1

i )
.

(v22)
Substituting (v22) and (v21) into [ei,0, [ψ+i,2, fi,1]v−2

i
+ [fi,2, ψ+i,1]v−2

i
]
v−2
i
=

0, we find

[ψ+i,2, ψ+i,1]v−4
i
+ v−2

i [ψ+i,2, ψ+i,1] + v−4
i [ψ+i,2, ψ+i,1]v4

i
= 0.

The left-hand side of this equality equals
1−v−6

i

1−v−2
i

· [ψ+i,2, ψ+i,1]. Hence,

[ψ+i,1, ψ+i,2] = 0.
��

Our next result completes the proof for non-simply-laced g.

Lemma A.5 If cij �= 0 and [ψ+i,1, ψ+i,2] = 0, then [ψ+j,1, ψ+j,2] = 0.

Proof Due to (v1, v2): [hi,1, ei,r ] = [2]vi[cji ]vj · [hj,1, ei,r ], [hi,1, fi,r ] =
[2]vi[cji ]vj ·

[hj,1, fi,r ]. Hence [hi,1, ψ+i,2] = (vi−v−1
i )([[hi,1, ei,1], fi,1]+[ei,1, [hi,1, fi,1]]) =

[2]vi /[cji]vj · [hj,1, ψ+i,2]. Therefore, [ψ+i,1, ψ+i,2] = 0 ⇒ [hj,1, ψ+i,2] = 0 ⇒
[hj,1, hi,2] = 0 with the second implication due to (Û1). Commuting the latter
equality with fj,0, we get

0 = [fj,0, [hj,1, hi,2]] = [cjj ]vj · [fj,1, hi,2] +
[2cij ]vi

2
· [hj,1, fj,2].

Commuting this further with ej,0, we obtain

[cjj ]vj · [ej,0, [fj,1, hi,2]] +
[2cij ]vi

2
· [ej,0, [hj,1, fj,2]] = 0. (v23)
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Note that

[ej,0, [fj,1, hi,2]] = [ψ+j,1, hi,2]/(vj − v−1
j )− [2cij ]vi

2
· [fj,1, ej,2] = −[2cij ]vi

2
· [fj,1, ej,2],

[ej,0, [hj,1, fj,2]] = −[cjj ]vj · [ej,1, fj,2] + [hj,1, ψ+j,2]/(vj − v−1
j ),

[ej,2, fj,1] − [ej,1, fj,2] = [cjj ]−1
vj
· [hj,1, [ej,1, fj,1]] = [cjj ]−1

vj
· [hj,1, ψ+j,2]/(vj − v−1

j ).

Substituting the last three equalities into (v23), we get
[2cij ]vi
vj−v−1

j

· [hj,1, ψ+j,2] = 0.

Thus, [hj,1, ψ+j,2] = 0 ⇒ [ψ+j,1, ψ+j,2] = 0. ��
This completes our proof of Theorem A.3. ��

Appendix B Proof of Theorem 6.6

The proof of part (a) proceeds in two steps. First, we consider the simplest case
g = sl2. Then, we show how a general case can be easily reduced to the case of sl2.

B(i) Proof of Theorem 6.6(a) for g = sl2

First, let us derive an explicit formula for A±(z). Recall the elements {h±r}∞r=1

of Sect. 5, such that z∓b±(ψ±∓b±)
−1ψ±(z) = exp

(±(v − v−1)
∑

r>0 h±rz∓r
)
. For

r �= 0, define tr := −hr/(1+ v2r ), and set

A±(z) := (φ±)−1 · exp

(
±(v − v−1)

∑
r>0

t±rz∓r
)
. (B.1)

Then, z∓b±ψ±(z) = 1
A±(z)A±(v−2z)

and A±(z) is the unique solution with A±0 :=
(φ±)−1.

Relations (6.6) and (6.7) follow immediately from (U10) and (U1), respectively,
while the verification of (6.9–6.16) is based on the following result.

Lemma B.1 For any ε, ε′ ∈ {±}, we have:

(a1) (vz− v−1w)Aε(z)e(w) = (z− w)e(w)Aε(z).

(a2) (vz− v−1w)Aε(z)eε
′
(w)− (z− w)eε

′
(w)Aε(z) = (v − v−1)wAε(z)eε(z).

(a3) (vz− v−1w)Aε(z)eε
′
(w)− (z−w)eε′(w)Aε(z) = (1− v−2)weε(v2z)Aε(z).

(b1) (z− w)Aε(z)f (w) = (vz− v−1w)f (w)Aε(z).

(b2) (z− w)Aε(z)f ε
′
(w)− (vz− v−1w)f ε

′
(w)Aε(z) = (v−1 − v)zf ε(z)Aε(z).

(b3) (z−w)Aε(z)f ε′(w)− (vz− v−1w)f ε
′
(w)Aε(z) = (1− v2)zAε(z)f ε(v2z).
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(c) (z− w)[eε(z), f ε′(w)] = z(ψε′(w)− ψε(z))/(v − v−1).

(d1) (z − v2w)eε(z)eε
′
(w) − (v2z − w)eε

′
(w)eε(z) = z[e0, e

ε′(w)]v2 +
w[e0, e

ε(z)]v2 .

(d2) (z−v2w)eε(z)eε
′
(w)−(v2z−w)eε′(w)eε(z) = (1−v2)(weε(z)2+zeε′(w)2).

(e1) (v2z − w)f ε(z)f ε
′
(w) − (z − v2w)f ε

′
(w)f ε(z) = v2[f1, f

ε′(w)]v−2 +
v2[f1, f

ε(z)]v−2 .

(e2) (v2z − w)f ε(z)f ε
′
(w) − (z − v2w)f ε

′
(w)f ε(z) = (v2 − 1)(zf ε(z)2 +

wf ε
′
(w)2).

(f1) (z−v2w)ψε(z)eε
′
(w)− (v2z−w)eε′(w)ψε(z) = (v−2−v2)wψε(z)eε(v2z).

(f2) (z− v2w)ψε(z)eε
′
(w)− (v2z−w)eε′(w)ψε(z) = (1− v4)weε(v−2z)ψε(z).

(g1) (v2z − w)ψε(z)f ε
′
(w) − (z − v2w)f ε

′
(w)ψε(z) = (v2 −

v−2)zψε(z)f ε(v−2z).

(g2) (v2z−w)ψε(z)f ε
′
(w)− (z− v2w)f ε

′
(w)ψε(z) = (v4 − 1)zf ε(v2z)ψε(z).

Proof

(a1) According to (U4′), we have [tr , es] = v−2r−1
r(v−v−1)

es+r for r �= 0,

s ∈ Z. Combining this with (B.1), we find A±(z)e(w) =
e(w)A±(z)v∓1 exp

(∑
r>0

v∓2r−1
r

(w/z)±r
)
. The latter exponent equals

z−w
z−v−2w

(in the “+” case) or z−w
v2z−w (in the “−” case), hence, (a1).

(a2, a3) First, we consider the case ε = ε′ = +. Due to (a1), we have vA+r+1es −
v−1A+r es+1 = esA

+
r+1 − es+1A

+
r for any r ∈ N, s ∈ Z. Multiplying this

equality by z−rw−s−1 and summing over all r, s ∈ N, we find w−1((vz−
v−1w)A+(z)e+(w) − (z − w)e+(w)A+(z)) = [e0, A

+(z)]v−1 . Note that
the right-hand side is independent of w. Substituting either w = z or w =
v2z into the left-hand side, we get the equalities (a2) and (a3) for ε = ε′ =
+, respectively.

Next, we consider the case ε = ε′ = −. Due to (a1), we have
vA−−r+1e−s − v−1A−r e−s+1 = e−sA−−r+1 − e−s+1A

−−r for any r ∈ N, s ∈
Z, where we set A−1 := 0. Multiplying this equality by−zrws−1 and sum-
ming over all r ∈ N, s ∈ Z>0, we find w−1((vz − v−1w)A−(z)e−(w) −
(z − w)e−(w)A−(z)) = [e0, A

−(z)]v−1 . Note that the right-hand side is
independent of w. Substituting either w = z or w = v2z into the left-hand
side, we get the equalities (a2) and (a3) for ε = ε′ = −, respectively.

The case ε′ �= ε follows by combining the formula eε
′
(w) = eε(w) +

ε′e(w) with part (a1) and the cases ε = ε′ of parts (a2, a3), established
above.

(b1–b3) Parts (b1, b2, b3) are proved completely analogously to (a1, a2, a3),
respectively.

(c) First, we consider the case ε = ε′. According to (U6), we have

[er , fs] = ψ+r+s
v−v−1 for r ≥ 0, s > 0. For N > 0, we have (z −

w)
∑N

s=1 w
−szs−N = z(w−N − z−N). Hence, (z − w)[e+(z), f+(w)] =
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∑
N>0 z(w

−N − z−N) ψ+N
v−v−1 = z

ψ+(w)−ψ+(z)
v−v−1 . Likewise, we have

[e−r , f−s] = − ψ−−r−s
v−v−1 for r > 0, s ≥ 0. For N > 0, we have

(z−w)∑N
s=1 z

swN−s = z(zN −wN). Hence, (z−w)[e−(z), f−(w)] =
−∑N>0 z(z

N − wN)
ψ−−N

v−v−1 = z
ψ−(w)−ψ−(z)

v−v−1 .
Next, we consider the case ε �= ε′. According to (U6), we have

[e(z), f (w)] = δ(z/w)

v−v−1 (ψ
+(z) − ψ−(z)) = δ(z/w)

v−v−1 (ψ
+(w) − ψ−(w)).

Taking the terms with negative powers of w, we find [e(z), f+(w)] =
z/w

1−z/w
ψ+(z)−ψ−(z)

v−v−1 ⇒ (z − w)[e(z), f+(w)] = z
ψ−(z)−ψ+(z)

v−v−1 , while

taking the terms with nonpositive powers of z, we find [e+(z), f (w)] =
1

1−w/z
ψ+(w)−ψ−(w)

v−v−1 ⇒ (z− w)[e+(z), f (w)] = z
ψ+(w)−ψ−(w)

v−v−1 . Combin-

ing these equalities with (z − w)[e+(z), f+(w)] = z
ψ+(w)−ψ+(z)

v−v−1 from

above and e−(z) = e+(z) − e(z), f−(z) = f+(z) − f (z), we obtain the
ε �= ε′ cases of part (c).

(d1) Comparing the coefficients of z−εrw−ε′s in both sides of relation (U2),
we find eεr+1eε′s − v2eεreε′s+1 = v2eε′seεr+1 − eε′s+1eεr for any r, s ∈
Z. Multiplying this equality by εε′ · z−εrw−ε′s and summing over r ≥
δε,−, s ≥ δε′,−, we get (d1).

(d2) Substituting w = z into the ε = ε′ case of (d1), we find [e0, e
±(z)]v2 =

(1 − v2)e±(z)2. Replacing accordingly the right-hand side of (d1), we
obtain (d2).

(e1, e2) Parts (e1, e2) are proved completely analogously to (d1, d2), respectively.
(f1, f2) Parts (f1, f2) are deduced from relation (U4) in the same way as we

deduced parts (a2, a3) from (a1).
(g1, g2) Parts (g1, g2) are proved completely analogously to (f1, f2), respectively.

��
Now let us verify relations (6.9–6.16) using Lemma B.1. The idea is first to use

parts (a3, b2) of Lemma B.1 (resp. parts (a2, b3)) to move all the series A•(·) to the
right (resp. to the left), and then to use Lemma B.1(c–g2) to simplify the remaining
part. Since g = sl2 we will drop the index i from our notation.

B(i).a Verification of the First Relation in (6.9)

We need to prove [Bε(z), Bε′(w)] = 0, or equivalently, (z − w)[Bε(z), Bε′(w)] =
0. By definition, Bε(z)Bε

′
(w) = (v − v−1)2Aε(z)eε(z)Aε

′
(w)eε

′
(w). Applying

Lemma B.1(a2), we see that

(z−w)Bε(z)Bε′ (w) = (v−v−1)2Aε(z)Aε
′
(w)((v−1z−vw)eε(z)eε

′
(w)+(v−v−1)zeε

′
(w)2).
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Hence, the equality (z− w)[Bε(z), Bε′(w)] = 0 boils down to the vanishing of

(v−1z−vw)eε(z)eε
′
(w)+ (v−v−1)zeε

′
(w)2+ (v−1w−vz)eε

′
(w)eε(z)+ (v−v−1)weε(z)2,

which is exactly the statement of Lemma B.1(d2).

B(i).b Verification of the Second Relation in (6.9)

We need to prove [Cε(z), Cε′(w)] = 0, or equivalently, (z − w)[Cε(z), Cε′(w)] =
0. By definition, Cε(z)Cε

′
(w) = (v − v−1)2f ε(z)Aε(z)f ε

′
(w)Aε

′
(w). Applying

Lemma B.1(b2), we see that

(z−w)Cε(z)Cε′ (w) = (v−v−1)2((vz−v−1w)f ε(z)f ε
′
(w)+(v−1−v)zf ε(z)2)Aε(z)Aε

′
(w).

Hence, the equality (z− w)[Cε(z), Cε′(w)] = 0 boils down to the vanishing of

(vz−v−1w)f ε(z)f ε
′
(w)+(v−1−v)zf ε(z)2+(vw−v−1z)f ε

′
(w)f ε(z)+(v−1−v)wf ε

′
(w)2,

which is exactly the statement of Lemma B.1(e2).

B(i).c Verification of the Third Relation in (6.9)

The verification of the equality [Dε(z),Dε′(w)] = 0 is much more cumbersome
and is left to the interested reader.

B(i).d Verification of (6.10)

We need to prove (z − w)[Bε′(w),Aε(z)]v−1 = (v − v−1)(zAε(z)Bε
′
(w) −

wAε
′
(w)Bε(z)). By definition and (6.7), the RHS equals (v −

v−1)2Aε(z)Aε
′
(w)(zeε

′
(w)− weε(z)). Meanwhile, the LHS equals (v − v−1)(z−

w)(Aε
′
(w)eε

′
(w)Aε(z) − v−1Aε(z)Aε

′
(w)eε

′
(w)). We use Lemma B.1(a2) to

replace the first term, so that the LHS equals

(v − v−1)Aε(z)Aε
′
(w)

(
(vz− v−1w)eε

′
(w)− (v − v−1)weε(z)− v−1(z− w)eε

′
(w)
)
,

which exactly coincides with the above formula for the RHS.
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B(i).e Verification of (6.11)

We need to prove (z − w)[Aε(z), Cε′(w)]v = (v − v−1)(wCε
′
(w)Aε(z) −

zCε(z)Aε
′
(w)). By definition and (6.7), the RHS equals (v − v−1)2(wf ε

′
(w) −

zf ε(z))Aε(z)Aε
′
(w). Meanwhile, the LHS equals (v − v−1)(z −

w)(Aε(z)f ε
′
(w)Aε

′
(w)−vf ε

′
(w)Aε

′
(w)Aε(z)). We use Lemma B.1(b2) to replace

the first term, so that the LHS equals

(v−v−1)
(
(vz− v−1w)f ε

′
(w)+ (v−1 − v)zf ε(z)− v(z− w)f ε

′
(w)
)
Aε(z)Aε

′
(w),

which exactly coincides with the above formula for the RHS.

B(i).f Verification of (6.12)

We need to prove (z − w)[Bε(z), Cε′(w)] = (v − v−1)z(Dε′(w)Aε(z) −
Dε(z)Aε

′
(w)). Applying the equality Aε(z)eε(z) = v−1eε(v2z)Aε(z), which

follows from Lemma B.1(a2), we see that the LHS equals

v−1(v−v−1)2(z−w)
(
eε(v2z)Aε(z)f ε

′
(w)Aε

′
(w)− f ε

′
(w)Aε

′
(w)eε(v2z)Aε(z)

)
.

Applying Lemma B.1(a3, b2) to move both Aε(z), Aε
′
(w) to the right and simpli-

fying the resulting expression, we find that the LHS equals

v−1(v − v−1)2
(
(vz− v−1w)[eε(v2z), f ε

′
(w)]+

(v − v−1)(zf ε
′
(w)eε

′
(v2w)− (v − v−1)zeε(v2z)f ε(z))

)
Aε(z)Aε

′
(w).

Meanwhile, Dε(z) = ψε(z)Aε(z)+ v−1(v − v−1)2f ε(z)eε(v2z)Aε(z), so that the
RHS equals

(v−v−1)
(
z(ψε′ (w)− ψε(z))+ v−1(v − v−1)2z(f ε

′
(w)eε

′
(v2w)− f ε(z)eε(v2z))

)
Aε(z)Aε

′
(w).

Thus, the equality LHS = RHS boils down to proving

v−2(v2z−w)[eε(v2z), f ε
′
(w)] − (1− v−2)z[eε(v2z), f ε(z)] = z

v − v−1
(ψε′ (w)−ψε(z)),

which immediately follows by applying Lemma B.1(c) to both terms on the left.
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B(i).g Verification of (6.13)

We need to prove (z − w)[Bε(z),Dε′(w)]v = (v − v−1)(wDε′(w)Bε(z) −
zDε(z)Bε

′
(w)). Combining the aforementioned equality Aε(z)eε(z) =

v−1eε(v2z)Aε(z) with Lemma B.1(a3), we find that (w − z) · RHS equals(
v−1(v − v−1)2(w(v−1w − vz)ψε′ (w)eε(v2z)+ z(v−1z− vw)ψε(z)eε

′
(v2w))+

v−1(v − v−1)3zw(ψε′ (w)eε
′
(v2w)+ ψε(z)eε(v2z))+

v−2(v − v−1)4(w(v−1w − vz)f ε
′
(w)eε

′
(v2w)eε(v2z)+ z(v−1z− vw)f ε(z)eε(v2z)eε

′
(v2w))+

v−2(v − v−1)5zw(f ε
′
(w)eε

′
(v2w)2 + f ε(z)eε(v2z)2)

)
Aε(z)Aε

′
(w).

Meanwhile, using Lemma B.1(a3, b2) to moveAε(z) to the right of f ε
′
(w)eε

′
(v2w),

we find that (w − z) · LHS equals

v−1(v − v−1)(w − z) ·
(
(w − v2z)ψε′ (w)eε(v2z)+ (v2 − 1)zψε′ (w)eε

′
(v2w)+

(z− w)eε(v2z)ψε′ (w))
)
Aε(z)Aε

′
(w)+

v−2(v − v−1)3 ·
(
(w − v2z)(w − z)f ε

′
(w)eε

′
(v2w)eε(v2z)+ (v2 − 1)z(w − z)f ε

′
(w)eε

′
(v2w)2−

(vz− v−1w)(v−1z− vw)eε(v2z)f ε
′
(w)eε

′
(v2w)− (v−1 − v)z(v−1z− vw)eε(v2z)f ε(z)eε

′
(v2w)−

(vz− v−1w)(v − v−1)weε(v2z)f ε
′
(w)eε(v2z)− (v−1 − v)(v − v−1)zweε(v2z)f ε(z)eε(v2z)

)
×

Aε(z)Aε
′
(w).

To check that the above two big expressions coincide, we first reorder some of the
terms. We use Lemma B.1(f1) to move ψε′(w) to the left of eε(v2z) via

(w−z)eε(v2z)ψε′(w) = ψε′(w)
(
(v−2w − v2z)eε(v2z)− (v−2 − v2)zeε

′
(v2w)

)
.

We also use Lemma B.1(c) to move f •(·) to the left of e•(·). After obvious
cancelations, everything boils down to proving

(v−1z−vw)eε(v2z)eε
′
(v2w)−(vz−v−1w)eε

′
(v2w)eε(v2z) = (v−1−v)(zeε

′
(v2w)2+weε(v2z)2),

which is exactly the statement of Lemma B.1(d2).

B(i).h Verification of (6.14)

This verification is completely analogous to the above verification of (6.13) and is
left to the interested reader.
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B(i).i Verification of (6.15)

We need to prove (z − w)[Aε(z),Dε′(w)] = (v − v−1)(wCε
′
(w)Bε(z) −

zCε(z)Bε
′
(w)). The LHS equals (v − v−1)2(z − w)(Aε(z)f ε

′
(w)Aε

′
(w)eε

′
(w) −

f ε
′
(w)Aε

′
(w)eε

′
(w)Aε(z)). Applying Lemma B.1(b2) to the first summand and

Lemma B.1(a2) to the second summand, we see that the LHS equals

(v − v−1)2((vz− v−1w)f ε
′
(w)+ (v−1 − v)zf ε(z))Aε(z)Aε

′
(w)eε

′
(w)−

(v − v−1)2f ε
′
(w)Aε(z)Aε

′
(w)((vz− v−1w)eε

′
(w)− (v − v−1)weε(z)) =

(v − v−1)3(wf ε
′
(w)Aε

′
(w)Aε(z)eε(z)− zf ε(z)Aε(z)Aε

′
(w)eε

′
(w)),

which obviously coincides with the RHS.

B(i).j Verification of (6.16)

We need to prove Aε(z)Dε(v−2z) − v−1Bε(z)Cε(v−2z) = zεb
ε
. Due

to Lemma B.1(b3), we have f ε(v−2z)Aε(v−2z) = vAε(v−2z)f ε(z). Thus,

Aε(z)Dε(v−2z) = Aε(z)Aε(v−2z)(ψε(v−2z)+ v(v − v−1)2f ε(z)eε(v−2z)),

Bε(z)Cε(v−2z) = v(v − v−1)2Aε(z)eε(z)Aε(v−2z)f ε(z).

According to Lemma B.1(a2), we have eε(z)Aε(v−2z) = vAε(v−2z)eε(v−2z).
Hence,

Bε(z)Cε(v−2z) = v2(v − v−1)2Aε(z)Aε(v−2z)eε(v−2z)f ε(z).

Due to Lemma B.1(c), we have −v(v − v−1)2[eε(v−2z), f ε(z)] = ψε(z) −
ψε(v−2z). Therefore, we finally get

Aε(z)Dε(v−2z)− v−1Bε(z)Cε(v−2z) = Aε(z)Aε(v−2z)ψε(v−2z)−
v(v − v−1)2Aε(z)Aε(v−2z)[eε(v−2z), f ε(z)] = Aε(z)Aε(v−2z)ψε(z) = zεb

ε

,

which completes our verification of (6.16).

B(ii) Proof of Theorem 6.6(a) for a General g

First, let us derive an explicit formula for A±i (z). Recall the elements {hi,±r}r>0
i∈I

of Sect. 5, such that z∓b
±
i (ψ±

i,∓b±i
)−1ψ±i (z) = exp

(
±(vi − v−1

i )
∑

r>0 hi,±r z∓r
)
.
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For r �= 0, consider the following I × I matrix Cv(r):

Cv(r)ij =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if cij = 0,

−1− v2r
i if j = i,

vj−v−1
j

vi−v−1
i

∑−cji
p=1 v

r(cji+2p)
j if j − i.

Set ti,r := ∑
j∈I (Cv(r)

−1)ij hj,r (matrix Cv(r) is invertible, due to Lemma B.3
below). Define

A±i (z) := (φ±i )
−1 · exp

(
±(vi − v−1

i )
∑
r>0

ti,±rz∓r
)
. (B.2)

These A±i (z) satisfy z∓b
±
i ψ±i (z) =

∏
j−i
∏−cji
p=1 A±j (v

−cji−2p

j z)

A±i (z)A
±
i (v

−2
i z)

as well as A±i,0 =
(φ±i )−1. This provides an explicit formula forA±i (z), which we referred to in Sect. 6.

Remark B.2 Comparing the coefficients of z∓r (r > 0) in the system of equa-
tions (6.1) for all i, we see that Ai,±r are recovered uniquely modulo the values of
Ai,±s(0 ≤ s < r), due to invertibility of Cv(r). Therefore, an induction in r implies
that the system of equations (6.1) has a unique solution {A±i (z)}i∈I , hence, given
by (B.2).

Define auxiliary I × I matrices Bv(r),Dv(r) via Bv(r)ij = [rcij ]vi
r

, Dv(r)ij =
δij

v−2r
j −1

r(vj−v−1
j )
. The matrix Bv(r) is a v-version of the Cartan matrix of g and it is

known to be invertible for any r �= 0. The following is straightforward.

Lemma B.3 For r �= 0, we have Bv(r) = Cv(r)Dv(r). In particular, Cv(r) is
invertible.

The following result is an immediate corollary of Lemma B.3 and relations
(U4′, U5′).

Lemma B.4 For ε ∈ {±}, we have:

(a) (viz − v−1
i w)Aεi (z)ei(w) = (z − w)ei(w)A

ε
i (z), while Aεi (z)ej (w) =

ej (w)A
ε
i (z) for j �= i.

(b) (z − w)Aεi (z)fi(w) = (viz − v−1
i w)fi(w)A

ε
i (z), while Aεi (z)fj (w) =

fj (w)A
ε
i (z) for j �= i.

Now we are ready to sketch the proof of Theorem 6.6(a) for a general g.

B(ii).a Verification of (6.7) and (6.8)

Relations (6.7, 6.8) follow from Lemma B.4 and relations (U1, U6).
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B(ii).b Verification of (6.9–6.16)

Let us introduce the series Ā±i (z) via z∓b
±
i ψ±i (z) = 1

Ā±i (z)Ā
±
i (v

−2
i z)

, and define the

generating series B̄±i (z), C̄
±
i (z), D̄

±
i (z) by using formulas (6.2–6.4) but with Ā±i (z)

instead of A±i (z). For a fixed i, these series satisfy the corresponding relations (6.9–
6.16) of the sl2 case. However, A±i (z)Ā

±
i (z)

−1 is expressed through {A±j (z)}j �=i ,
hence, commutes with eεi (z), f

ε
i (z), A

ε
i (z), due to Lemma B.4. Relations (6.9–6.16)

follow (this also explains the RHS of (6.16)).

B(ii).c Verification of (6.17)

Analogously to Lemma B.1(d1), relation (U2) implies the following equality:

(z− v
cij
i w)eεi (z)e

ε′
j (w)− (vciji z−w)eε′j (w)eεi (z) = z[ei,0, eε′j (w)]vciji +w[ej,0, eεi (z)]vciji

for any ε, ε′ ∈ {±} (we also note that these equalities for all possible ε, ε′
imply (U2)). Multiplying the above equality by (vi − v−1

i )(vj − v−1
j )Aεi (z)A

ε′
j (w)

on the left and using Lemma B.4(a), relation (6.7), and an equality (vi − v−1
i )ei,0 =

φ+i B
+
i,0, we obtain (6.17).

B(ii).d Verification of (6.18)

Analogously to Lemma B.1(e1), relation (U3) implies the following equality:

(v
cij
i z−w)f εi (z)f ε

′
j (w)−(z−v

cij
i w)f ε

′
j (w)f

ε
i (z) = −[f ε

′
j (w), fi,1]vciji −[f

ε
i (z), fj,1]vciji

for any ε, ε′ ∈ {±} (we also note that these equalities for all possible ε, ε′
imply (U3)). Multiplying the above equality by (vi−v−1

i )(vj−v−1
j )Aεi (z)A

ε′
j (w) on

the right and using Lemma B.4(b), relation (6.7), and an equality (vi − v−1
i )fi,1 =

C+i,1φ
+
i , we obtain (6.18).

B(ii).e Verification of (6.19)

Case cij = 0 The equality [Bεi (z), Bε
′
j (w)] = 0 follows immediately from

Lemma B.4(a) and [eεi (z), eε
′
j (w)] = 0, which is a consequence of the correspond-

ing Serre relation (U7).
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Case cij = −1 The corresponding Serre relation (U7) is equivalent to

{eε1
i (z1)e

ε2
i (z2)e

ε′
j (w)−(vi+v−1

i )e
ε1
i (z1)e

ε′
j (w)e

ε2
i (z2)+eε′j (w)eε1

i (z1)e
ε2
i (z2)}+{z1 ↔ z2} = 0

for any ε1, ε2, ε
′ ∈ {±}. Let us denote the first {· · · } in the LHS by

J ε1,ε2,ε
′
(z1, z2, w). Set

M := (vi − v−1
i )2(vj − v−1

j )(viz1 − v−1
i z2)(viz2 − v−1

i z1)A
ε1
i (z1)A

ε2
i (z2)A

ε′
j (w).

Combining the equality

(viz2− v−1
i z1)A

ε2
i (z2)e

ε1
i (z1) = (z2− z1)e

ε1
i (z1)A

ε2
i (z2)+ (vi − v−1

i )z1A
ε2
i (z2)e

ε2
i (z2)

(see Lemma B.1(a2)) with Lemma B.4(a), we find

M · J ε1,ε2,ε
′
(z1, z2, w) = (vi − v−1

i )z1

viz2 − v−1
i z1

M · J ε2,ε2,ε
′
(z2, z2, w)+ (z2 − z1)(viz1 − v−1

i z2)×

{Bε1
i (z1)B

ε2
i (z2)B

ε′
j (w)− (vi + v−1

i )B
ε1
i (z1)B

ε′
j (w)B

ε2
i (z2)+ Bε

′
j (w)B

ε1
i (z1)B

ε2
i (z2)}.

The first summand in the RHS is zero as J ε2,ε2,ε
′
(z2, z2, w) = 0. Therefore,

multiplying J ε1,ε2,ε
′
(z1, z2, w) + J ε2,ε1,ε

′
(z2, z1, w) = 0 by M on the left, we

obtain (6.19).

Case cij = −2,−3 These cases are treated similarly to cij = −1, but the
corresponding computations become more cumbersome. We verified these cases
using MATLAB.

B(ii).f Verification of (6.20)

This verification is analogous to that of (6.19) and is left to the interested reader.

B(iii) Proof of Theorem 6.6(b)

Part (b) of Theorem 6.6 can be obtained by reversing the above arguments. In
other words, starting from the algebra generated by (A±i,0)−1 and the coefficients

of the currents A±i (z), B
±
i (z), C

±
i (z),D

±
i (z) with the defining relations (6.6–6.20),

we need to show that the elements φ±i and currents ei(z), fi(z), ψ
±
i (z), defined

via (6.1–6.4), satisfy relations (U1–U10).

This completes our proof of Theorem 6.6.
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Appendix C Proof of Theorem 7.1

We denote the images of ei(z), fi(z), ψ
±
i (z) under �̃λ

μ by Ei(z), Fi(z),�i(z)±. It
suffices to prove that they satisfy relations (U1–U8), since relations (U9, U10) are
obviously preserved by �̃λ

μ. While checking these relations, we will use LHS and
RHS when referring to their left-hand and right-hand sides. Set ρ+i := −vi

1−v2
i

, ρ−i :=
1

1−v2
i

,Wi,rs(z) :=
r �=t �=s∏
1≤t≤ai

(1− wi,t

z
).

C(i) Compatibility with (U1)

First, we check that the range of powers of z in ψ±i (z) and �i(z)± agree. Note that

(1−ν/z)+ = 1−ν ·z−1 ∈ C[[z−1]], (1/(1−ν/z))+ = 1+νz−1+ν2z−2+. . . ∈ C[[z−1]],

(1−ν/z)− = −ν·z−1(1−z/ν) ∈ z−1C[[z]], (1/(1−ν/z))− = −z/ν−z2/ν2−. . . ∈ zC[[z]].

Therefore, �i(z)+ contains only nonpositive powers of z, while �i(z)− contains
only powers of z bigger or equal to

−#{s : is = i} + 2ai −
∑
j−i

aj (−cji ) = −α∨i (λ)+ α∨i (λ− μ) = −α∨i (μ) = −α∨i (μ−) = −b−i .

Moreover, the coefficients of z0 in �i(z)+ and of z−b
−
i in �i(z)− are invertible.

The equality [�i(z)ε,�j (w)ε′ ] = 0 follows from the commutativity of

{w±1/2
i,r }1≤r≤aii∈I .

C(ii) Compatibility with (U2)

Case cij = 0 The equality [Ei(z), Ej (w)] = 0 is obvious in this case, since D−1
i,r

commute with w±1/2
k,s for k = j or k → j , while D−1

j,s commute with w±1/2
k,r for

k = i or k→ i.

Case cij = 2 We may assume g = sl2 and we will drop the index i from our nota-
tion. We need to prove (z−v2w)E(z)E(w)/(ρ+)2 = −(w−v2z)E(w)E(z)/(ρ+)2.
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The LHS equals

v−2
a∏
t=1

w2
t · (z− v2w) ·

a∑
r=1

δ

(
wr

z

)
δ

(
v−2wr

w

)
Z(wr )Z(v

−2wr )

Wr(wr )Wr(v−2wr )
D−2
r +

v−2
a∏
t=1

w2
t · (z− v2w) ·

∑
1≤r �=s≤a

δ

(
wr

z

)
δ
(ws

w

) Z(wr )Z(ws )

Wr(wr )Wrs(ws )(1− v−2wr /ws )
D−1
r D−1

s .

Using the equality

G(z,w)δ

(
ν1

z

)
δ
(ν2

w

)
= G(ν1, ν2)δ

(
ν1

z

)
δ
(ν2

w

)
, (C.1)

we see that the first sum is zero, while the second sum equals

a∏
t=1

w2
t ·

∑
1≤r �=s≤a

δ

(
wr

z

)
δ
(ws

w

) Z(wr )Z(ws )

Wrs(wr )Wrs(ws )

v−2(wr − v2ws )

(1− ws/wr )(1− v−2wr /ws )
D−1
r D−1

s =

a∏
t=1

w2
t ·

∑
1≤r �=s≤a

δ

(
wr

z

)
δ
(ws

w

) Z(wr )Z(ws )

Wrs(wr )Wrs(ws )

wrws

ws − wr

D−1
r D−1

s .

Swapping z and w, we see that −(w − v2z)E(w)E(z)/(ρ+)2 equals

−
a∏
t=1

w2
t ·

∑
1≤r �=s≤a

δ
(wr

w

)
δ

(
ws

z

)
Z(wr )Z(ws)

Wrs(wr )Wrs(ws)

wrws

ws − wr

D−1
r D−1

s .

Swapping r and s in the latter sum, we get exactly the same expression as for the
LHS.

Case cij < 0 In this case, we can assume I = {i, j} and i → j . We need to
prove (z − v

cij
i w)Ei(z)Ej (w)/(ρ

+
i ρ

+
j ) = (v

cij
i z − w)Ej (w)Ei(z)/(ρ

+
i ρ

+
j ). The

LHS equals

v
−cij
i

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

wj,t · (z− v
cij
i w)×

1≤s≤aj∑
1≤r≤ai

δ

(
wi,r

z

)
δ
(wj,s

w

) Zi(wi,r )

Wi,r (wi,r )
D−1
i,r

Zj (wj,s)

Wj,s(wj,s)

−cij∏
p=1

Wi(v
−cij−2p
i w)D−1

j,s =

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

wj,t · A(z,w)×

1≤s≤aj∑
1≤r≤ai

δ

(
wi,r

z

)
δ
(wj,s

w

) Zi(wi,r )Zj (wj,s)
∏−cij
p=1 Wi,r (v

−cij−2p
i wj,s)

Wi,r (wi,r )Wj,s(wj,s)
D−1
i,r D

−1
j,s ,
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where A(z,w) = v
−cij
i (z − v

cij
i w)

∏−cij
p=1

(
1− v−2

i z

v
−cij−2p

i w

)
, due to (C.1). Likewise,

the RHS equals

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

wj,t · (vciji z− w)×

1≤s≤aj∑
1≤r≤ai

δ
(wj,s

w

)
δ

(
wi,r

z

)
Zj (wj,s)

Wj,s(wj,s)

−cij∏
p=1

Wi(v
−cij−2p
i w)D−1

j,s

Zi(wi,r )

Wi,r (wi,r )
D−1
i,r =

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

wj,t · B(z,w)×

1≤s≤aj∑
1≤r≤ai

δ

(
wi,r

z

)
δ
(wj,s

w

) Zi(wi,r )Zj (wj,s)
∏−cij
p=1 Wi,r (v

−cij−2p
i wj,s)

Wi,r (wi,r )Wj,s(wj,s)
D−1
i,r D

−1
j,s ,

where B(z,w) = (v
cij
i z− w)

∏−cij
p=1

(
1− z

v
−cij−2p

i w

)
, due to (C.1).

The equality LHS = RHS follows from A(z,w) = B(z,w).

C(iii) Compatibility with (U3)

Case cij = 0 The equality [Fi(z), Fj (w)] = 0 is obvious in this case, since Di,r

commute with w±1/2
k,s for k = j or k ← j , while Dj,s commute with w±1/2

k,r for
k = i or k← i.

Case cij = 2 We may assume g = sl2 and we will drop the index i from our nota-
tion. We need to prove (v2z−w)F(z)F (w)/(ρ−)2 = −(v2w−z)F (w)F (z)/(ρ−)2.
The LHS equals

(v2z− w) ·
a∑
r=1

δ

(
v2wr

z

)
δ

(
v4wr

w

)
1

Wr(wr )Wr(v2wr )
D2
r+

(v2z− w) ·
∑

1≤r �=s≤a
δ

(
v2wr

z

)
δ

(
v2ws

w

)
1

Wr(wr )Wrs(ws)(1− v2wr/ws)
DrDs.
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Using equality (C.1), we see that the first sum is zero, while the second sum equals

∑
1≤r �=s≤a

δ

(
v2wr

z

)
δ

(
v2ws

w

)
1

Wrs(wr )Wrs(ws)

v4wr − v2ws

(1− ws/wr )(1− v2wr/ws)
DrDs =

∑
1≤r �=s≤a

δ

(
v2wr

z

)
δ

(
v2ws

w

)
1

Wrs(wr )Wrs(ws)

v2wrws

ws − wr

DrDs.

Swapping z and w, we see that −(v2w − z)F (w)F (z)/(ρ−)2 equals

−
∑

1≤r �=s≤a
δ

(
v2wr

w

)
δ

(
v2ws

z

)
1

Wrs(wr )Wrs(ws)

v2wrws

ws − wr

DrDs.

Swapping r and s in this sum, we get exactly the same expression as for the LHS.

Case cij < 0 In this case, we can assume I = {i, j} and i → j . Recall
that v

cij
i = v

cji
j . We need to prove (v

cji
j z − w)Fi(z)Fj (w)/(ρ

−
i ρ

−
j ) = (z −

v
cji
j w)Fj (w)Fi(z)/(ρ

−
i ρ

−
j ). The LHS equals

aj∏
t=1

w
cji /2
j,t · (vcjij z− w)×

1≤s≤aj∑
1≤r≤ai

δ

(
v2
i wi,r

z

)
δ

(
v2
jwj,s

w

)
1

Wi,r (wi,r )

−cji∏
p=1

Wj(v
−cji−2p
j z)Di,r

1

Wj,s(wj,s)
Dj,s =

aj∏
t=1

w
cji /2
j,t · A(z,w) ·

1≤s≤aj∑
1≤r≤ai

δ

(
v2
i wi,r

z

)
δ

(
v2
jwj,s

w

) ∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi,r (wi,r )Wj,s(wj,s )
Di,rDj,s ,

where A(z,w) = (v
cji
j z − w)

∏−cji
p=1

(
1− v−2

j w

v
−cji−2p

j z

)
, due to (C.1). Likewise, the

RHS equals

v
cji
j

aj∏
t=1

w
cji /2
j,t · (z− v

cji
j w)×

1≤s≤aj∑
1≤r≤ai

δ

(
v2
jwj,s

w

)
δ

(
v2
i wi,r

z

)
1

Wj,s(wj,s )
Dj,s

1

Wi,r (wi,r )

−cji∏
p=1

Wj(v
−cji−2p
j z)Di,r =

aj∏
t=1

w
cji /2
j,t · B(z,w) ·

1≤s≤aj∑
1≤r≤ai

δ

(
v2
i wi,r

z

)
δ

(
v2
jwj,s

w

) ∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi,r (wi,r )Wj,s(wj,s )
Di,rDj,s ,

where B(z,w) = v
cji
j (z− v

cji
j w)

∏−cji
p=1

(
1− w

v
−cji−2p

j z

)
, due to (C.1).

The equality LHS = RHS follows from A(z,w) = B(z,w).
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C(iv) Compatibility with (U4)

Case cij = 0 The equality [�i(z), Ej (w)] = 0 is obvious in this case, since D−1
j,s

commute with w±1/2
k,r for k = i or k − i.

Case cij = 2 We may assume g = sl2 and we will drop the index i from our
notation. We need to prove (z − v2w)�(z)E(w)/ρ+ = (v2z − w)E(w)�(z)/ρ+.
The LHS equals

a∏
t=1

w2
t · (z− v2w) · Z(z)

W(z)W(v−2z)

a∑
r=1

δ
(wr

w

) Z(wr )

Wr(wr )
D−1
r =

a∏
t=1

w2
t ·

a∑
r=1

δ
(wr

w

) Z(z)Z(wr )

Wr(wr )Wr(z)Wr(v−2z)

z− v2w

(1− w/z)(1− w/v−2z)
D−1
r ,

due to (C.1). Likewise, the RHS equals

v−2
a∏
t=1

w2
t · (v2z− w) ·

a∑
r=1

δ
(wr

w

) Z(wr )

Wr(wr )
D−1
r

Z(z)

W(z)W(v−2z)
=

a∏
t=1

w2
t ·

a∑
r=1

δ
(wr

w

) Z(z)Z(wr )

Wr(wr )Wr(z)Wr(v−2z)

v−2(v2z− w)

(1− v−2w/z)(1− v−2w/v−2z)
D−1
r .

The equality LHS = RHS follows.

Case cij < 0 In this case, we can assume I = {i, j}. There are two situations to
consider: i → j and i ← j . Let us first treat the former case. Since v

cij
i = v

cji
j ,

we need to prove (z− v
cji
j w)�i(z)Ej (w)/ρ

+
j = (v

cji
j z− w)Ej (w)�i(z)/ρ

+
j . The

LHS equals

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

w
1+cji /2
j,t · (z− v

cji
j w)×

Zi(z)

Wi(z)Wi(v
−2
i z)

−cji∏
p=1

Wj(v
−cji−2p
j z)

aj∑
s=1

δ
(wj,s

w

) Zj (wj,s)

Wj,s(wj,s )

−cij∏
p′=1

Wi(v
−cij−2p′
i w)D−1

j,s =

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

w
1+cji /2
j,t · A(z,w)×

aj∑
s=1

δ
(wj,s

w

) Zi(z)Zj (wj,s )
∏−cij
p′=1 Wi(v

−cij−2p′
i w)

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi(z)Wi(v
−2
i z)Wj,s(wj,s )

D−1
j,s ,
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where A(z,w) = (z− v
cji
j w)

∏−cji
p=1

(
1− w

v
−cji−2p

j z

)
. Likewise, the RHS equals

v
−cji
j

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

w
1+cji /2
j,t · (vcjij z− w)×

aj∑
s=1

δ
(wj,s

w

) Zj (wj,s)

Wj,s(wj,s )

−cij∏
p′=1

Wi(v
−cij−2p′
i w)D−1

j,s

Zi(z)

Wi(z)Wi(v
−2
i z)

−cji∏
p=1

Wj(v
−cji−2p
j z) =

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

w
1+cji /2
j,t · B(z,w)×

aj∑
s=1

δ
(wj,s

w

) Zi(z)Zj (wj,s )
∏−cij
p′=1 Wi(v

−cij−2p′
i w)

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi(z)Wi(v
−2
i z)Wj,s(wj,s )

D−1
j,s ,

where B(z,w) = v
−cji
j (v

cji
j z− w)

∏−cji
p=1

(
1− v−2

j w

v
−cji−2p

j z

)
.

The equality LHS = RHS follows from A(z,w) = B(z,w).

The case i ← j is analogous: �i(z) is given by the same formula, while Ej(w)

differs by an absence of the factor
∏ai
t=1 w

cij /2
i,t · ∏−cij

p′=1 Wi(v
−cij−2p′
i w). Tracing

back the above calculations, it is clear that the equality still holds when this factor
is dropped out.

C(v) Compatibility with (U5)

Case cij = 0 The equality [�i(z), Fj (w)] = 0 is obvious in this case, since Dj,s

commute with w±1/2
k,r for k = i or k − i.

Case cij = 2 We may assume g = sl2 and we will drop the index i from our
notation. We need to prove (v2z − w)�(z)F (w)/ρ− = (z − v2w)F(w)�(z)/ρ−.
The LHS equals

a∏
t=1

wt · (v2z− w) · Z(z)

W(z)W(v−2z)

a∑
r=1

δ

(
v2wr

w

)
1

Wr(wr )
Dr =

a∏
t=1

wt ·
a∑
r=1

δ

(
v2wr

w

)
Z(z)

Wr(wr )Wr(z)Wr(v−2z)

v2z− w

(1− v−2w/z)(1− v−2w/v−2z)
Dr,



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 251

due to (C.1). Likewise, the RHS equals

v2
a∏
t=1

wt · (z− v2w) ·
a∑
r=1

δ

(
v2wr

w

)
1

Wr(wr )
Dr

Z(z)

W(z)W(v−2z)
=

a∏
t=1

wt ·
a∑
r=1

δ

(
v2wr

w

)
Z(z)

Wr(wr )Wr(z)Wr(v−2z)

v2(z− v2w)

(1− w/z)(1− w/v−2z)
Dr .

The equality LHS = RHS follows.

Case cij < 0 In this case, we can assume I = {i, j}. There are two situations to
consider: i → j and i ← j . Let us first treat the former case. Since v

cij
i = v

cji
j , we

need to prove (v
cji
j z−w)�i(z)Fj (w)/ρ−j = (z−v

cji
j w)Fj (w)�i(z)/ρ

−
j . The LHS

equals

ai∏
t=1

wi,t

aj∏
t=1

w
cji/2
j,t · (vcjij z− w)×

Zi(z)

Wi(z)Wi(v
−2
i z)

−cji∏
p=1

Wj(v
−cji−2p
j z)

aj∑
s=1

δ

(
v2
jwj,s

w

)
1

Wj,s(wj,s)
Dj,s =

ai∏
t=1

wi,t

aj∏
t=1

w
cji/2
j,t · A(z,w) ·

aj∑
s=1

δ

(
v2
jwj,s

w

)
Zi(z)

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi(z)Wi(v
−2
i z)Wj,s(wj,s)

Dj,s,

where A(z,w) = (v
cji
j z− w)

∏−cji
p=1

(
1− v−2

j w

v
−cji−2p

j z

)
. Likewise, the RHS equals

v
cji
j

ai∏
t=1

wi,t

aj∏
t=1

w
cji/2
j,t · (z− v

cji
j w)×

aj∑
s=1

δ

(
v2
jwj,s

w

)
1

Wj,s(wj,s)
Dj,s

Zi(z)

Wi(z)Wi(v
−2
i z)

−cji∏
p=1

Wj(v
−cji−2p
j z) =

ai∏
t=1

wi,t

aj∏
t=1

w
cji/2
j,t · B(z,w) ·

aj∑
s=1

δ

(
v2
jwj,s

w

)
Zi(z)

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

Wi(z)Wi(v
−2
i z)Wj,s(wj,s)

Dj,s,

where B(z,w) = v
cji
j (z− v

cji
j w)

∏−cji
p=1

(
1− w

v
−cji−2p

j z

)
.

The equality LHS = RHS follows from A(z,w) = B(z,w).
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The case i ← j is analogous: �i(z) is given by the same formula, while Fj (w)

has an extra factor
∏ai
t=1 w

cij /2
i,t ·∏−cij

p′=1 Wi(v
−cij−2p′
i w). The contributions of this

factor into the LHS and the RHS are the same, hence, the equality still holds.

C(vi) Compatibility with (U6)

Case cij = 0 The equality [Ei(z), Fj (w)] = 0 is obvious in this case, since D−1
i,r

commute with w±1/2
k,s for k = i or k← j , whileDj,s commute with w±1/2

k,r for k = i

or k→ i.

Case cij = 2 We may assume g = sl2, and we will drop the index i from our
notation. We need to prove [E(z), F (w)] = 1

v−v−1 δ
(
z
w

) (
�(z)+ −�(z)−

)
. The

LHS equals

ρ+ρ−
[

a∏
t=1

wt ·
a∑
r=1

δ

(
wr

z

)
Z(wr )

Wr(wr )
D−1
r ,

a∑
s=1

δ

(
v2ws

w

)
1

Ws(ws )
Ds

]
= −v

(1− v2)2

a∏
t=1

wt×
{

a∑
r=1

(
δ

(
wr

z

)
δ
(wr

w

) Z(wr )

Wr(wr )Wr(v−2wr )
− v2δ

(
v2wr

z

)
δ

(
v2wr

w

)
Z(v2wr )

Wr(wr )Wr(v2wr )

)
+

∑
1≤r �=s≤a

δ

(
wr

z

)
δ

(
v2ws

w

)
Z(wr )

Wrs(wr )Wrs(ws )

(
1

A(z,w)
− v2

B(z,w)

)
D−1
r Ds

⎫⎬⎭ ,
whereA(z,w) = (1−v−2w/z)(1−v−2z/v−2w) and B(z,w) = (1−z/v−2w)(1−
w/z). The second sum is zero as A(z,w) = v−2B(z,w).

To evaluate the RHS, we need the following standard result.

Lemma C.1 For any rational function γ (z) with simple poles {xt } ⊂ C× and
possibly poles of higher order at z = 0,∞, the following equality holds:

γ (z)+ − γ (z)− =
∑
t

δ

(
z

xt

)
Resz=xt γ (z)

dz

z
. (C.2)

Proof Consider the partial fraction decomposition of γ (z):

γ (z) = P(z)+
∑
t

νt

z− xt
,
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where P(z) is a Laurent polynomial. Then P(z)± = P(z)⇒ P(z)+ − P(z)− = 0.
Meanwhile:(

νt

z− xt

)+
= νt

z
+ νtxt

z2
+ νtx

2
t

z3
+ . . . and

(
νt

z− xt

)−
= −νt

xt
− νt z

x2
t

− νt z
2

x3
t

− . . . ,

so that(
νt

z− xt

)+
−
(

νt

z− xt

)−
= νt

xt
δ

(
z

xt

)
= δ

(
z

xt

)
· Resz=xt

νt

z− xt

dz

z
.

The lemma is proved. ��
Since �(z) is a rational function in z, which has (simple) poles only at

{wr , v
2wr}ar=1 and possibly poles of higher order at z = 0,∞, we can apply

Lemma C.1 to evaluate �(z)+ −�(z)−:

�(z)+ −�(z)− =
a∏
t=1

wt ·
a∑
r=1

(
δ

(
z

wr

)
Z(wr )

Wr(wr )W(v−2wr )
+ δ

(
z

v2wr

)
Z(v2wr )

Wr(wr )W(v2wr )

)
=

1

1− v2

a∏
t=1

wt ·
a∑
r=1

(
δ

(
wr

z

)
Z(wr )

Wr(wr )Wr(v−2wr )
− v2δ

(
v2wr

z

)
Z(v2wr )

Wr(wr )Wr(v2wr )

)
.

Hence, the RHS equals

1

(v − v−1)(1− v2)

a∏
t=1

wt×

a∑
r=1

(
δ

(
wr

z

)
δ
(wr

w

) Z(wr )

Wr(wr )Wr(v−2wr )
− δ

(
v2wr

z

)
δ

(
v2wr

w

)
v2Z(wr )

Wr(wr )Wr(v2wr )

)
.

As a result, we finally get LHS = RHS.

Case cij < 0, i → j We may assume I = {i, j}, and we need to check
[Ei(z), Fj (w)] = 0. We have

[Ei(z), Fj (w)]
ρ+i ρ

−
j

=
ai∏
t=1

wi,t ·
[

ai∑
r=1

δ

(
wi,r

z

)
Zi(wi,r )

Wi,r (wi,r )
D−1
i,r ,

aj∑
s=1

δ

(
v2
jwj,s

w

)
1

Wj,s(wj,s )
Dj,s

]
.

The latter is obviously zero, since [D−1
i,r ,wj,s] = 0 = [Dj,s,wi,r ].
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Case cij < 0, i ← j We may assume I = {i, j}, and we need to check
Ei(z)Fj (w)/(ρ

+
i ρ

−
j ) = Fj (w)Ei(z)/(ρ

+
i ρ

−
j ). The LHS equals

v
−cij
i

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

w
cji /2
j,t ×

1≤s≤aj∑
1≤r≤ai

δ

(
wi,r

z

)
δ

(
v2
jwj,s

w

)
Zi(wi,r )

∏−cji
p=1 Wj(v

−cji−2p
j z)

Wi,r (wi,r )
D−1
i,r

∏−cij
p′=1 Wi(v

−cij−2p′
i w)

Wj,s(wj,s )
Dj,s =

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

w
cji /2
j,t · A(z,w)×

1≤s≤aj∑
1≤r≤ai

δ

(
wi,r

z

)
δ

(
v2
jwj,s

w

)
Zi(wi,r )

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

∏−cij
p′=1 Wi,r (v

−cij−2p′
i w)

Wi,r (wi,r )Wj,s(wj,s )
D−1
i,r Dj,s ,

where A(z,w) = v
−cij
i

∏−cji
p=1

(
1− v−2

j w

v
−cji−2p

j z

)∏−cij
p′=1

(
1− v−2

i z

v
−cij−2p′
i w

)
.

Likewise, the RHS equals

v
cji
j

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

w
cji /2
j,t ×

1≤s≤aj∑
1≤r≤ai

δ

(
v2
jwj,s

w

)
δ

(
wi,r

z

) ∏−cij
p′=1 Wi(v

−cij−2p′
i w)

Wj,s (wj,s )
Dj,s

Zi(wi,r )
∏−cji
p=1 Wj(v

−cji−2p
j z)

Wi,r (wi,r )
D−1
i,r =

ai∏
t=1

w
1+cij /2
i,t

aj∏
t=1

w
cji /2
j,t · B(z,w)×

1≤s≤aj∑
1≤r≤ai

δ

(
wi,r

z

)
δ

(
v2
jwj,s

w

)
Zi(wi,r )

∏−cji
p=1 Wj,s(v

−cji−2p
j z)

∏−cij
p′=1 Wi,r (v

−cij−2p′
i w)

Wi,r (wi,r )Wj,s (wj,s )
D−1
i,r Dj,s ,

where B(z,w) = v
cji
j

∏−cji
p=1

(
1− w

v
−cji−2p

j z

)∏−cij
p′=1

(
1− z

v
−cij−2p′
i w

)
.

The equality LHS = RHS follows from A(z,w) = B(z,w).

C(vii) Compatibility with (U7)

Case cij = 0 In this case, [Ei(z), Ej (w)] = 0, due to our verification of (U2).
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Case cij < 0 To simplify our calculations, we introduce

χi′,r :=
ai′∏
t=1

wi′,t ·
∏
j ′→i′

aj ′∏
t=1

w
cj ′i′/2
j ′,t · Zi′(wi′,r )

Wi′,r (wi′,r )

∏
j ′→i′

−cj ′i′∏
p=1

Wj ′(v
−cj ′i′−2p
j ′ wi′,r )D

−1
i′,r ,

so that Ei′(z) = ρ+
i′
∑ai′

r=1 δ
(

wi′,r
z

)
χi′,r .

The verification of (U7) is based on the following result.

Lemma C.2 The following relations hold:

χi,rwj,s = v
−2δij δrs
i wj,sχi,r for 1 ≤ r ≤ ai, 1 ≤ s ≤ aj ,

(wi,r1 − v2
i wi,r2)χi,r1χi,r2 = (v2

i wi,r1 − wi,r2)χi,r2χi,r1 for 1 ≤ r1 �= r2 ≤ ai,

(wi,r − v
cij
i wj,s)χi,rχj,s = (v

cij
i wi,r − wj,s)χj,sχi,r for 1 ≤ r ≤ ai, 1 ≤ s ≤ aj .

Proof Follows from straightforward computations. ��
With the help of this lemma, let us verify (U7) for cij = −1.

The latter amounts to proving [Ei(z1), [Ei(z2), Ej (w)]v]v−1/((ρ
+
i )

2ρ+j ) =
−[Ei(z2), [Ei(z1), Ej (w)]v]v−1/((ρ

+
i )

2ρ+j ). The LHS equals

(1− v2)

⎡⎣ ai∑
r1=1

δ

(
wi,r1

z1

)
χi,r1 ,

1≤s≤aj∑
1≤r2≤ai

δ

(
wi,r2

z2

)
δ
(wj,s

w

) wi,r2

wi,r2 − vwj,s

χi,r2χj,s

⎤⎦
v−1

=

1≤s≤aj∑
1≤r≤ai

δ
(wj,s

w

){
δ

(
wi,r

z1

)
δ

(
v−2wi,r

z2

)
− δ

(
wi,r

z2

)
δ

(
v−2wi,r

z1

)}
(v2 − 1)wi,r

wi,r − v3wj,s

χ2
i,rχj,s−

(v2 − 1)2
1≤s≤aj∑

1≤r1 �=r2≤ai
δ

(
wi,r1

z1

)
δ

(
wi,r2

z2

)
δ
(wj,s

w

) A(z1, z2, w)

v2wi,r1 − wi,r2

χi,r1χi,r2χj,s ,

where A(z1, z2, w) = z1z2(z1+z2−(v+v−1)w)
(z1−vw)(z2−vw)

and the last equality is obtained by
treating separately r1 = r2 and r1 �= r2 cases. The first sum is obviously skew-
symmetric in z1, z2. The second sum is also skew-symmetric, due to the above
relations on χi,r .

The cases cij = −2,−3 can be treated similarly, but the corresponding
computations become more cumbersome. We verified these cases using MATLAB.
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C(viii) Compatibility with (U8)

The case cij = 0 is obvious. The case cij = −1 can be treated analogously to the
above verification of (U7). The verification for the cases cij = −2,−3 is more
cumbersome and can be performed as outlined in the verification of (U7). Our
verification involved a simple computation in MATLAB.

This completes our proof of Theorem 7.1.

Remark C.3 Theorem 7.1 admits the following straightforward generalization. For
every i ∈ I , pick two polynomials Z(1)i (z), Z

(2)
i (z) in z−1 such that Zi(z) =

Z
(1)
i (z)Z

(2)
i (z). There is a unique C(v)[z±1

1 , . . . , z±1
N ]-algebra homomorphism

Uad
0,μ[z±1

1 , . . . , z±1
N ] → Ãv

frac[z±1
1 , . . . , z±1

N ], such that

ei(z) �→ −vi

1− v2
i

ai∏
t=1

wi,t

∏
j→i

aj∏
t=1

w
cji /2
j,t ·

ai∑
r=1

δ

(
wi,r

z

)
Z
(1)
i (wi,r )

Wi,r (wi,r )

∏
j→i

−cji∏
p=1

Wj(v
−cji−2p
j z)D−1

i,r ,

fi(z) �→ 1

1− v2
i

∏
j←i

aj∏
t=1

w
cji /2
j,t ·

ai∑
r=1

δ

(
v2
i wi,r

z

)
Z
(2)
i (v2

i wi,r )

Wi,r (wi,r )

∏
j←i

−cji∏
p=1

Wj(v
−cji−2p
j z)Di,r ,

ψ±i (z) �→ �i(z)
±, (φ+i )

±1 �→
ai∏
t=1

w±1/2
i,t , (φ−i )

±1 �→ (−vi )
∓ai

ai∏
t=1

w∓1/2
i,t .

Appendix D Proof of Theorem 10.5

Due to Theorem 5.5, it suffices to check that the assignment � of Theorem 10.5
preserves defining relations (Û1–Û6, Û9). To simplify our exposition, we will
assume that b1, b2 < 0, while the case when one of them is zero is left to the
interested reader (note that the case b1 = b2 = 0 has been treated in Remark 10.4).
We will also work with h̄±1 := [2]−1

v h±1 instead of h±1, so that [h̄±1, er ] =
er±1, [h̄±1, fr ] = −fr±1.

D(i) Compatibility with (Û1)

The equalities �((ψ+0 )±1)�((ψ+0 )∓1) = 1 and �((ψ−b )±1)�((ψ−b )∓1) = 1 follow
immediately from relation (Û1) for both Usc

0,b1
and Usc

0,b2
.

The commutativity of �((ψ+0 )±1),�((ψ−b )±1) between themselves and with
each of �(h̄±1) is due to relations (Û1, Û4, Û5) for both Usc

0,b1
and Usc

0,b2
.
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It remains to prove [�(h̄1),�(h̄−1)] = 0. The LHS is equal to
[h̄1⊗ 1+ 1⊗ h̄1 − (v− v−1)e0⊗ f1, h̄−1⊗ 1+ 1⊗ h̄−1 + (v− v−1)e−1⊗ f0] =
(v−v−1)(e0⊗f0−e−1⊗f1+e−1⊗f1−e0⊗f0)−(v−v−1)2[e0⊗f1, e−1⊗f0] =
−(v − v−1)2(e0e−1 ⊗ f1f0 − e−1e0 ⊗ f0f1) = 0.

Here we used (Û1, Û4, Û5) for both Usc
0,b1

,Usc
0,b2

in the first equality, while the

second equality follows from e0e−1 = v2e−1e0, f1f0 = v−2f0f1, due to (Û2) for
Usc

0,b1
and (Û3) for Usc

0,b2
.

D(ii) Compatibility with (Û2)

We need to prove [�(er+1),�(es)]v2 + [�(es+1),�(er)]v2 = 0 for
b2 − 1 ≤ r , s ≤ −1.

Case b2 − 1 < r, s < −1 Then, [�(er+1),�(es)]v2 + [�(es+1),�(er)]v2 = 1 ⊗
([er+1, es]v2 + [es+1, er ]v2) = 0 as the second term is zero in Usc

0,b2
by (Û2).

Case r = s = b2 − 1 It suffices to show that [�(eb2),�(eb2−1)]v2 = 0, which
follows from [�(eb2),�(eb2−1)]v2 = [1⊗ eb2 , e−1 ⊗ ψ−b2

+ 1⊗ eb2−1]v2 = e−1 ⊗
[eb2 , ψ

−
b2
]v2+1⊗[eb2 , eb2−1]v2 = 0. The last equality follows from [eb2, ψ

−
b2
]v2 = 0

and [eb2 , eb2−1]v2 = 0 in Usc
0,b2

, due to (Û2) and (Û4), respectively.

Case r = b2 − 1, b2 − 1 < s < −1 Then, [�(eb2),�(es)]v2 +
[�(es+1),�(eb2−1)]v2 = 1 ⊗ ([eb2, es]v2 +[es+1, eb2−1]v2) + e−1 ⊗
[es+1, ψ

−
b2
]v2 = 0. The last equality follows again from (Û2) and (Û4) for Usc

0,b2
.

Case r = b2 − 1, s = −1 Then [�(eb2),�(e−1)]v2 = 1 ⊗ [eb2, e−1]v2 and
[�(e0),�(eb2−1)]v2 = [e0 ⊗ ψ+0 + 1 ⊗ e0, e−1 ⊗ ψ−b2

+ 1 ⊗ eb2−1]v2 = e0 ⊗
[ψ+0 , eb2−1]v2 + [e0, e−1]v2 ⊗ ψ+0 ψ

−
b2
+ e−1 ⊗ [e0, ψ

−
b2
]v2 + 1 ⊗ [e0, eb2−1]v2 =

1⊗ [e0, eb2−1]v2 as the first three terms are zero, due to (Û2) for Usc
0,b1

and (Û4) for

Usc
0,b2

. The result follows from (Û2) for Usc
0,b2

.

Case r = s = −1 It suffices to show that [�(e0),�(e−1)]v2 = 0, which follows
from [�(e0),�(e−1)]v2 = [e0 ⊗ ψ+0 + 1 ⊗ e0, 1 ⊗ e−1]v2 = e0 ⊗ [ψ+0 , e−1]v2 +
1⊗ [e0, e−1]v2 = 0. The last equality follows again from relations (Û2, Û4) for the
algebra Usc

0,b2
.

Case r = −1, b2 − 1 < s < −1 Then, [�(e0),�(es)]v2 = [e0 ⊗ ψ+0 +
1⊗ e0, 1⊗ es]v2 = 1⊗ [e0, es]v2 , while [�(es+1),�(e−1)]v2 = 1⊗ [es+1, e−1]v2 .

The sum of these two terms is zero, due to (Û2) for Usc
0,b2

.
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D(iii) Compatibility with (Û3)

We need to prove [�(fr),�(fs+1)]v2 + [�(fs),�(fr+1)]v2 = 0 for b1 ≤ r, s ≤ 0.

Case b1 < r, s < 0 Then, [�(fr),�(fs+1)]v2 + [�(fs),�(fr+1)]v2 =
([fr, fs+1]v2 + [fs, fr+1]v2)⊗ 1 = 0 as the first term is zero in Usc

0,b1
by (Û3).

Case r = s = b1 It suffices to show that [�(fb1),�(f1+b1)]v2 = 0, which follows
from [�(fb1),�(f1+b1)]v2 = [fb1 ⊗1+ψ−b1

⊗f0, f1+b1 ⊗1]v2 = [fb1 , f1+b1 ]v2 ⊗
1 + [ψ−b1

, f1+b1 ]v2 ⊗ f0 = 0. The last equality follows from [fb1, f1+b1 ]v2 = 0 =
[ψ−b1

, f1+b1 ]v2 , due to (Û3, Û5) for Usc
0,b1

.

Case r = b1 < s < 0 Then, [�(fs),�(f1+b1)]v2 = [fs, f1+b1 ]v2 ⊗ 1 and
[�(fb1),�(fs+1)]v2 = [fb1 , fs+1]v2 ⊗ 1 as [ψ−b1

, fs+1]v2 = 0 in Usc
0,b1

by (Û5).

It remains to use (Û3) for Usc
0,b1

.

Case r = b1, s = 0 Then [�(fb1),�(f1)]v2 = [fb1 , f1]v2⊗1+[fb1, ψ
+
0 ]v2⊗f1+

[ψ−b1
, f1]v2⊗f0+ψ−b1

ψ+0 ⊗[f0, f1]v2 , and [�(f0),�(f1+b1)]v2 = [f0, f1+b1 ]v2⊗1.

It remains to use [fb1 , f1]v2 + [f0, f1+b1 ]v2 = [fb1, ψ
+
0 ]v2 = [ψ−b1

, f1]v2 = 0 in

Usc
0,b1

, due (Û3) and (Û5), and [f0, f1]v2 = 0 in Usc
0,b2

, due to (Û3).

Case r = s = 0 It suffices to show that [�(f0),�(f1)]v2 = 0, which follows from
[�(f0),�(f1)]v2 = [f0⊗ 1, f1⊗ 1+ψ+0 ⊗f1]v2 = [f0, f1]v2 ⊗ 1+[f0, ψ

+
0 ]v2 ⊗

f1 = 0, due to (Û3, Û5) for Usc
0,b1

.

Case r = 0, b1 < s < 0 Then [�(f0),�(fs+1)]v2 = [f0, fs+1]v2 ⊗ 1, and
[�(fs),�(f1)]v2 = [fs⊗1, f1⊗1+ψ+0 ⊗f1]v2 = [fs, f1]v2⊗1+[fs, ψ+0 ]v2⊗f1.
It remains to apply the equalities [f0, fs+1]v2 + [fs, f1]v2 = 0 and [fs, ψ+0 ]v2 = 0
in Usc

0,b1
, due to (Û3) and (Û5).

D(iv) Compatibility with (Û4)

The equalities �(ψ+0 )�(er) = v2�(er)�(ψ
+
0 ) and �(ψ−b )�(er) =

v−2�(er)�(ψ
−
b ) for b2 − 1 ≤ r ≤ 0 are obvious, due to relations (Û1) and

(Û4) for Usc
0,b1

,Usc
0,b2

.

Let us now verify the equality [�(h̄1),�(er )] = �(er+1) for b2 − 1 ≤ r ≤ −1.

Case b2 ≤ r ≤ −2 We have [�(h̄1),�(er)] = [h̄1 ⊗ 1+ 1⊗ h̄1 − (v − v−1)e0 ⊗
f1, 1 ⊗ er ] = 1 ⊗ er+1 − (v − v−1)e0 ⊗ [f1, er ] = 1 ⊗ er+1 = �(er+1), due
to (Û4, Û6) for Usc

0,b2
.
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Case r=−1 As above, we get [�(h̄1),�(e−1)]= [h̄1⊗1+1⊗h̄1− (v−v−1)e0⊗f1,

1⊗e−1] = 1⊗e0−(v−v−1)e0⊗[f1, e−1] = 1⊗e0+(v−v−1)e0⊗ ψ+0
v−v−1 = �(e0).

Case r=b2−1 We have [�(h̄1),�(eb2−1)]=[h̄1⊗1+1 ⊗ h̄1 − (v−v−1)e0⊗f1,
e−1⊗ψ−b2

+1⊗eb2−1] = e0⊗ψ−b2
+1⊗eb2−e0⊗ψ−b2

−(v−v−1)[e0⊗f1, e−1⊗ψ−b2
] =

1⊗ eb2 = �(eb2), where we used [e0 ⊗ f1, e−1 ⊗ψ−b2
] = 0 as e0e−1 = v2e−1e0 in

Usc
0,b1

, due to (Û2), and ψ−b2
f1 = v2f1ψ

−
b2

in Usc
0,b2

, due to (Û5).

Let us now verify the equality [�(h̄−1),�(er)] = �(er−1) for b2 ≤ r ≤ 0.

Case b2<r<0 We have [�(h̄−1),�(er)] = [h̄−1⊗1+1⊗h̄−1+(v−v−1)e−1 ⊗ f0,
1⊗er ] = 1⊗er−1+(v−v−1)e−1⊗[f0, er ] = 1⊗er−1 = �(er−1), due to (Û4, Û6)
for Usc

0,b2
.

Case r=0 We have [�(h̄−1),�(e0)]=[h̄−1⊗1+1⊗h̄−1+(v−v−1)e−1⊗f0,
e0⊗ψ+0 +1⊗e0] = e−1⊗ψ+0 +1⊗e−1+(v−v−1)e−1⊗[f0, e0]+(v−v−1)[e−1⊗
f0, e0 ⊗ ψ+0 ] = 1 ⊗ e−1 = �(e−1), where we used [e−1 ⊗ f0, e0 ⊗ ψ+0 ] = 0 as
e0e−1 = v2e0e−1 in Usc

0,b1
, due to (Û2), and f0ψ

+
0 = v2ψ+0 f0 in Usc

0,b2
, due to (Û5).

Case r=b2 We have [�(h̄−1),�(eb2)]=[h̄−1⊗1+1 ⊗ h̄−1 + (v−v−1)e−1⊗f0,

1 ⊗ eb2 ] = 1 ⊗ eb2−1 + (v − v−1)e−1 ⊗ ψ−b2
v−v−1 = �(eb2−1), due to (Û4, Û6)

for Usc
0,b2

.

D(v) Compatibility with (Û5)

The equalities �(ψ+0 )�(fr) = v−2�(fr)�(ψ
+
0 ) and �(ψ−b )�(fr) =

v2�(fr)�(ψ
−
b ) for b1 ≤ r ≤ 1 are obvious, due to relations (Û1) and (Û5)

for Usc
0,b1

,Usc
0,b2

.

Let us now verify the equality [�(h̄1),�(fr)] = −�(fr+1) for b1 ≤ r ≤ 0.

Case b1 < r < 0 We have [�(h̄1),�(fr)] = [h̄1 ⊗ 1 + 1⊗ h̄1 − (v − v−1)e0 ⊗
f1, fr ⊗ 1] = −fr+1⊗ 1− (v− v−1)[e0, fr ]⊗ f1 = −fr+1⊗ 1 = −�(fr+1), due
to (Û5, Û6) for Usc

0,b1
.

Case r = 0 As above, we get [�(h̄1),�(f0)] = [h̄1⊗ 1+ 1⊗ h̄1− (v− v−1)e0⊗
f1, f0⊗ 1] = −f1⊗ 1− (v− v−1)[e0, f0]⊗f1 = −f1⊗ 1−ψ+0 ⊗f1 = −�(f1).

Case r = b1 We have [�(h̄1),�(fb1)] = [h̄1 ⊗ 1 + 1 ⊗ h̄1 − (v − v−1)e0 ⊗
f1, fb1 ⊗ 1+ ψ−b1

⊗ f0] = −f1+b1 ⊗ 1− ψ−b1
⊗ f1 + ψ−b1

⊗ f1 − (v − v−1)[e0 ⊗
f1, ψ

−
b1
⊗f0] = −f1+b1⊗1 = −�(f1+b1), where we used [e0⊗f1, ψ

−
b1
⊗f0] = 0

as f1f0 = v−2f0f1 in Usc
0,b2

, due to (Û3), and ψ−b1
e0 = v−2e0ψ

−
b1

in Usc
0,b1

, due

to (Û4).
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Let us now verify the equality [�(h̄−1),�(fr)] = −�(fr−1) for 1+b1 ≤ r ≤ 1.

Case 1 + b1 < r < 1 We have [�(h̄−1),�(fr)] = [h̄−1 ⊗ 1 + 1 ⊗ h̄−1 + (v −
v−1)e−1 ⊗ f0, fr ⊗ 1] = −fr−1 ⊗ 1 + (v − v−1)[e−1, fr ] ⊗ f0 = −fr−1 ⊗ 1 =
−�(fr−1), due to (Û5, Û6) for Usc

0,b1
.

Case r = 1 We have [�(h̄−1),�(f1)] = [h̄−1 ⊗ 1 + 1⊗ h̄−1 + (v − v−1)e−1 ⊗
f0, f1 ⊗ 1 + ψ+0 ⊗ f1] = −f0 ⊗ 1 − ψ+0 ⊗ f0 + ψ+0 ⊗ f0 + (v − v−1)[e−1 ⊗
f0, ψ

+
0 ⊗ f1] = −f0 ⊗ 1 = −�(f0), where we used [e−1 ⊗ f0, ψ

+
0 ⊗ f1] = 0 as

f0f1 = v2f1f0 in Usc
0,b2

and ψ+0 e−1 = v2e−1ψ
+
0 in Usc

0,b1
.

Case r = 1 + b1 We have [�(h̄−1),�(f1+b1)] = [h̄−1 ⊗ 1 + 1 ⊗ h̄−1 + (v −
v−1)e−1⊗ f0, f1+b1 ⊗ 1] = −fb1 ⊗ 1−ψ−b1

⊗ f0 = −�(fb1), due to (Û5, Û6) for
Usc

0,b1
.

D(vi) Compatibility with (Û6)

Case b2 ≤ r < 0, b1 < s ≤ 0 The equality [�(er),�(fs)] = 0 is obvious.

Case r = s = 0 We need to prove [�(e0),�(f0)] = 1
v−v−1�(ψ

+
0 ). This follows

from [�(e0),�(f0)] = [e0 ⊗ψ+0 + 1⊗ e0, f0 ⊗ 1] = [e0, f0] ⊗ψ+0 = ψ+0 ⊗ψ+0
v−v−1 =

�(ψ+0 )
v−v−1 , due to (Û6) for Usc

0,b1
.

Case r = 0, s = 1 We need to prove [�b1,b2(e0),�b1,b2(f1)] =
�b1,b2(ψ

+
0 )�b1,b2(h1). This can be easily deduced from the unshifted case

b1 = b2 = 0 by applying Remark 10.6. Indeed, [�b1,b2(e0),�b1,b2(f1)] =
[j+b1,0

⊗ j+0,b2
(�(e0)), j

+
b1,0

⊗ j+0,b2
(�(f1))] = j+b1,0

⊗ j+0,b2
(�([e0, f1])) =

j+b1,0
⊗ j+0,b2

(�(ψ+0 )�(h1)) = �b1,b2(ψ
+
0 )�b1,b2(h1), where the subscripts in

�b1,b2 are used this time to distinguish it from the Drinfeld-Jimbo coproduct �.

Case r = 0, b1 < s < 0 We need to prove [�(e0),�(fs)] = 0. This follows from
[�(e0),�(fs)] = [e0 ⊗ψ+0 + 1⊗ e0, fs ⊗ 1] = [e0, fs] ⊗ψ+0 = 0 as [e0, fs] = 0
in Usc

0,b1
by (Û6).

Case r = 0, s = b1 We need to prove [�(e0),�(fb1)] = 0. This follows from
[�(e0),�(fb1)] = [e0 ⊗ ψ+0 + 1 ⊗ e0, fb1 ⊗ 1 + ψ−b1

⊗ f0] = [e0, fb1 ] ⊗ ψ+0 +
ψ−b1

⊗[e0, f0] = −ψ−b1
⊗ψ+0

v−v−1 +
ψ−b1

⊗ψ+0
v−v−1 = 0, where we used [e0⊗ψ+0 , ψ−b1

⊗f0] = 0

as ψ+0 f0 = v−2f0ψ
+
0 in Usc

0,b2
, ψ−b1

e0 = v−2e0ψ
−
b1

in Usc
0,b1

.

Case r = −1, s = 1 We need to prove [�(e−1),�(f1)] = 1
v−v−1�(ψ

+
0 ). This

follows from [�(e−1),�(f1)] = [1⊗ e−1, f1⊗1+ψ+0 ⊗f1] = ψ+0 ⊗[e−1, f1] =
ψ+0 ⊗ψ+0
v−v−1 = �(ψ+0 )

v−v−1 , due to (Û6) for Usc
0,b2

.



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 261

Case b2 ≤ r < −1, s = 1 We need to prove [�(er),�(f1)] = 0. This follows
from [�(er),�(f1)] = [1 ⊗ er , f1 ⊗ 1 + ψ+0 ⊗ f1] = ψ+0 ⊗ [er , f1] = 0 as
[er , f1] = 0 in Usc

0,b2
by (Û6).

Case r = b2 − 1, s = 1 We need to prove [�(eb2−1),�(f1)] = 0. This follows
from [�(eb2−1),�(f1)] = [e−1⊗ψ−b2

+1⊗eb2−1, f1⊗1+ψ+0 ⊗f1] = [e−1, f1]⊗
ψ−b2

+ ψ+0 ⊗ [eb2−1, f1] + [e−1 ⊗ ψ−b2
, ψ+0 ⊗ f1] = ψ+0 ⊗ψ−b2

v−v−1 − ψ+0 ⊗ψ−b2
v−v−1 = 0. Here

we used [e−1 ⊗ ψ−b2
, ψ+0 ⊗ f1] = 0 as ψ−b2

f1 = v2f1ψ
−
b2

in Usc
0,b2

, due to (Û5), and

ψ+0 e−1 = v2e−1ψ
+
0 in Usc

0,b1
, due to (Û4).

Case r = b2 − 1, s = b1 The proof of [�b1,b2(eb2−1),�b1,b2(fb1)] =
�b1,b2(ψ

−
b )�b1,b2(h−1) can be deduced by applying Remark 10.6 analo-

gously to the case r = 0, s = 1. Indeed, [�b1,b2(eb2−1),�b1,b2(fb1)] =
[j−b1,0

⊗ j−0,b2
(�(e−1)), j

−
b1,0

⊗ j−0,b2
(�(f0))] = j−b1,0

⊗ j−0,b2
(�([e−1, f0])) =

j−b1,0
⊗ j−0,b2

(�(ψ−0 )�(h−1)) = �b1,b2(ψ
−
b )�b1,b2(h−1).

Case r = b2, s = b1 We need to prove [�(eb2),�(fb1)] = − 1
v−v−1�(ψ

−
b ). This

follows from [�(eb2),�(fb1)] = [1⊗ eb2 , fb1 ⊗1+ψ−b1
⊗f0] = ψ−b1

⊗[eb2, f0] =
−ψ−b1

⊗ψ−b2
v−v−1 = −�(ψ−b )

v−v−1 , due to (Û6) for Usc
0,b2

.

Case b2 < r < 0, s = b1 We need to prove [�(er),�(fb1)] = 0. This follows
from [�(er),�(fb1)] = [1 ⊗ er , fb1 ⊗ 1 + ψ−b1

⊗ f0] = ψ−b1
⊗ [er , f0] = 0 as

[er , f0] = 0 in Usc
0,b2

by (Û6).

Case r = b2 − 1, 1 + b1 < s ≤ 0 We need to prove [�(eb2−1),�(fs)] = 0. This
follows from [�(eb2−1),�(fs)] = [e−1 ⊗ ψ−b2

+ 1⊗ eb2−1, fs ⊗ 1] = [e−1, fs] ⊗
ψ−b2

= 0 as [e−1, fs] = 0 in Usc
0,b1

.

Case r = b2 − 1, s = 1 + b1 We need to prove [�(eb2−1),�(f1+b1)] =
− 1

v−v−1�(ψ
−
b ). This follows from [�(eb2−1),�(f1+b1)] = [e−1 ⊗ ψ−b2

+ 1 ⊗
eb2−1, f1+b1 ⊗ 1] = [e−1, f1+b1 ] ⊗ ψ−b2

= −ψ−b1
⊗ψ−b2

v−v−1 = −�(ψ−b )
v−v−1 , due to (Û6)

for Usc
0,b1

.

D(vii) Compatibility with (Û9)

Applying Remark 10.6 as we did above, we see that the equalities

[�(h1), [�(f1), [�(h1),�(e0)]]] = 0 and [�(h−1), [�(eb2−1), [�(h−1),�(fb1)]]] = 0
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follow from the equalities [h1, [f1, [h1, e0]]] = [2]v · [h1, [f1, e1]] = [2]v ·
[h1,

−ψ+2
v−v−1 ] = 0 in U+v and [h−1, [e−1, [h−1, f0]]] = −[2]v · [h−1, [e−1, f−1]] =

[2]v · [h−1,
ψ−−2

v−v−1 ] = 0 in U−v , respectively.

This completes our proof of Theorem 10.5.

Appendix E Proof of Lemma 10.9(b)

E(i) PBW Property for Usc
0,n

For Usc
0,n, the simply-connected shifted quantum affine algebra of sl2, define the

PBW variables to be {es}s∈Z ∪ {fs}s∈Z ∪ {ψ+r }r>0 ∪ {ψ−n−r }r>0 ∪ {(ψ+0 )±1} ∪
{(ψ−n )±1}. We order the elements in each group according to the decreasing order
of s, r . Any expression of the form

es+1
· · · es+a fs−1 · · · fs−b ψ

+
r+1
· · ·ψ+

r+
c+
ψ−
r−1
· · ·ψ−

r−
c−
(ψ+0 )

γ+(ψ−n )γ
−

with s+1 ≥ · · · ≥ s+a , s−1 ≥ · · · ≥ s−b , r
+
1 ≥ · · · ≥ r+

c+ > 0, r−1 ≤ · · · ≤ r−
c− <

n, γ± ∈ Z, a, b, c± ∈ N, will be referred to as the ordered monomial in the PBW
variables.

The following result is easy to check using defining relations (U1–U6).

Lemma E.1 The algebra Usc
0,n is spanned by the ordered monomials in the PBW

variables.

The key result of this section is a refinement of the previous statement.

Theorem E.2 For any n ∈ Z, the algebra Usc
0,n satisfies the PBW property, that is,

the set of the ordered monomials in the PBW variables forms a C(v)-basis of Usc
0,n.

E(ii) Proof of Theorem E.2

We will prove this result in four steps.

Step 1 Reduction to Ũsc
0,n.

Consider the associative C(v)-algebra Ũsc
0,n, defined in the same way as Usc

0,n but

without the generators (ψ+0 )−1, (ψ−n )−1. Note that Usc
0,n is the localization of Ũsc

0,n

by the multiplicative set generated by ψ+0 , ψ−n . Since these generators are among
the PBW variables, the PBW property for Usc

0,n follows from the PBW property for

Ũsc
0,n.
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Step 2 PBW property for Ũsc
0,0.

It is well-known that the algebra Uv(Lsl2) satisfies the PBW property with the
PBW variables chosen as {es}s∈Z∪{fs}s∈Z∪{ψ+r }r>0∪{ψ−−r }r>0∪{(ψ+0 )±1}. Here
the elements in each group are ordered according to the decreasing order of r, s.

Lemma E.3 There is an embedding of algebras Ũsc
0,0 ↪→ Uv(Lsl2)⊗C(v) C(v)[t],

such that

es �→ es ⊗ t, fs �→ fs ⊗ 1, ψ±±r �→ ψ±±r ⊗ t.

Proof The above assignment obviously preserves all the defining relations of Ũsc
0,0.

Hence, it gives rise to a homomorphism Ũsc
0,0 → Uv(Lsl2)⊗C(v) C(v)[t].

To prove the injectivity of this homomorphism, let us first note that Ũsc
0,0

is spanned by the ordered monomials in the PBW variables, cf. Lemma E.1.
The above homomorphism maps these monomials to a subset of the basis for
Uv(Lsl2) ⊗C(v) C(v)[t], where we used the PBW property for Uv(Lsl2). Hence,
the ordered monomials in the PBW variable for Ũsc

0,0 are linearly independent and
the above homomorphism is injective. ��

Our proof of Lemma E.3 implies the PBW property for Ũsc
0,0.

Step 3 PBW property for Ũsc
0,n, n < 0.

For n < 0, the algebra Ũsc
0,n is obviously a quotient of Ũsc

0,0 by the 2-sided ideal

In := 〈ψ−0 , ψ−−1, . . . , ψ
−
1+n〉2−sided.

Let I ln be the left ideal generated by the same elements

I ln := 〈ψ−0 , ψ−−1, . . . , ψ
−
1+n〉left.

Lemma E.4 We have I ln = In.

Proof It suffices to show that I ln is also a right ideal. According to (U4), we have

ψ−−r es = v−2ψ−−r+1es−1 − es−1ψ
−
−r+1 + v−2esψ

−−r , ψ−0 es = v−2esψ
−
0 ,

so that the right multiplication by es preserves I ln. Similarly for fs (need to
apply (U5)), while for ψ+r , ψ−−r this is obvious. These elements generate Ũsc

0,0,
hence, the claim. ��

Combining the PBW property for Ũsc
0,0 (established in Step 2) with Lemma E.4

and Ũsc
0,n � Ũsc

0,0/In, we get the PBW property for Ũsc
0,n.
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Step 4 PBW property for Ũsc
0,n, n > 0.

The proof proceeds by induction in n. We assume that the PBW property holds
for Ũsc

0,m with m < n and want to deduce the PBW property for Ũsc
0,n. Consider

the homomorphism ι̃n,−1,0 : Ũsc
0,n → Ũsc

0,n−1 defined analogously to ιn,−1,0 of
Proposition 10.8. Explicitly,

ι̃n,−1,0 : es �→ es − es−1, fs �→ fs, ψ
+
r �→ ψ+r − ψ+r−1, ψ

−
r �→ ψ−r − ψ−r−1,

where we set ψ+−1 := 0, ψ−n := 0 in the right-hand sides. The image of an ordered
monomial in the PBW variables for Ũsc

0,n under ι̃n,−1,0 is a linear combination of the

same ordered monomial in the PBW variables for Ũsc
0,n−1 with all ψ−r replaced by

(−ψ−r−1), called the leading monomial, and several other (not necessarily ordered)
monomials in the PBW variables. Based on the equality eses−1 = v2es−1es (s ∈ Z),
we see that rewriting these extra monomials as linear combinations of the ordered
monomials in the PBW variables, all of them are actually lexicographically smaller
than the leading monomial. Hence, the PBW property for Ũsc

0,n−1 implies the PBW

property for Ũsc
0,n. Moreover, we immediately get the injectivity of ι̃n,−1,0.

This completes our proof of Theorem E.2.

E(iii) Proof of Lemma 10.9(b)

Now we are ready to prove Lemma 10.9(b). Due to Lemma 10.9(a), it suffices to
verify the injectivity of the homomorphisms ιn,−1,0 and ιn,0,−1. The former follows
from the injectivity of ι̃n,−1,0 from Step 4 above, while the latter can be deduced in
the same way.

Appendix F Proof of Theorem 10.10

The proof of Theorem 10.10 proceeds in three steps. First, we construct �b1,b2 (this
construction depends on a choice of sufficiently small m1,m2 ≤ 0). Then, we
verify that this construction is independent of the choice made. Finally, we prove
the commutativity of the diagram of Theorem 10.10 for any m1,m2 ∈ Z≤0.
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F(i) Construction of �b1,b2

Fix any m1,m2 ∈ Z≤0 such that b1 +m1, b2 +m2 ∈ Z≤0. Consider the diagram

where the bottom horizontal arrow � = �b1+m1,b2+m2 is defined in Theorem 10.5.
Since the homomorphisms ιb,m2,m1 and ιb1,0,m1 ⊗ ιb2,m2,0 are injective, the homo-
morphism�b1+m1,b2+m2 gives rise to a uniquely determined homomorphism�b1,b2

making the above diagram commutative as far as we can prove

�(ιb,m2,m1(U
sc
0,b)) ⊂ (ιb1,0,m1 ⊗ ιb2,m2,0)(U

sc
0,b1

⊗ Usc
0,b2

). (♦)

As before, we use U
sc,>
0,b′ ,U

sc,≥
0,b′ ,U

sc,<
0,b′ ,U

sc,≤
0,b′ to denote the C(v)-subalgebras of

Usc
0,b′ generated by {er}, {er , ψ±±s±}, {fr }, {fr, ψ±±s±}, respectively. For r ∈ Z, we

claim that

�(er) ∈ 1⊗ er + U
sc,>
0,b1+m1

⊗ U
sc,≤
0,b2+m2

, �(fr) ∈ fr ⊗ 1+ U
sc,≥
0,b1+m1

⊗ U
sc,<
0,b2+m2

.

(,1)

This follows by combining iteratively the formulas for�(e−1),�(f0),�(h±1)with
the relations [h±1, er ] = [2]v · er±1, [h±1, fr ] = −[2]v · fr±1. We also note that

U
sc,≥
0,b1

⊗ U
sc,≤
0,b2

⊂ (ιb1,0,m1 ⊗ ιb2,m2,0)(U
sc
0,b1

⊗ Usc
0,b2

). (,2)

According to (,1), we get

�(ιb,m2,m1(er )) ∈ 1⊗
−m2∑
s=0

(−1)s
(−m2

s

)
er−s + U

sc,>
0,b1+m1

⊗ U
sc,≤
0,b2+m2

.

The right-hand side is an element of (ιb1,0,m1 ⊗ ιb2,m2,0)(U
sc
0,b1

⊗Usc
0,b2

), due to (,2)

and the equality 1⊗∑−m2
s=0 (−1)s

(−m2
s

)
er−s = (ιb1,0,m1⊗ιb2,m2,0)(1⊗er ). Likewise,

�(ιb,m2,m1(fr)) ∈
−m1∑
s=0

(−1)s
(−m1

s

)
fr−s ⊗ 1+ U

sc,≥
0,b1+m1

⊗ U
sc,<
0,b2+m2

.

The right-hand side is an element of (ιb1,0,m1 ⊗ ιb2,m2,0)(U
sc
0,b1

⊗ Usc
0,b2

), due

to (,2) and the equality
∑−m1

s=0 (−1)s
(−m1

s

)
fr−s ⊗ 1 = (ιb1,0,m1 ⊗ ιb2,m2,0)(fr ⊗ 1).

We also have
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�(ιb,m2,m1((ψ
+
0 )
±1)) = (ιb1,0,m1 ⊗ ιb2,m2,0)((ψ0)

±1 ⊗ (ψ0)
±1),

�(ιb,m2,m1((ψ
−
b )
±1)) = (ιb1,0,m1 ⊗ ιb2,m2,0)((ψ

−
b1
)±1 ⊗ (ψ−b2

)±1).

Finally, combining the relations ψ+r = (v − v−1)[er , f0], ψ−b−r = (v−1 −
v)[eb−r , f0] (r ∈ Z>0) in Usc

0,b+m1+m2
with (,1) and (,2), we get

�(ψ+r ),�(ψ−b−r ) ∈ U
sc,≥
0,b1+m1

⊗ U
sc,≤
0,b2+m2

⊂ (ιb1,0,m1 ⊗ ιb2,m2,0)(U
sc
0,b1

⊗ Usc
0,b2

).

This completes our proof of (♦).
Therefore, we obtain the homomorphism �b1,b2 for the particular choice of

m1,m2.

F(ii) Independence of the Choice of m1,m2

Let us now prove that the homomorphism�b1,b2 constructed above does not depend
on the choice of m1,m2. To this end, fix another pair m′1,m′2 ∈ Z≤0 such that
b1 +m′1, b2 +m′2 ∈ Z≤0, and set m = m1 +m2,m

′ = m′1 +m′2.
Consider the following diagram:

According to Lemma 10.9(a): ιb+m,m′2,m′1 ◦ ιb,m2,m1 = ιb,m2+m′2,m1+m′1 and
(ιb1+m1,0,m′1 ⊗ ιb2+m2,m

′
2,0
) ◦ (ιb1,0,m1 ⊗ ιb2,m2,0) = (ιb1,0,m1+m′1 ⊗ ιb2,m2+m′2,0).

On the other hand, tracing back the explicit formulas for �b1+m1,b2+m2 and
�b1+m1+m′1,b2+m2+m′2 of Theorem 10.5, it is easy to check that the lower square
is commutative.

The above two observations imply that the maps �b1,b2 are the same for both
(m1,m2) and (m1 + m′1,m2 + m′2). Due to the symmetry, we also see that the
maps �b1,b2 are the same for both (m′1,m′2) and (m1 + m′1,m2 + m′2). Therefore,
the maps �b1,b2 are the same for both (m1,m2) and (m′1,m′2). This completes our
verification.
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F(iii) Commutativity of the Diagram for Any m1,m2 ∈ Z≤0

It remains to prove the commutativity of the diagram of Theorem 10.10. To this end,
choose m′1,m′2 ∈ Z≤0 such that b1 + m1 + m′1, b2 + m2 + m′2 ∈ Z≤0. Consider a
diagram analogous to the previous one:

By our construction, the lower square is commutative. Applying Lemma 10.9(a)
as in Sect. F(ii), we also see that the outer square is commutative. Hence, the
commutativity of the top square follows from the injectivity of the homomorphism
ιb1+m1,0,m′1 ⊗ ιb2+m2,m

′
2,0

, due to Lemma 10.9(b).

Appendix G Proof of Theorem 10.13

The proof of Theorem 10.13 proceeds in several steps. First, we recall the RTT
presentation of Uv(Lsln), and derive the equalities of the right-hand sides of (10.6).
Then, we compute the RTT coproduct of certain elements g̃(±1)

i from the RTT
presentation, see Theorems G.10, G.13 (this is the most technical part). This allows
us to derive formulas (10.2) and (10.3). Based on these, we deduce (10.4) and (10.5).

G(i) RTT Presentation of Uv(Lsln)

LetRtrig(z/w) ∈ End(Cn⊗Cn) be the standard trigonometricR-matrix of sln-type:

Rtrig(z/w) :=
n∑
i=1

Eii ⊗ Eii +
∑

1≤i �=j≤n

z− w

vz− v−1w
Eii ⊗ Ejj+

∑
1≤j<i≤n

(
(v − v−1)z

vz− v−1w
Eji ⊗ Eij + (v − v−1)w

vz− v−1w
Eij ⊗ Eji

) (G.1)

(for n = 2, this definition coincides with formula (11.3)).
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Define the RTT algebra of sln, denoted by U rtt(sln), to be the associative C(v)-
algebra generated by {t±ij [±r]}r∈N1≤i,j≤n subject to the following defining relations:

t±ii [0]t∓ii [0] = 1 for 1 ≤ i ≤ n, t+ij [0] = t−j i[0] = 0 for j < i, (G.2)

Rtrig(z/w)(T
ε(z)⊗1)(1⊗T ε′(w)) = (1⊗T ε′(w))(T ε(z)⊗1)Rtrig(z/w), (G.3)

qdet T ±(z) = 1, (G.4)

for all ε, ε′ ∈ {±}, where the matrices T ±(z) ∈ Matn×n(U rtt(sln)) are given by

T ±(z) :=
n∑

i,j=1

T ±ij (z) · Eij with T ±ij (z) :=
∑
r≥0

t±ij [±r]z∓r ,

and the quantum determinant qdet is defined in a standard way as

qdet T ±(z) :=
∑
τ∈Sn

(−v)−l(τ )T ±1,τ (1)(z)T
±
2,τ (2)(v

−2z) · · · T ±n,τ(n)(v2−2nz)

(cf. Sect. 11.4 and a footnote there).

Remark G.1 Let us point out right away that the RTT presentation of Uq(ĝln)
(with a nontrivial central charge), given in [17, Definition 3.2], involves only
three out of four relations (G.3), namely for (ε, ε′) = (+,+), (−,−), (−,+).
However, as pointed out in [32, 2.3], if the central charge is trivial, then the
fourth relation for (ε, ε′) = (+,−) is equivalent to the one for (ε, ε′) =
(−,+). Indeed, in our notations, this follows from the equalities Rtrig(z/w)

−1 =
R′trig(z/w), PR′trig(w/z)P−1 = Rtrig(z/w), where R′trig(z/w) is obtained from

Rtrig(z/w) by replacing v with v−1 and P ∈ End(Cn⊗Cn) denotes the permutation
operator.

Note that T ±(z) admits the following unique Gauss decomposition:

T ±(z) = F̃±(z) · G̃±(z) · Ẽ±(z)

with F̃±(z), G̃±(z), Ẽ±(z) ∈ Matn×n(U rtt(sln)) of the form

F̃±(z) =
∑
i

Eii+
∑
j<i

f̃±ij (z)·Eij , G̃±(z) =
∑
i

g̃±i (z)·Eii , Ẽ±(z) =
∑
i

Eii+
∑
j<i

ẽ±ji (z)·Eji .

We endowU rtt(sln)with the coproduct structure (also known as the RTT coproduct)
via

�rtt : U rtt(sln) −→ U rtt(sln)⊗U rtt(sln) given by �rtt(T ±(z)) := T ±(z)⊗T ±(z).
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Theorem G.2 ([17]) There exists a unique C(v)-algebra isomorphism

ϒ : U ad
v (Lsln)

∼−→U rtt(sln),

such that

e±j (z) �→
ẽ±j,j+1(v

j z)

v − v−1 , f±j (z) �→
f̃±j+1,j (v

j z)

v − v−1 ,

ψ±j (z) �→ g̃±j+1(v
j z)(g̃±j (v

j z))−1, φ±j �→ t∓11[0]t∓22[0] · · · t∓jj [0] for 1 ≤ j < n.

Moreover, this isomorphism intertwines the Drinfeld-Jimbo coproduct �ad on
U ad

v (Lsln) with the RTT coproduct �rtt on U rtt(sln).

Remark G.3 Restrictingϒ toUv(Lsln), viewed as a Hopf subalgebra ofU ad
v (Lsln),

we get an embedding Uv(Lsln) ↪→ U rtt(sln). We will deliberately refer to U rtt(sln)
as an RTT presentation of both algebras Uv(Lsln) and U ad

v (Lsln).

Let us express the matrix coefficients of F̃±(z), G̃±(z), Ẽ±(z) as Taylor
series in z∓1: ẽ+j i(z) = ∑

r≥0 ẽ
(r)
j i z

−r , ẽ−j i(z) = ∑
r<0 ẽ

(r)
j i z

−r , f̃+ij (z) =∑
r>0 f̃

(r)
ij z−r , f̃−ij (z) =

∑
r≤0 f̃

(r)
ij z−r , g̃±i (z) = g̃±i +

∑
r>0 g̃

(±r)
i z∓r . According

to Theorem G.2, we have

ϒ−1(ẽ
(0)
j,j+1) = (v − v−1)ej,0, ϒ

−1(f̃
(0)
j+1,j ) = −(v − v−1)fj,0,

ϒ−1(ẽ
(−1)
j,j+1) = −v−j (v − v−1)ej,−1, ϒ

−1(f̃
(1)
j+1,j ) = vj (v − v−1)fj,1.

(G.5)

The following is the key technical result of this subsection.

Proposition G.4 For any 1 ≤ j < k < i ≤ n, we have:

(a) ẽ
(0)
j i = 1

v−v−1 [ẽ(0)ki , ẽ(0)jk ]v−1 .

(b) f̃
(0)
ij = −1

v−v−1 [f̃ (0)kj , f̃
(0)
ik ]v .

(c) ẽ
(−1)
j i = 1

v−v−1 [ẽ(0)ki , ẽ(−1)
jk ]v−1 .

(d) f̃
(1)
ij = −1

v−v−1 [f̃ (1)kj , f̃
(0)
ik ]v .

Proof

(a) Comparing the matrix coefficients 〈vj ⊗ vk| · · · |vk ⊗ vi〉 of both sides of
the equality Rtrig(z/w)(T

+(z) ⊗ 1)(1 ⊗ T +(w))= (1 ⊗ T +(w))(T +(z)⊗ 1)
Rtrig(z/w), we get

(z−w)T +jk(z)T +ki (w)+(v−v−1)zT +kk (z)T
+
ji (w) = (z−w)T +ki (w)T +jk(z)+(v−v−1)wT +kk (w)T

+
ji (z).
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Evaluating the coefficients of z1w0 in both sides of this equality, we find

g̃+j ẽ
(0)
jk g̃

+
k ẽ

(0)
ki + (v − v−1)g̃+k g̃

+
j ẽ

(0)
j i = g̃+k ẽ

(0)
ki g̃

+
j ẽ

(0)
jk .

Combining this with Lemma G.5 below, we obtain

(v−v−1)g̃+k g̃
+
j ẽ

(0)
j i = g̃+k g̃

+
j [ẽ(0)ki , ẽ(0)jk ]v−1 (⇒ ẽ

(0)
j i = [ẽ(0)ki , ẽ(0)jk ]v−1/(v−v−1).

(b) Comparing the matrix coefficients 〈vi ⊗ vk| · · · |vk ⊗ vj 〉 of both sides of the
equality Rtrig(z/w)(T

−(z) ⊗ 1)(1 ⊗ T −(w)) = (1 ⊗ T −(w))(T −(z) ⊗ 1)
Rtrig(z/w), we get

(z−w)T −ik (z)T −kj (w)+(v−v−1)wT −kk (z)T
−
ij (w) = (z−w)T −kj (w)T −ik (z)+(v−v−1)zT −kk (w)T

−
ij (z).

Evaluating the coefficients of z0w1 in both sides of this equality, we find

−f̃ (0)ik g̃
−
k f̃

(0)
kj g̃

−
j + (v − v−1)g̃−k f̃

(0)
ij g̃−j = −f̃ (0)kj g̃

−
j f̃

(0)
ik g̃

−
k .

Combining this with Lemma G.5 below, we obtain

−(v− v−1)f̃
(0)
ij g̃−k g̃

−
j = [f̃ (0)kj , f̃

(0)
ik ]v · g̃−k g̃−j (⇒ f̃

(0)
ij = −[f̃ (0)kj , f̃

(0)
ik ]v/(v− v−1).

(c) Comparing the matrix coefficients 〈vk ⊗ vj | · · · |vi ⊗ vk〉 of both sides of the
equality Rtrig(z/w)(T

+(z) ⊗ 1)(1 ⊗ T −(w)) = (1 ⊗ T −(w))(T +(z) ⊗ 1)
Rtrig(z/w), we get

(z−w)T +ki z)T −jk(w)+(v−v−1)wT +ji (z)T
−
kk(w) = (z−w)T −jk(w)T +ki (z)+(v−v−1)zT −ji (w)T

+
kk(z).

Evaluating the coefficients of z1w1 in both sides of this equality, we find

g̃+k ẽ
(0)
ki

⎛⎝g̃−j ẽ(−1)
jk +

∑
j ′<j

f̃
(0)
jj ′ g̃

−
j ′ ẽ

(−1)
j ′k

⎞⎠ =
⎛⎝g̃−j ẽ(−1)

jk +
∑
j ′<j

f̃
(0)
jj ′ g̃

−
j ′ ẽ

(−1)
j ′k

⎞⎠ g̃+k ẽ(0)ki + (v − v−1)

⎛⎝g̃−j ẽ(−1)
j i +

∑
j ′<j

f̃
(0)
jj ′ g̃

−
j ′ ẽ

(−1)
j ′i

⎞⎠ g̃+k .
(G.6)

This equation actually implies g̃+k ẽ
(0)
ki g̃

−
j ẽ

(−1)
jk = g̃−j ẽ(−1)

jk g̃+k ẽ
(0)
ki +

(v− v−1)g̃−j ẽ
(−1)
j i g̃+k . We prove this by induction in j . For j = 1, this

is just (G.6). In general, note that for j ′ < j < k < i, the element
f̃
(0)
jj ′ commutes with ẽ

(0)
ki and g̃+k . The latter follows from Lemma G.5,

while the equality [f̃ (0)
jj ′ , ẽ

(0)
ki ] = 0 follows by combining parts (a,b) from
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above with [ea,0, fb,0]= 0 for a �= b. Hence, (G.6) implies A(j, k, i) +∑
j ′<j f̃

(0)
jj ′ A(j

′, k, i) = 0, where we set

A(j, k, i) := g̃+k ẽ
(0)
ki g̃

−
j ẽ

(−1)
jk − g̃−j ẽ

(−1)
jk g̃+k ẽ

(0)
ki − (v − v−1)g̃−j ẽ

(−1)
j i g̃+k .

By the induction assumption A(j ′, k, i) = 0 for j ′ < j , hence, A(j, k, i) = 0.
Combining this with Lemma G.5 below, we obtain

(v − v−1)g̃−j g̃
+
k ẽ

(−1)
j i = g̃−j g̃

+
k [ẽ(0)ki , ẽ(−1)

jk ]v−1 (⇒ ẽ
(−1)
j i = [ẽ(0)ki , ẽ(−1)

jk ]v−1/(v − v−1).

(d) Comparing the matrix coefficients 〈vk ⊗ vi | · · · |vj ⊗ vk〉 of both sides of the
equality Rtrig(z/w)(T

+(z) ⊗ 1)(1 ⊗ T −(w)) = (1 ⊗ T −(w))(T +(z) ⊗ 1)
Rtrig(z/w), we get

(z−w)T +kj (z)T −ik (w)+(v−v−1)zT +ij (z)T
−
kk (w) = (z−w)T −ik (w)T +kj (z)+(v−v−1)wT −ij (w)T

+
kk (z).

Evaluating the coefficients of z0w0 in both sides of this equality, we find⎛⎝f̃ (1)kj g̃
+
j +

∑
j ′<j

f̃
(1)
kj ′ g̃

+
j ′ ẽ

(0)
j ′j

⎞⎠ f̃ (0)ik g̃
−
k + (v − v−1)

⎛⎝f̃ (1)ij g̃+j +
∑
j ′<j

f̃
(1)
ij ′ g̃

+
j ′ ẽ

(0)
j ′j

⎞⎠ g̃−k =
f̃
(0)
ik g̃

−
k

⎛⎝f̃ (1)kj g̃
+
j +

∑
j ′<j

f̃
(1)
kj ′ g̃

+
j ′ ẽ

(0)
j ′j

⎞⎠ .
(G.7)

This equation actually implies f̃ (1)kj g̃
+
j f̃

(0)
ik g̃

−
k + (v − v−1)f̃

(1)
ij g̃+j g̃

−
k =

f̃
(0)
ik g̃

−
k f̃

(1)
kj g̃

+
j . We prove this by induction in j . For j = 1, this is just (G.7).

Analogously to part (c) above, we note that the element ẽ(0)
j ′j commutes with

f̃
(0)
ik and g̃−k for j ′ < j < k < i. Hence, (G.7) implies B(j, k, i) +∑
j ′<j B(j

′, k, i)ẽ(0)
j ′j = 0, where we set

B(j, k, i) := f̃
(1)
kj g̃

+
j f̃

(0)
ik g̃

−
k + (v − v−1)f̃

(1)
ij g̃+j g̃

−
k − f̃

(0)
ik g̃

−
k f̃

(1)
kj g̃

+
j .

By the induction assumption B(j ′, k, i) = 0 for j ′ < j , hence, B(j, k, i) = 0.
Combining this with Lemma G.5 below, we obtain
−(v − v−1)f̃

(1)
ij g̃−k g̃

+
j = [f̃ (1)kj , f̃

(0)
ik ]v · g̃−k g̃+j

(⇒ f̃
(1)
ij = −[f̃ (1)kj , f̃

(0)
ik ]v/(v − v−1).

��
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Lemma G.5 For any 1 ≤ j < i ≤ n and 1 ≤ a, b ≤ n, we have:

(a) g̃εag̃
ε′
b = g̃ε

′
b g̃

ε
a for any ε, ε′ ∈ {±}.

(b) g̃±a ẽ
(0)
j i = v±δai∓δaj ẽ(0)j i g̃±a .

(c) g̃±a f̃
(0)
ij = v∓δai±δaj f̃ (0)ij g̃±a .

(d) g̃±a ẽ
(−1)
j i = v±δai∓δaj ẽ(−1)

j i g̃±a .

(e) g̃±a f̃
(1)
ij = v∓δai±δaj f̃ (1)ij g̃±a .

Proof First, we note that t±ii [0] = g̃±i . Hence, we have g̃±i g̃
∓
i = 1, due to

relation (G.2).

(a) Due to the above observation, it suffices to prove g̃+a g̃+b = g̃+b g̃+a for
a <b. This follows by evaluating the coefficients of z0w1 in the equality of
the matrix coefficients 〈va ⊗ vb| · · · |va ⊗ vb〉 of both sides of the equality
((vz− v−1w)Rtrig(z/w))(T

+(z)⊗1)(1⊗T +(w)) = (1⊗T +(w))(T +(z)⊗1)
((vz− v−1w)Rtrig(z/w)).

(b) Due to the above observation, it suffices to prove g̃+a ẽ
(0)
j i = vδai−δaj ẽ(0)j i g̃+a .

This follows by evaluating the coefficients of z0w1 in the equality of the
matrix coefficients 〈va ⊗ vj | · · · |va ⊗ vi〉 of both sides of the equality ((vz −
v−1w)Rtrig(z/w))(T

+(z)⊗ 1)(1⊗T +(w)) = (1⊗T +(w))(T +(z)⊗ 1)((vz−
v−1w)Rtrig(z/w)). Note that the cases a < j, a = j, j < a < i, a = i, a > i

have to be treated separately.
(c) Due to the above observation, it suffices to prove g̃−a f̃

(0)
ij = vδai−δaj f̃ (0)ij g̃−a .

This follows by evaluating the coefficients of z0w1 in the equality of the
matrix coefficients 〈vi ⊗ va| · · · |vj ⊗ va〉 of both sides of the equality ((vz −
v−1w)Rtrig(z/w))(T

−(z)⊗ 1)(1⊗T −(w)) = (1⊗T −(w))(T −(z)⊗ 1)((vz−
v−1w)Rtrig(z/w)). Note that the cases a < j, a = j, j < a < i, a = i, a > i

have to be treated separately.
(d) Due to the above observation, it suffices to prove g̃+a ẽ

(−1)
j i = vδai−δaj ẽ(−1)

j i g̃+a .

This follows by evaluating the coefficients of z1w1 in the equality of the
matrix coefficients 〈va ⊗ vj | · · · |va ⊗ vi〉 of both sides of the equality ((vz −
v−1w)Rtrig(z/w))(T

+(z)⊗ 1)(1⊗T −(w)) = (1⊗T −(w))(T +(z)⊗ 1)((vz−
v−1w)Rtrig(z/w)). Note that the cases a < j, a = j, j < a < i, a = i, a > i

have to be treated separately.
Let us emphasize that this case is less trivial than part (b), due to the fact that

[w1]T −j i (w) = g̃−j ẽ
(−1)
j i +

∑
j ′<j

f̃
(0)
jj ′ g̃

−
j ′ ẽ

(−1)
j ′i .

Hence, the proof proceeds by induction in j , while we also use part (c) from
above.

(e) Due to the above observation, it suffices to prove g̃−a f̃
(1)
ij = vδai−δaj f̃ (1)ij g̃−a .

This follows by evaluating the coefficients of z0w0 in the equality of the
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matrix coefficients 〈vi ⊗ va| · · · |vj ⊗ va〉 of both sides of the equality ((vz −
v−1w)Rtrig(z/w))(T

+(z)⊗ 1)(1⊗T −(w)) = (1⊗T −(w))(T +(z)⊗ 1)((vz−
v−1w)Rtrig(z/w)). Note that the cases a < j, a = j, j < a < i, a = i, a > i

have to be treated separately.
Analogously to part (d), this case is less trivial than part (c), due to the fact

that

[z−1]T +ij (z) = f̃
(1)
ij g̃+j +

∑
j ′<j

f̃
(1)
ij ′ g̃

+
j ′ ẽ

(0)
j ′j .

Hence, the proof proceeds by induction in j , while we also use part (b) from
above. ��

The following explicit formulas follow immediately from Proposition G.4.

Corollary G.6 For any 1 ≤ j < i ≤ n, we have:

ẽ
(0)
j i = (v − v−1)j−i+1[ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ

(0)
j,j+1]v−1 · · · ]v−1 ]v−1 =

(v − v−1)j−i+1[[· · · [ẽ(0)i−1,i , ẽ
(0)
i−2,i−1]v−1 , · · · , ẽ(0)j+1,j+2]v−1, ẽ

(0)
j,j+1]v−1 ,

(G.8)

f̃
(0)
ij = (v−1 − v)j−i+1[f̃ (0)j+1,j , [f̃ (0)j+2,j+1, · · · , [f̃ (0)i−1,i−2, f̃

(0)
i,i−1]v · · · ]v]v =

(v−1 − v)j−i+1[[· · · [f̃ (0)j+1,j , f̃
(0)
j+2,j+1]v, · · · , f̃ (0)i−1,i−2]v, f̃ (0)i,i−1]v,

(G.9)

ẽ
(−1)
j i = (v − v−1)j−i+1[ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ

(−1)
j,j+1]v−1 · · · ]v−1 ]v−1 =

(v − v−1)j−i+1[[· · · [ẽ(0)i−1,i , ẽ
(0)
i−2,i−1]v−1 , · · · , ẽ(0)j+1,j+2]v−1 , ẽ

(−1)
j,j+1]v−1 ,

(G.10)

f̃
(1)
ij = (v−1 − v)j−i+1[f̃ (1)j+1,j , [f̃ (0)j+2,j+1, · · · , [f̃ (0)i−1,i−2, f̃

(0)
i,i−1]v · · · ]v]v =

(v−1 − v)j−i+1[[· · · [f̃ (1)j+1,j , f̃
(0)
j+2,j+1]v, · · · , f̃ (0)i−1,i−2]v, f̃ (0)i,i−1]v.

(G.11)

Recall elements E
(0)
j i , F

(0)
ij , E

(−1)
j i , F

(1)
ij ∈ Uv(Lsln) of (10.6). Combining

Corollary G.6 with (G.5), we get the following result.

Corollary G.7

(a) We have

ϒ−1(ẽ
(0)
j i ) = (v − v−1)E

(0)
j i , ϒ

−1(f̃
(0)
ij ) = −(v − v−1)F

(0)
ij ,

ϒ−1(ẽ
(−1)
j i ) = −v−j (v − v−1)E

(−1)
j i , ϒ−1(f̃

(1)
ij ) = vj (v − v−1)F

(1)
ij .

(G.12)
(b) The right equalities in each of the first four lines of (10.6) hold.
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To derive the right equalities of the last two lines of (10.6), we introduce

A+j i :=
∑
s≥1

∑
j=j1<...<js+1=i

(−1)s−1ẽ
(0)
j1j2

· · · ẽ(0)jsjs+1
,

A−ij :=
∑
s≥1

∑
j=j1<...<js+1=i

(−1)s−1f̃
(0)
js+1js

· · · f̃ (0)j2j1

(G.13)

for 1 ≤ j < i ≤ n. These elements will play an important role in Sect. G(ii) below.

Lemma G.8 For any 1 ≤ j < i ≤ n, we have

A+j i = (v − v−1)j−i+1[ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v · · · ]v]v =

(v − v−1)j−i+1[[· · · [ẽ(0)i−1,i , ẽ
(0)
i−2,i−1]v, · · · , ẽ(0)j+1,j+2]v, ẽ(0)j,j+1]v,

(G.14)

A−ij = (v−1 − v)j−i+1[f̃ (0)j+1,j , [f̃ (0)j+2,j+1, · · · , [f̃ (0)i−1,i−2, f̃
(0)
i,i−1]v−1 · · · ]v−1 ]v−1 =

(v−1 − v)j−i+1[[· · · [f̃ (0)j+1,j , f̃
(0)
j+2,j+1]v−1 , · · · , f̃ (0)i−1,i−2]v−1 , f̃

(0)
i,i−1]v−1 .

(G.15)

Proof We prove (G.14) by induction in i − j . The result is obvious for i − j = 1.
To perform the induction step, note that A+j i = ẽ

(0)
j i −

∑
j<k<i ẽ

(0)
jk · A+ki . Applying

the first equality of (G.8) together with the induction assumption, we get

(v − v−1)i−j−1A+ji = [ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v−1 · · · ]v−1 ]v−1−

(v − v−1)
∑
j<k<i

[ẽ(0)k−1,k, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v−1 · · · ]v−1 · [ẽ(0)i−1,i , · · · , [ẽ(0)k+1,k+2, ẽ

(0)
k,k+1]v · · · ]v .

Rewriting [ẽ(0)i−1,i , X]v±1 as ẽ(0)i−1,i · X − v±1X · ẽ(0)i−1,i and using the equality

[ẽ(0)i−1,i , ẽ
(0)
l,l+1] = 0 for any l < i − 2 (due to the quadratic Serre relations in

U ad
v (Lsln)), we immediately find

(v − v−1)i−j−1A+ji =
⎡⎣ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ

(0)
j,j+1]v−1 · · · ]v−1 − (v − v−1)·

∑
j<k<i−1

[ẽ(0)k−1,k, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v−1 · · · ]v−1 · [ẽ(0)i−2,i−1, · · · , [ẽ(0)k+1,k+2, ẽ

(0)
k,k+1]v · · · ]v

⎤⎦
v

=

[ẽ(0)i−1,i , (v − v−1)i−j−2A+j,i−1]v = [ẽ(0)i−1,i , [ẽ(0)i−2,i−1, · · · , [ẽ(0)j+1,j+2, ẽ
(0)
j,j+1]v · · · ]v]v .

Note that the last equality follows from the induction assumption applied to A+j,i−1.

To prove that A+j i also equals the rightmost commutator of (G.14), we apply

similar arguments to the equality A+j i = ẽ
(0)
j i −

∑
j<k<i A

+
jk · ẽ(0)ki . We evaluate the
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right-hand side by applying the rightmost expression of (G.8) to the terms ẽ(0)j i , ẽ
(0)
ki

and the induction assumption to A+jk . Rewriting [X, ẽ(0)j,j+1]v±1 as X · ẽ(0)j,j+1 −
v±1ẽ

(0)
j,j+1 · X and taking ẽ(0)j,j+1 to the leftmost or the rightmost sides, we get the

result.
The proof of (G.15) is completely analogous and is left to the interested reader.

��
The following result follows by combining Lemma G.8 with formula (G.5).

Corollary G.9

(a) We have

ϒ−1(A+j i) = (v − v−1)Ẽ
(0)
j i , ϒ

−1(A−ij ) = −(v − v−1)F̃
(0)
ij . (G.16)

(b) The right equalities in the last two lines of (10.6) hold.

G(ii) Computation of �rtt(g̃
(±1)

i
)

Given a Laurent series F(z), we use [zr ]F(z) to denote the coefficient of zr in F(z).
In this subsection, we compute explicitly �rtt(g̃

(±1)
i ), see Theorems G.10 and G.13.

Theorem G.10 For 1 ≤ i ≤ n, we have

�rtt(g̃
(1)
i ) = g̃

(1)
i ⊗ g̃+i + g̃+i ⊗ g̃

(1)
i +

∑
l>i

g̃+i ẽ
(0)
il ⊗ f̃

(1)
li g̃

+
i +∑

s≥1

∑
j1<...<js+1=i

(−1)s g̃+i ẽ
(0)
j1j2

· · · ẽ(0)jsjs+1
⊗ f̃

(1)
ij1
g̃+i +

∑
l>i

∑
s≥1

∑
j1<...<js+1=i

(−1)s g̃+i ẽ
(0)
il ẽ

(0)
j1j2

· · · ẽ(0)jsjs+1
⊗ f̃

(1)
lj1
g̃+i .

(G.17)

Proof Our starting point is the equality

[z−1]T +ii (z) = g̃
(1)
i +

∑
j<i

f̃
(1)
ij g̃+j ẽ

(0)
j i . (G.18)

We also note that [z−1]T +ij (z) = f̃
(1)
ij g̃+j +

∑
j ′<j f̃

(1)
ij ′ g̃

+
j ′ ẽ

(0)
j ′i for any i > j .

Rewriting this as f̃ (1)ij g̃+j = [z−1]T +ij (z) −
∑

j ′<j f̃
(1)
ij ′ g̃

+
j ′ ẽ

(0)
j ′i and applying this

formula iteratively, we finally get

f̃
(1)
ij g̃+j =

∑
s≥1

∑
j1<...<js=j

(−1)s−1
(
[z−1]T +ij1

(z)
)
ẽ
(0)
j1j2

· · · ẽ(0)js−1js
. (G.19)
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Combining formulas (G.18) and (G.19), we get

g̃
(1)
i = [z−1]T +ii (z)−

∑
j<i

(
[z−1]T +ij (z)

)
· A+j i , (G.20)

where A+j i was defined in (G.13).

Thus, it remains to compute explicitly �rtt([z−1]T +ii (z)),�rtt([z−1]T +ij (z)),
�rtt(A+j i) for i > j . Evaluating the coefficients of z−1 in �rtt(T +ii (z)) =∑n

a=1 T
+
ia (z)⊗ T +ai (z), we find

�rtt([z−1]T +ii (z)) =
∑
j<i

f̃
(1)
ij g̃+j ⊗ g̃+j ẽ

(0)
j i +

∑
j ′<j<i

f̃
(1)
ij ′ g̃

+
j ′ ẽ

(0)
j ′j ⊗ g̃+j ẽ

(0)
j i +

g̃
(1)
i ⊗ g̃+i + g̃+i ⊗ g̃

(1)
i +

∑
j<i

f̃
(1)
ij g̃+j ẽ

(0)
j i ⊗ g̃+i +

∑
j<i

g̃+i ⊗ f̃
(1)
ij g̃+j ẽ

(0)
j i +

∑
l>i

g̃+i ẽ
(0)
il ⊗ f̃

(1)
li g̃

+
i +

j<i∑
l>i

g̃+i ẽ
(0)
il ⊗ f̃

(1)
lj g̃+j ẽ

(0)
j i ,

(G.21)
where the first, second, and third lines in the right-hand side correspond to the
contributions arising from the cases a < i, a = i, and a > i, respectively.

Evaluating the coefficients of z−1 in �rtt(T +ij (z)) =
∑n

a=1 T
+
ia (z) ⊗ T +aj (z), we

find

�rtt([z−1]T +ij (z)) =
∑
j ′<j

f̃
(1)
ij ′ g̃

+
j ′ ⊗ g̃+

j ′ ẽ
(0)
j ′j +

∑
j ′′<j ′<j

f̃
(1)
ij ′′ g̃

+
j ′′ ẽ

(0)
j ′′j ′ ⊗ g̃+

j ′ ẽ
(0)
j ′j+

f̃
(1)
ij g̃+j ⊗ g̃+j +

∑
j ′<j

f̃
(1)
ij ′ g̃

+
j ′ ẽ

(0)
j ′j ⊗ g̃+j + g̃+i ⊗ f̃

(1)
ij g̃+j +

∑
j ′<j

g̃+i ⊗ f̃
(1)
ij ′ g̃

+
j ′ ẽ

(0)
j ′j+

∑
l>i

g̃+i ẽ
(0)
il ⊗ f̃

(1)
lj g̃+j +

j ′<j∑
l>i

g̃+i ẽ
(0)
il ⊗ f̃

(1)
lj ′ g̃

+
j ′ ẽ

(0)
j ′j ,

(G.22)
where the first, second, and third lines in the right-hand side correspond to the
contributions arising from a < j , a = j or i, and a > i, respectively. Note that
for j < a < i both T +ia (z), T

+
aj (z) contain only negative powers of z and hence do

not contribute above.
Finally, let us compute the coproduct of A+j i .

Lemma G.11 We have

�rtt(A+ji ) =
∑
s≥1

∑
j=j1<...<js+1=i

s+1∑
r=1

(−1)s−1ẽ
(0)
jr jr+1

· · · ẽ(0)js js+1
⊗ ẽ

(0)
j1j2

· · · ẽ(0)jr−1jr
(g̃+jr )

−1g̃+i .
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Proof We prove this by induction in i − j . The base of induction i = j + 1
follows from the equality A+j,j+1 = ẽ

(0)
j,j+1 and Lemma G.12 below. To perform

the induction step, note that

A+j i = ẽ
(0)
j i −

∑
j<j ′<i

ẽ
(0)
jj ′A

+
j ′i . (G.23)

Next, we compute the coproduct of ẽ(0)j i .

Lemma G.12 We have

�rtt(ẽ
(0)
j i ) = 1⊗ ẽ

(0)
j i + ẽ

(0)
j i ⊗ (g̃+j )

−1g̃+i +
∑
j<a<i

ẽ
(0)
ja ⊗ (g̃+j )

−1g̃+a ẽ
(0)
ai .

Proof First, let us note that g̃+j = [z0]T +jj (z). Thus,

�rtt(g̃+j ) = [z0]
(

n∑
a=1

T +ja(z)⊗ T +aj (z)
)
= [z0](T +jj (z)⊗ T +jj (z)) = g̃+j ⊗ g̃+j .

We also note that [z0]T +j i (z) = g̃+j ẽ
(0)
j i . Hence, we have

�rtt(g̃+
j
ẽ
(0)
j i
) = [z0]

⎛⎝T+
jj
(z)⊗ T+

j i
(z)+ T+

j i
(z)⊗ T+

ii
(z)+

∑
j<a<i

T+
ja
(z)⊗ T+

ai
(z)

⎞⎠ =
g̃+
j
⊗ g̃+

j
ẽ
(0)
j i
+ g̃+

j
ẽ
(0)
j i
⊗ g̃+

i
+
∑

j<a<i

g̃+
j
ẽ
(0)
ja
⊗ g̃+a ẽ

(0)
ai
.

Note that in the first equality we used [z0](T +ja(z)⊗T +ai (z)) = 0 for a < j or a > i.

Evaluating �rtt(ẽ
(0)
j i ) = �rtt(g̃+j )−1�rtt(g̃+j ẽ

(0)
j i ) via these formulas completes

our proof. ��
Combining (G.23) with Lemma G.12 and applying the induction assumption to

�rtt(A+
j ′i ), we immediately get the formula for �rtt(A+j i) of Lemma G.11. ��

Combining (G.20–G.22) with Lemma G.11, we get (G.17) after tedious compu-
tations. ��
Theorem G.13 For 1 ≤ i ≤ n, we have

�rtt(g̃
(−1)
i ) = g̃

(−1)
i ⊗ g̃−i + g̃−i ⊗ g̃

(−1)
i +

∑
l>i

g̃−i ẽ
(−1)
il ⊗ f̃

(0)
li g̃

−
i +∑

s≥1

∑
j1<...<js+1=i

(−1)s g̃−i ẽ
(−1)
j i ⊗ f̃

(0)
js+1js

· · · f̃ (0)j2j1
g̃−i +∑

l>i

∑
s≥1

∑
j1<...<js+1=i

(−1)s g̃−i ẽ
(−1)
j l ⊗ f̃

(0)
js+1js

· · · f̃ (0)j2j1
f̃
(0)
li g̃

−
i .

(G.24)
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Proof Our starting point is the equality

[z]T −ii (z) = g̃
(−1)
i +

∑
j<i

f̃
(0)
ij g̃−j ẽ

(−1)
j i . (G.25)

We also note that [z]T −j i (z) = g̃−j ẽ
(−1)
j i + ∑j ′<j f̃

(0)
jj ′ g̃

−
j ′ ẽ

(−1)
j ′i for any i > j .

Rewriting this as g̃−j ẽ
(−1)
j i = [z]T −j i (z) −

∑
j ′<j f̃

(0)
jj ′ g̃

−
j ′ ẽ

(−1)
j ′i and applying this

formula iteratively, we finally get

g̃−j ẽ
(−1)
j i =

∑
s≥1

∑
j1<...<js=j

(−1)s−1f̃
(0)
jsjs−1

· · · f̃ (0)j2j1
·
(
[z]T −j1i

(z)
)
. (G.26)

Combining formulas (G.25) and (G.26), we get

g̃
(−1)
i = [z]T −ii (z)−

∑
j<i

A−ij ·
(
[z]T −j i (z)

)
, (G.27)

where A−ij was defined in (G.13).

Thus, it remains to compute explicitly �rtt([z]T −ii (z)),�rtt([z]T −j i (z)),�rtt(A−ij )
for i > j . Evaluating the coefficients of z1 in�rtt(T −ii (z)) =

∑n
a=1 T

−
ia (z)⊗T −ai (z),

we find

�rtt([z]T −ii (z)) =
∑
j<i

f̃
(0)
ij g̃−j ⊗ g̃−j ẽ

(−1)
j i +

∑
j ′<j<i

f̃
(0)
ij g̃−j ⊗ f̃

(0)
jj ′ g̃

−
j ′ ẽ

(−1)
j ′i +

g̃−i ⊗ g̃
(−1)
i + g̃

(−1)
i ⊗ g̃−i +

∑
j<i

g̃−i ⊗ f̃
(0)
ij g̃−j ẽ

(−1)
j i +

∑
j<i

f̃
(0)
ij g̃−j ẽ

(−1)
j i ⊗ g̃−i +

∑
l>i

g̃−i ẽ
(−1)
il ⊗ f̃

(0)
li g̃

−
i +

j<i∑
l>i

f̃
(0)
ij g̃−j ẽ

(−1)
j l ⊗ f̃

(0)
li g̃

−
i ,

(G.28)

where the first, second, and third lines in the right-hand side correspond to the
contributions arising from the cases a < i, a = i, and a > i, respectively.

Evaluating the coefficients of z1 in �rtt(T −j i (z)) =
∑n

a=1 T
−
ja(z) ⊗ T −ai (z), we

find

�rtt([z]T −ji (z)) =
∑
j ′<j

f̃
(0)
jj ′ g̃

−
j ′ ⊗ g̃−

j ′ ẽ
(−1)
j ′i +

∑
j ′′<j ′<j

f̃
(0)
jj ′ g̃

−
j ′ ⊗ f̃

(0)
j ′j ′′ g̃

−
j ′′ ẽ

(−1)
j ′′i +

g̃−j ⊗ g̃−j ẽ
(−1)
j i +

∑
j ′<j

g̃−j ⊗ f̃
(0)
jj ′ g̃

−
j ′ ẽ

(−1)
j ′i + g̃−j ẽ

(−1)
j i ⊗ g̃−i +

∑
j ′<j

f̃
(0)
jj ′ g̃

−
j ′ ẽ

(−1)
j ′i ⊗ g̃−i +

∑
l>i

g̃−j ẽ
(−1)
j l ⊗ f̃

(0)
li g̃

−
i +

j ′<j∑
l>i

f̃
(0)
jj ′ g̃

−
j ′ ẽ

(−1)
j ′l ⊗ f̃

(0)
li g̃

−
i ,

(G.29)
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where the first, second, and third lines in the right-hand side correspond to the
contributions arising from a < j , a = j or i, and a > i, respectively. Note that
for j < a < i both T −ja(z), T

−
ai (z) contain only positive powers of z and hence do

not contribute above.
Finally, let us compute the coproduct of A−ij .

Lemma G.14 We have

�rtt(A−ij ) =
∑
s≥1

∑
j=j1<...<js+1=i

s+1∑
r=1

(−1)s−1g̃−i (g̃
−
jr
)−1f̃

(0)
jr jr−1

· · · f̃ (0)j2j1
⊗ f̃

(0)
js+1js

· · · f̃ (0)jr+1jr
.

Proof We prove this by induction in i − j . The base of induction i = j + 1
follows from the equality A−j+1,j = f̃

(0)
j+1,j and Lemma G.15 below. To perform

the induction step, note that

A−ij = f̃
(0)
ij −

∑
j<j ′<i

A−
ij ′ f̃

(0)
j ′j . (G.30)

Next, we compute the coproduct of f̃ (0)ij .

Lemma G.15 We have

�rtt(f̃
(0)
ij ) = f̃

(0)
ij ⊗ 1+ g̃−i (g̃

−
j )
−1 ⊗ f̃

(0)
ij +

∑
j<a<i

f̃
(0)
ia g̃

−
a (g̃

−
j )
−1 ⊗ f̃

(0)
aj .

Proof First, let us note that g̃−j = [z0]T −jj (z). Thus,

�rtt(g̃−j ) = [z0]
(

n∑
a=1

T −ja(z)⊗ T −aj (z)
)
= [z0](T −jj (z)⊗ T −jj (z)) = g̃−j ⊗ g̃−j .

We also note that [z0]T −ij (z) = f̃
(0)
ij g̃−j . Hence, we have

�rtt(f̃
(0)
ij g̃−j ) = [z0]

⎛⎝T −ij (z)⊗ T −jj (z)+ T −ii (z)⊗ T −ij (z)+
∑
j<a<i

T −ia (z)⊗ T −aj (z)

⎞⎠ =
f̃
(0)
ij g̃−j ⊗ g̃−j + g̃−i ⊗ f̃

(0)
ij g̃−j +

∑
j<a<i

f̃
(0)
ia g̃

−
a ⊗ f̃

(0)
aj g̃

−
j .

Note that in the first equality we used [z0](T −ia (z)⊗T −aj (z)) = 0 for a < j or a > i.

Evaluating �rtt(f̃
(0)
ij ) = �rtt(f̃

(0)
ij g̃−j )�rtt(g̃−j )−1 via these formulas completes

our proof. ��
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Combining (G.30) with Lemma G.15 and applying the induction assumption to
�rtt(A−

ij ′), we immediately get the formula for �rtt(A−ij ) of Lemma G.14. ��
Combining (G.27–G.29) with Lemma G.14, we get (G.24) after tedious compu-

tations. ��
For 1 ≤ i ≤ n, define Hi,±1 ∈ U rtt(sln) via Hi,±1 := (g̃±i )−1g̃

(±1)
i . Recall the

elements A+j i and A−ij of (G.13). Combining Theorems G.10, G.13 with Lemma G.5

and the formula �rtt(g̃±i ) = g̃±i ⊗ g̃±i , we get the following expressions for
�rtt(Hi,±1).

Corollary G.16 We have

�rtt(Hi,1) = Hi,1⊗1+1⊗Hi,1+v−1
∑
l>i

ẽ
(0)
il ⊗f̃ (1)li −v

∑
j<i

A+ji⊗f̃ (1)ij −
j<i∑
l>i

ẽ
(0)
il A

+
ji⊗f̃ (1)lj ,

(G.31)

�rtt(Hi,−1) = Hi,−1⊗1+1⊗Hi,−1+v
∑
l>i

ẽ
(−1)
il ⊗f̃ (0)li −v−1

∑
j<i

ẽ
(−1)
j i ⊗A−ij−

j<i∑
l>i

ẽ
(−1)
j l ⊗A−ij f̃ (0)li .

(G.32)

G(iii) Proof of Formula (10.2)

Recall the Hopf algebra embeddingϒ : Uv(Lsln) ↪→ U rtt(sln) of Theorem G.2 (see
also Remark G.3). It is easy to see that

ϒ(hi,1) = Hi+1,1 −Hi,1

vi (v − v−1)
.

Combining Corollaries G.7, G.9 with formula (G.31) and the fact thatϒ intertwines
� and �rtt, we immediately get

�(hi,1)− hi,1 ⊗ 1− 1⊗ hi,1 = v−i (v − v−1)−1×(
vi (v − v−1)2

∑
l>i+1

E
(0)
i+1,l ⊗ F

(1)
l,i+1 − (v − v−1)2

∑
k<i+1

vk+1Ẽ
(0)
k,i+1 ⊗ F

(1)
i+1,k−

(v − v−1)3
∑

k<i+1<l

vkE
(0)
i+1,l Ẽ

(0)
k,i+1 ⊗ F

(1)
lk − vi−1(v − v−1)2

∑
l>i

E
(0)
il ⊗ F

(1)
li +

(v − v−1)2
∑
k<i

vk+1Ẽ
(0)
ki ⊗ F

(1)
ik + (v − v−1)3

∑
k<i<l

vkE
(0)
il Ẽ

(0)
ki ⊗ F

(1)
lk

)
.

(G.33)
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This formula implies (10.2) after the following simplifications:

∑
k<i<l

vkE
(0)
il Ẽ

(0)
ki ⊗ F

(1)
lk −

∑
k<i+1<l

vkE
(0)
i+1,l Ẽ

(0)
k,i+1 ⊗ F

(1)
lk =

k<i∑
l>i+1

vk(E
(0)
il Ẽ

(0)
ki −E(0)i+1,l Ẽ

(0)
k,i+1)⊗F (1)

lk +
∑
k<i

vkE
(0)
i,i+1Ẽ

(0)
ki ⊗F (1)

i+1,k−vi
∑
l>i+1

E
(0)
i+1,l Ẽ

(0)
i,i+1⊗F (1)

li ,

− v−1
∑
l>i

E
(0)
il ⊗ F

(1)
li − (v − v−1)

∑
l>i+1

E
(0)
i+1,lE

(0)
i,i+1 ⊗ F

(1)
li =

− v−1E
(0)
i,i+1 ⊗ F

(1)
i+1,i + v−2

∑
l>i+1

[E(0)i,i+1, E
(0)
i+1,l]v3 ⊗ F

(1)
li ,

−
∑
k<i+1

vk+1−i Ẽ(0)k,i+1 ⊗ F
(1)
i+1,k + (v − v−1)

∑
k<i

vk−iE(0)i,i+1Ẽ
(0)
ki ⊗ F

(1)
i+1,k =

− vE
(0)
i,i+1 ⊗ F

(1)
i+1,i −

∑
k<i

vk−i−1[E(0)i,i+1, Ẽ
(0)
ki ]v3 ⊗ F

(1)
i+1,k,

where in the second and third equalities we used

E
(0)
il = [E(0)i+1,l , E

(0)
i,i+1]v−1 , Ẽ

(0)
k,i+1 = [E(0)i,i+1, Ẽ

(0)
ki ]v.

G(iv) Proof of Formula (10.3)

The proof of (10.3) is completely analogous and is based on the formula

ϒ(hi,−1) = Hi,−1 −Hi+1,−1

v−i (v − v−1)
.

Combining this with Corollaries G.7, G.9, formula (G.32) and the fact that ϒ
intertwines� and�rtt, one derives (10.3). The computations are similar to the above
proof of (10.2) and are left to the interested reader.

G(v) Proof of Formula (10.4)

Recall that [hi,−1, ei,0] = [2]v · ei,−1, so that

�(ei,−1) = [2]−1
v · [�(hi,−1),�(ei,0)] = [2]−1

v · [�(hi,−1), 1⊗ ei,0 + ei,0 ⊗ ψ+i,0].

Applying formula (10.3) to �(hi,−1) and using Lemma G.17 below, we
recover (10.4).
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Lemma G.17 For k < i and l > i + 1, the following equalities hold:

(a) [F (0)
l,i+1, ei,0] = 0.

(b) [F̃ (0)
ik , ei,0] = 0.

(c) [F (0)
li , ei,0] = −F (0)

l,i+1ψ
−
i,0.

(d) [F̃ (0)
i+1,k, ei,0] = v−1F̃

(0)
ik ψ

−
i,0.

(e) [[F (0)
l,i+1, F

(0)
i+1,i]v−3 , ei,0] = 1−v−4

v−v−1F
(0)
l,i+1ψ

−
i,0 − 1−v−2

v−v−1F
(0)
l,i+1ψ

+
i,0.

(f) [[F̃ (0)
ik , F

(0)
i+1,i]v−3, ei,0] = 1−v−4

v−v−1 F̃
(0)
ik ψ

−
i,0 − 1−v−2

v−v−1 F̃
(0)
ik ψ

+
i,0.

(g) [E(−1)
i+1,l , ei,0]v = vE

(−1)
il .

(h) [E(−1)
ki , ei,0]v = −vE

(−1)
k,i+1.

(i) [E(−1)
il , ei,0]v−1 = 0.

(j) [E(−1)
k,i+1, ei,0]v−1 = 0.

(k) [E(−1)
kl , ei,0] = 0.

Proof Recall that [fj,0, ei,0] = δji

v−v−1 (ψ
−
i,0 − ψ+i,0).

Parts (a, b) are obvious as ei,0 commutes with fi+1,0, . . . , fl−1,0 and
fk,0, . . . , fi−1,0. Combining (a, b) with equalities F

(0)
li = [fi,0, F (0)

l,i+1]v and

F̃
(0)
i+1,k = [F̃ (0)

ik , fi,0]v−1 , we get [F (0)
li , ei,0] = [ψ

−
i,0−ψ+i,0
v−v−1 , F

(0)
l,i+1]v = −F (0)

l,i+1ψ
−
i,0

and [F̃ (0)
i+1,k, ei,0] = [F̃ (0)

ik ,
ψ−i,0−ψ+i,0
v−v−1 ]v−1 = v−1F̃

(0)
ik ψ

−
i,0, which proves parts (c, d).

Parts (e, f) also follow immediately from (a, b).

(g) Due to the quadratic Serre relations ei,0 commutes with ei+2,0, . . . , el−1,0,
hence, also with E

(0)
i+2,l . Meanwhile, we have [ei+1,−1, ei,0]v =

v[ei+1,0, ei,−1]v−1 , due to (U2). Thus, [E(−1)
i+1,l , ei,0]v =

[[E(0)i+2,l , ei+1,−1]v−1 , ei,0]v = [E(0)i+2,l , v[ei+1,0, ei,−1]v−1 ]v−1 = vE
(−1)
il .

(h) We have [E(−1)
ki , ei,0]v = −v[ei,0, E(−1)

ki ]v−1 = −vE
(−1)
k,i+1.

(i) Note that [[ei+1,0, ei,−1]v−1 , ei,0]v−1 = v−1[[ei+1,−1, ei,0]v, ei,0]v−1 = 0, due
to (U2) and (U7). Since also ei,0 commutes with ei+2,0, . . . , el−1,0, we get
[E(−1)

il , ei,0]v−1 = 0.

(j) As in (i), [E(−1)
k,i+1, ei,0]v−1 = 0 follows from [[ei,0, ei−1,0]v−1 , ei,0]v−1 = 0, due

to (U7).
(k) Comparing the matrix coefficients 〈vi ⊗ vk| · · · |vi+1 ⊗ vl〉 of both sides of

the equality Rtrig(z/w)(T
+(z)⊗ 1)(1⊗ T −(w)) = (1⊗ T −(w))(T +(z)⊗ 1)

Rtrig(z/w), we get

(z− w)T +i,i+1(z)T
−
kl (w)+ (v − v−1)wT +k,i+1(z)T

−
il (w) =

(z− w)T −kl (w)T
+
i,i+1(z)+ (v − v−1)wT −k,i+1(w)T

+
il (z).



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 283

Evaluating the coefficients of z1w1 in both sides of this equality, we find

[g̃+i ẽ(0)i,i+1, g̃
−
k ẽ

(−1)
kl +

∑
j<k

f̃
(0)
kj g̃

−
j ẽ

(−1)
j l ] = 0.

Hence, by induction in k, we find [ẽ(0)i,i+1, ẽ
(−1)
kl ] = 0, which implies

[E(−1)
kl , ei,0] = 0.

��
This completes our proof of (10.4).

G(vi) Proof of Formula (10.5)

Recall that [hi,1, fi,0] = −[2]v · fi,1, so that

�(fi,1) = −[2]−1
v · [�(hi,1),�(fi,0)] = −[2]−1

v · [�(hi,1), fi,0 ⊗ 1+ψ−i,0 ⊗ fi,0].

Applying formula (10.2) to �(hi,1) and using Lemma G.18 below, we
recover (10.5).

Lemma G.18 For k < i and l > i + 1, the following equalities hold:

(a) [E(0)i+1,l , fi,0] = 0.

(b) [Ẽ(0)ki , fi,0] = 0.

(c) [E(0)il , fi,0] = v−1E
(0)
i+1,lψ

+
i,0.

(d) [Ẽ(0)k,i+1, fi,0] = −Ẽ(0)ki ψ+i,0.

(e) [[E(0)i,i+1, E
(0)
i+1,l]v3, fi,0] = v−1−v3

v−v−1 E
(0)
i+1,lψ

+
i,0 − v−v3

v−v−1E
(0)
i+1,lψ

−
i,0.

(f) [[E(0)i,i+1, Ẽ
(0)
ki ]v3 , fi,0] = v−1−v3

v−v−1 Ẽ
(0)
ki ψ

+
i,0 − v−v3

v−v−1 Ẽ
(0)
ki ψ

−
i,0.

(g) [F (1)
l,i+1, fi,0]v = −F (1)

li .

(h) [F (1)
ik , fi,0]v = F

(1)
i+1,k .

(i) [F (1)
li , fi,0]v−1 = 0.

(j) [F (1)
i+1,k, fi,0]v−1 = 0.

(k) [F (1)
lk , fi,0] = 0.

This lemma is proved completely analogously to Lemma G.17. The details are
left to the interested reader.

This completes our proof of Theorem 10.13.
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Appendix H Proof of Theorem 10.16 and Homomorphisms
j±
μ1,μ2

Our proof of Theorem 10.16 proceeds in three steps. First, we introduce subalgebras
U

sc,±
0,μ1,μ2

of Usc
0,μ1+μ2

and construct homomorphisms j±μ1,μ2
which we referred to in

Remark 10.17. Then, we prove Theorem 10.16, reducing some of the verifications
to the case of Uv(Lsln) via the aforementioned j±μ1,μ2

. Finally, we verify the
commutativity of the diagram from Remark 10.17.

Throughout this section, we assume μ1, μ2 ∈ �−.

H(i) Homomorphisms j±
μ1,μ2

First, we introduce subalgebras Usc,±
0,μ1,μ2

of Usc
0,μ1+μ2

. To this end, recall the explicit
identification of the Drinfeld-Jimbo and the new Drinfeld realizations of Uv(Lsln)
from Theorem 8.10:

Ei �→ ei,0, Fi �→ fi,0, K
±1
i �→ (ψ+i,0)

±1 = ψ±i,0 = (ψ−i,0)
∓1 for 1 ≤ i ≤ n− 1,

(Ki0)
±1 �→ (ψ+1,0 · · ·ψ+n−1,0)

∓1,

Ei0 �→ (−v)−n · (ψ+1,0 · · ·ψ+n−1,0)
−1 · [· · · [f1,1, f2,0]v, · · · , fn−1,0]v,

Fi0 �→ (−v)n · [en−1,0, · · · , [e2,0, e1,−1]v−1 · · · ]v−1 · ψ+1,0 · · ·ψ+n−1,0.

Hence, the images U+v and U−v of the Drinfeld-Jimbo Borel subalgebras

are the subalgebras of Uv(Lsln) generated by {ei,0, (ψ+i,0)±1, F
(1)
n1 }n−1

i=1 and

{fi,0, (ψ+i,0)±1, E
(−1)
1n }n−1

i=1 , respectively.

Likewise, let Usc,+
0,μ1,μ2

and U
sc,−
0,μ1,μ2

be the C(v)-subalgebras of Usc
0,μ1+μ2

gener-

ated by the elements {ei,0, (ψ+i,0)±1, F
(1)
n1 }n−1

i=1 and {fi,b1,i , (ψ
−
i,b1,i+b2,i

)±1, Ê
(−1)
1n }n−1

i=1 ,
respectively, where as before b1,i = α∨i (μ1), b2,i = α∨i (μ2), bi =
b1,i + b2,i . Here, the elements {Ê(−1)

j i }j<i are defined via Ê
(−1)
j i :=

[ei−1,b2,i−1 , [ei−2,b2,i−2 , · · · , [ej+1,b2,j+1 , ej,b2,j−1]v−1 · · · ]v−1 ]v−1 .

Proposition H.1

(a) There is a unique C(v)-algebra homomorphism j+μ1,μ2
: U+v → U

sc,+
0,μ1,μ2

, such

that ei,0 �→ ei,0, (ψ
+
i,0)

±1 �→ (ψ+i,0)±1, F
(1)
n1 �→ F

(1)
n1 .

(b) There is a unique C(v)-algebra homomorphism j−μ1,μ2
: U−v → U

sc,−
0,μ1,μ2

, such

that fi,0 �→ fi,b1,i , (ψ
−
i,0)

±1 �→ (ψ−i,bi )
±1, E

(−1)
1n �→ Ê

(−1)
1n .
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Proof

(a) Converting the defining relations of the positive Drinfeld-Jimbo Borel sub-
algebra into the new Drinfeld realization, we see that U+v is generated by

{ei,0, (ψ+i,0)±1, F
(1)
n1 }n−1

i=1 with the following defining relations:

(ψ+i,0)
±1 · (ψ+i,0)∓1 = 1, ψ+i,0ψ

+
j,0 = ψ+j,0ψ

+
i,0, (H.1)

ψ+i,0ej,0 = vcij ej,0ψ
+
i,0, ψ

+
i,0F

(1)
n1 = v−δi1−δi,n−1F

(1)
n1 ψ

+
i,0, (H.2)

[ei,0, [ei,0, ei±1,0]v]v−1 = 0, [ei,0, ej,0] = 0 if cij = 0, (H.3)

[ei,0, F (1)
n1 ] = 0 for 1 < i < n− 1, (H.4)

[e1,0, [e1,0, F
(1)
n1 ]]v−2 = 0, [en−1,0, [en−1,0, F

(1)
n1 ]]v−2 = 0, (H.5)

[F (1)
n1 , [F (1)

n1 , e1,0]]v2 = 0, [F (1)
n1 , [F (1)

n1 , en−1,0]]v2 = 0. (H.6)

Thus, it suffices to check that these relations are preserved under the specified
assignment ei,0 �→ ei,0, (ψ

+
i,0)

±1 �→ (ψ+i,0)±1, F
(1)
n1 �→ F

(1)
n1 . The validity

of (H.1–H.4) is obvious.
To verify the first equality of (H.5), we note that [ψ+1,1, f2,0]v = (v2 −

1)f2,1ψ
+
1,0, due to (U5). Combining this with (U6), we get

[e1,0, F
(1)
n1 ] = (v − v−1)−1 · [· · · [ψ+1,1, f2,0]v, · · · , fn−1,0]v = vF

(1)
n2 ψ

+
1,0.

Hence, [e1,0, [e1,0, F
(1)
n1 ]]v−2 = v[e1,0, F

(1)
n2 ψ

+
1,0]v−2 = v[e1,0, F

(1)
n2 ]ψ+1,0 = 0,

due to (U6).
The verification of the second equality of (H.5) is similar and is based on

[en−1,0, F
(1)
n1 ] =

[[· · · [f1,1, f2,0]v, · · · , fn−2,0]v, ψ+n−1,0 − δbn−1,0ψ
−
n−1,0]v

v − v−1
= −vF

(1)
n−1,1ψ

+
n−1,0.

Due to the above equality [e1,0, F
(1)
n1 ] = vF

(1)
n2 ψ

+
1,0 and (U4), the verification

of the first equality of (H.6) boils down to the proof of [F (1)
n1 , F

(1)
n2 ]v = 0.

This is an equality in U
sc,<
0,μ1+μ2

. However, U
sc,<
0,μ1+μ2

� U<
v (Lsln), due to

Proposition 5.1(b). Hence, it suffices to check this equality in Uv(Lsln). The
latter follows immediately from the validity of (H.6) for U+v .

Due to [en−1,0, F
(1)
n1 ] = −vF

(1)
n−1,1ψ

+
n−1,0 from above and (U4), the verifica-

tion of the second equality of (H.6) boils down to the proof of [F (1)
n1 , F

(1)
n−1,1]v =

0. Analogously to the previous verification, the latter follows from the same
equality in U+v .

(b) The proof of part (b) is completely analogous and is left to the interested
reader. ��



286 M. Finkelberg and A. Tsymbaliuk

This completes our construction of the homomorphisms j±μ1,μ2
: U±v →

U
sc,±
0,μ1,μ2

, which we referred to in Remark 10.17. The following results are needed
for the next subsection.

Lemma H.2

(a) For any 1 ≤ j < i ≤ n, we have E(0)j i , Ẽ
(0)
j i , F

(1)
ij ∈ U

sc,+
0,μ1,μ2

.
(b) For any 1 ≤ j < i ≤ n, define

F̂
±,(0)
ij := [· · · [fj,b1,j , fj+1,b1,j+1 ]v±1 , · · · , fi−1,b1,i−1 ]v±1 .

We have F̂±,(0)ij , Ê
(−1)
j i ∈ U

sc,−
0,μ1,μ2

.

Proof

(a) Since E(0)j i , Ẽ
(0)
j i are expressed via v±1-commutators of ek,0 ∈ U

sc,+
0,μ1,μ2

, we
obviously get the first two inclusions. The last inclusion is clear for (i, j) =
(n, 1). Applying iteratively [ek,0, F (1)

k+1,1] = −vF
(1)
k1 ψ

+
k,0, [el,0, F (1)

il ] =
vF

(1)
i,l+1ψ

+
l,0, we get F (1)

ij ∈ U
sc,+
0,μ1,μ2

for any j < i.

(b) The inclusions F̂±,(0)ij ∈ U
sc,−
0,μ1,μ2

are obvious. It remains to prove Ê(−1)
j i ∈

U
sc,−
0,μ1,μ2

. This is clear for (j, i) = (1, n). To deduce the general case, it remains

to apply the equalities [fi−1,b1,i−1 , Ê
(−1)
1i ] = Ê

(−1)
1,i−1ψ

−
i−1,bi−1

, [fl,b1,l , Ê
(−1)
li ] =

−Ê(−1)
l+1,iψ

−
l,bl

. ��
The proof of the following result is straightforward.

Lemma H.3 For any 1 ≤ j < i ≤ n, we have:

j+μ1,μ2
: E(0)j i �→ E

(0)
j i , Ẽ

(0)
j i �→ Ẽ

(0)
j i , F

(1)
ij �→ F

(1)
ij , fi,1 �→ fi,1, hi,1 �→ hi,1,

j−μ1,μ2
: F (0)

ij �→ F̂
+,(0)
ij , F̃

(0)
ij �→ F̂

−,(0)
ij , E

(−1)
j i �→ Ê

(−1)
j i , ei,−1 �→ ei,b2,i−1, hi,−1 �→ hi,−1.

H(ii) Proof of Theorem 10.16

Due to Theorem 5.5, it suffices to check that the assignment � of Theorem 10.16
preserves defining relations (Û1–Û9). To simplify our exposition, we will assume
that μ1, μ2 are strictly antidominant: b1,i , b2,i < 0 for any 1 ≤ i < n. This
verification is similar to the n = 2 case (carried out in Appendix D) and we only
indicate the key technical details, see Lemmas H.4–H.15 (their proofs are similar
to that of Lemma G.17 and therefore omitted). For 1 ≤ a ≤ b < n, we define
α∨[a,b] := α∨a + α∨a+1 + . . .+ α∨b.
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H(ii).a Compatibility with (Û1)

• The equalities �((ψ+i,0)±1)�((ψ+i,0)∓1) = 1 and �((ψ−i,bi )
±1)�((ψ−i,bi )

∓1) = 1

follow immediately from relation (Û1) for both Usc
0,μ1

,Usc
0,μ2

.

• The commutativity of {�(ψ+i,0),�(ψ−i,bi )}n−1
i=1 between themselves and with

{�(hj,±1)}n−1
j=1 is due to relations (Û1, Û4, Û5) for both Usc

0,μ1
,Usc

0,μ2
.

• Finally, we verify [�(hi,r ),�(hj,s)] = 0 for r, s ∈ {±1}. To this end, recall
the homomorphism ι0,0,μ1 ⊗ ι0,μ2,0 : Usc

0,0 ⊗ Usc
0,0 → Usc

0,μ1
⊗ Usc

0,μ2
. The key

observation is that ι0,0,μ1 ⊗ ι0,μ2,0(�(hi,r )) = �(hi,r ) + α∨i (μ1+μ2)

vr−v−r for any
i ∈ I, r ∈ {±1} (cf. proof of Corollary 10.11), where by abuse of notation we
use �(hi,r ) to denote elements of both Usc

0,0 ⊗ Usc
0,0 and Usc

0,μ1
⊗ Usc

0,μ2
. Hence,

it suffices to prove [�(hi,r ),�(hj,s)] = 0 in Usc
0,0 ⊗ Usc

0,0. The latter follows
immediately from the corresponding result for Uv(Lsln), in which case the
assignment � of Theorem 10.16 coincides with the Drinfeld-Jimbo coproduct,
due to Theorem 10.13.

H(ii).b Compatibility with (Û2)

We need to prove [�(ei,r+1),�(ej,s)]vcij + [�(ej,s+1),�(ei,r )]vcij = 0 for
b2,i − 1 ≤ r ≤ −1, b2,j − 1 ≤ s ≤ −1.

Case b2,i − 1 < r ≤ −1, b2,j − 1 < s ≤ −1 In this case, the above sum equals
1 ⊗ ([ei,r+1, ej,s]vcij + [ej,s+1, ei,r ]vcij ) = 0, due to relations (Û2) and (Û4) for
Usc

0,μ2
.

Case r = b2,i − 1, b2,j − 1 < s < −1 Note that [ej,s+1, fa,0] = 0 for any 1 ≤
a < n, due to (Û6) for Usc

0,μ2
. As a result, we have [ej,s+1, F

(0)
ba ] = [ej,s+1, F̃

(0)
ba ] =

0 for any 1 ≤ a < b ≤ n. Combining this with (Û2) and (Û4) for Usc
0,μ2

, we
get [�(ei,b2,i ),�(ej,s)]vcij + [�(ej,s+1),�(ei,b2,i−1)]vcij = 1⊗ ([ei,b2,i , ej,s]vcij +[ej,s+1, ei,b2,i−1]vcij ) = 0 as above.

Case r = b2,i − 1, s = b2,j − 1 Due to relation (Û4) for both Usc
0,μ1

,Usc
0,μ2

, we get

[�(ej,b2,j ),�(ei,b2,i−1)]vcij = 1⊗ [ej,b2,j , ei,b2,i−1]vcij −
(v − v−1)

∑
l>i+1

E
(−1)
il ⊗ [ej,b2,j , F

(0)
l,i+1]ψ−i,b2,i

+ (v − v−1)
∑
k<i

vi−k−1E
(−1)
k,i+1 ⊗ [ej,b2,j , F̃

(0)
ik ]ψ−i,b2,i

−

(v − v−1)2
k<i∑
l>i+1

vi−k−1E
(−1)
kl ⊗ [ej,b2,j , F̃

(0)
ik F

(0)
l,i+1]ψ−i,b2,i

.
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Using this formula and Lemma H.4 below, it is straightforward to check that
again we obtain [�(ei,b2,i ),�(ej,b2,j−1)]vcij + [�(ej,b2,j ),�(ei,b2,i−1)]vcij = 1 ⊗
([ei,b2,i , ej,b2,j−1]vcij + [ej,b2,j , ei,b2,i−1]vcij ) = 0.

Lemma H.4 For any 1 ≤ k < i, i + 1 < l ≤ n, 1 ≤ j < n, the following holds in
Usc

0,μ2
:

(a) [ej,b2,j , F
(0)
l,i+1] = δj,i+1F

(0)
l,i+2ψ

−
j,b2,j

, where we set F (0)
i+2,i+2 := −1

v−v−1 .

(b) [ej,b2,j , F̃
(0)
ik ] = −v−1δj,i−1F̃

(0)
i−1,kψ

−
j,b2,j

, where we set F̃ (0)
i−1,i−1 := v

v−v−1 .

Case r = b2,i − 1, s = −1 Clearly, [�(ei,b2,i ),�(ej,−1)]vcij = 1 ⊗
[ei,b2,i , ej,−1]vcij and [�(ej,0),�(ei,b2,i−1)]vcij = [1 ⊗ ej,0 + ej,0 ⊗
ψ+j,0,�(ei,b2,i−1)]vcij . We claim that as in the previous cases, one gets
[�(ei,b2,i ),�(ej,−1)]vcij + [�(ej,0),�(ei,b2,i−1)]vcij = 1 ⊗ ([ei,b2,i , ej,−1]vcij +[ej,0, ei,b2,i−1]vcij ) = 0. To this end, we note that the computations of
[1 ⊗ ej,0,�(ei,b2,i−1)]vcij and [ej,0 ⊗ ψ+j,0,�(ei,b2,i−1)]vcij are straightforward
and are crucially based on Lemmas H.5 and H.6 below, respectively.

Lemma H.5 For any 1 ≤ k < i, i + 1 < l ≤ n, 1 ≤ j < n, the following holds in
Usc

0,μ2
:

(a) [ej,0, F (0)
l,i+1] = −vδj,l−1F

(0)
j,i+1ψ

+
j,0, where we set F (0)

i+1,i+1 := −1
v(v−v−1)

.

(b) [ej,0, F̃ (0)
ik ] = δjkF̃

(0)
i,j+1ψ

+
j,0, where we set F̃ (0)

ii := 1
v−v−1 .

Lemma H.6 For any 1 ≤ k < l−1 < n, 1 ≤ j < n, the following holds in Usc
0,μ1

:

[ej,0, E(−1)
kl ]

v
(α∨
j
,α∨[k,l−1]) = δjlE

(−1)
k,l+1 − δj,k−1E

(−1)
k−1,l .

H(ii).c Compatibility with (Û3)

We need to prove [�(fi,r+1),�(fj,s)]v−cij + [�(fj,s+1),�(fi,r )]v−cij = 0 for
b1,i ≤ r ≤ 0, b1,j ≤ s ≤ 0.

Case b1,i ≤ r < 0, b1,j ≤ s < 0 In this case, the above sum equals
([fi,r+1, fj,s]v−cij + [fj,s+1, fi,r ]v−cij ) ⊗ 1 = 0, due to relations (Û3) and (Û5)
for Usc

0,μ1
.

Case r = 0, b1,j < s < 0 Note that [fj,s, ea,0] = 0 for any 1 ≤ a < n, due to (Û6)

for Usc
0,μ1

. As a result, we have [fj,s, E(0)ab ] = [fj,s, Ẽ(0)ab ] = 0 for any 1 ≤ a < b ≤
n. Combining this with (Û3) and (Û5) for Usc

0,μ1
, we get [�(fi,1),�(fj,s)]v−cij +[�(fj,s+1),�(fi,0)]v−cij = ([fi,1, fj,s]v−cij +[fj,s+1, fi,0]v−cij )⊗1 = 0 as above.
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Case r = 0, s = 0 Due to relation (Û5) for both Usc
0,μ1

,Usc
0,μ2

, we get

[�(fi,1),�(fj,0)]v−cij = [fi,1, fj,0]v−cij ⊗ 1+ (v − v−1)v−cij−1
∑
l>i+1

[E(0)i+1,l , fj,0]ψ+i,0 ⊗ F
(1)
li −

(v − v−1)v−cij
∑
k<i

vk−i [Ẽ(0)
ki , fj,0]ψ+i,0 ⊗ F

(1)
i+1,k − (v − v−1)2v−cij

k<i∑
l>i+1

vk−i−1[E(0)i+1,l Ẽ
(0)
ki , fj,0]ψ+i,0 ⊗ F

(1)
lk .

Using this formula and Lemma H.7 below, it is straightforward to check that
we obtain [�(fi,1),�(fj,0)]v−cij + [�(fj,1),�(fi,0)]v−cij = ([fi,1, fj,0]v−cij +[fj,1, fi,0]v−cij )⊗ 1 = 0.

Lemma H.7 For any 1 ≤ k < i, i + 1 < l ≤ n, 1 ≤ j < n, the following holds in
Usc

0,μ1
:

(a) [E(0)i+1,l , fj,0] = v−1δj,i+1E
(0)
i+2,lψ

+
j,0, where we set E(0)i+2,i+2 := v

v−v−1 .

(b) [Ẽ(0)ki , fj,0] = −δj,i−1Ẽ
(0)
k,i−1ψ

+
j,0, where we set Ẽ(0)i−1,i−1 := −1

v−v−1 .

Case r = 0, s = b1,j Clearly, [�(fj,b1,j+1),�(fi,0)]v−cij = [fj,b1,j+1, fi,0]v−cij ⊗
1 and [�(fi,1),�(fj,b1,j )]v−cij = [�(fi,1), fj,b1,j ⊗ 1 + ψ−j,b1,j

⊗ fj,0]v−cij .
We claim that as in the previous cases, one gets [�(fi,1),�(fj,b1,j )]v−cij +[�(fj,b1,j+1),�(fi,0)]v−cij = ([fi,1, fj,b1,j ]v−cij + [fj,b1,j+1, fi,0]v−cij ) ⊗ 1 =
0. To this end, we note that the computations of [�(fi,1), fj,b1,j ⊗ 1]

v
−cij and

[�(fi,1), ψ−j,b1,j
⊗ fj,0]v−cij are straightforward and are crucially based on Lem-

mas H.8 and H.9 below, respectively.

Lemma H.8 For any 1 ≤ k < i, i + 1 < l ≤ n, 1 ≤ j < n, the following holds in
Usc

0,μ1
:

(a) [E(0)i+1,l , fj,b1,j ] = −δj,l−1E
(0)
i+1,jψ

−
j,b1,j

, where we set E(0)i+1,i+1 := 1
v−v−1 .

(b) [Ẽ(0)ki , fj,b1,j ] = vδjkẼ
(0)
j+1,iψ

−
j,b1,j

, where we set Ẽ(0)ii := −1
v(v−v−1)

.

Lemma H.9 For any 1 ≤ k < l−1 < n, 1 ≤ j < n, the following holds in Usc
0,μ2

:

[F (1)
lk , fj,0]

v
−(α∨

j
,α∨[k,l−1]) = δjlF

(1)
l+1,k − δj,k−1F

(1)
l,k−1.

H(ii).d Compatibility with (Û4)

Due to relations (Û1, Û4, Û5) for both Usc
0,μ1

,Usc
0,μ2

, we immediately obtain

the equalities �(ψ+i,0)�(ej,r ) = vcij �(ej,r )�(ψ
+
i,0), �(ψ−i,bi )�(ej,r ) =

v−cij �(ej,r )�(ψ−i,bi ) for b2,j−1 ≤ r ≤ 0.

Let us now verify [�(hi,1),�(ej,r )] = [cij ]v ·�(ej,r+1) for b2,j − 1 ≤ r ≤ −1.
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Case b2,j ≤ r < −1 The verification in this case follows immediately from
relation (Û4) for Usc

0,μ2
combined with Lemma H.10 below.

Lemma H.10 For any 1 ≤ a < b ≤ n, b2,j ≤ r < −1, we have [F (1)
ba , ej,r ] = 0

in Usc
0,μ2

.

Case r = −1 Due to relation (Û4) for Usc
0,μ2

, we get

[�(hi,1),�(ej,−1)] = [cij ]v · 1⊗ ej,0 − (v2 − v−2)E
(0)
i,i+1 ⊗ [F (1)

i+1,i , ej,−1]+
(v − v−1)

∑
l>i+1

E
(0)
i+1,l ⊗ [F (1)

l,i+1, ej,−1] + (v − v−1)
∑
k<i

vk+1−i Ẽ(0)ki ⊗ [F (1)
ik , ej,−1]+

v−2(v − v−1)
∑
l>i+1

[E(0)i,i+1, E
(0)
i+1,l]v3 ⊗ [F (1)

li , ej,−1]−

(v − v−1)
∑
k<i

vk−i−1[E(0)i,i+1, Ẽ
(0)
ki ]v3 ⊗ [F (1)

i+1,k, ej,−1]+

(v − v−1)2
k<i∑
l>i+1

vk−i (E(0)il Ẽ
(0)
ki − E

(0)
i+1,l Ẽ

(0)
k,i+1)⊗ [F (1)

lk , ej,−1].

Using this formula and Lemma H.11 below, it is straightforward to check that we
obtain [�(hi,1),�(ej,−1)] = [cij ]v · (1⊗ ej,0 + ej,0 ⊗ ψ+j,0) = [cij ]v ·�(ej,0).
Lemma H.11 For any 1 ≤ a < b ≤ n, we have [F (1)

ba , ej,−1] =
−1

v−v−1 δjaδj,b−1ψ
+
j,0 in Usc

0,μ2
.

Case r = b2,j − 1 According to the next step, we have �(ej,b2,j−1) =
[�(hj,−1),�(ej,b2,j )]

[2]v . Apply the Jacobi identity to get [2]v · [�(hi,1),�(ej,b2,j−1)] =
[�(hj,−1), [�(hi,1),�(ej,b2,j )]] − [�(ej,b2,j ), [�(hi,1),�(hj,−1)]]. The second
summand is zero as [�(hi,1),�(hj,−1)] = 0 by above. Due to the r = b2,j case
considered above, we have [�(hi,1),�(ej,b2,j )] = [cij ]v · �(ej,b2,j+1). It remains
to apply [�(hj,−1),�(ej,b2,j+1)] = [2]v ·�(ej,b2,j ) as proved below.

Let us now verify the equality [�(hi,−1),�(ej,r )] = [cij ]v ·�(ej,r−1) for b2,j ≤
r ≤ 0.

Case b2,j < r < 0 The verification in this case follows immediately from
relation (Û4) for Usc

0,μ2
combined with Lemma H.12 below.

Lemma H.12 For 1 ≤ a < b ≤ n, b2,j < r < 0, we have [F (0)
ba , ej,r ] =

[F̃ (0)
ba , ej,r ] = 0 in Usc

0,μ2
.

Case r = b2,j For i = j , the verification of [�(hj,−1),�(ej,b2,j )] = [2]v ·
�(ej,b2,j−1) coincides with our proof of formula (10.4) from Appendix G. To
prove the claim for i �= j , we can either perform similar long computations
or we can rather deduce from the aforementioned case i = j . To achieve
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the latter, we apply the Jacobi identity to get [2]v · [�(hi,−1),�(ej,b2,j )] =
[�(hj,−1), [�(hi,−1),�(ej,b2,j+1)]] − [�(ej,b2,j+1), [�(hi,−1),�(hj,−1)]]. The
second summand is zero as [�(hi,−1),�(hj,−1)] = 0 by above. Due to the
r = b2,j + 1 case considered above, we have [�(hi,−1),�(ej,b2,j+1)] = [cij ]v ·
�(ej,b2,j ). It remains to apply the aforementioned equality [�(hj,−1),�(ej,b2,j )] =
[2]v ·�(ej,b2,j−1).

Case r = 0 The verification of [�(hi,−1),�(ej,0)] = [cij ]v · 1 ⊗ ej,−1 is similar
to our proof of formula (10.4) from Appendix G. To this end, we note that the
computations of [�(hi,−1), 1⊗ej,0] and [�(hi,−1), ej,0⊗ψ+j,0] are straightforward
and are crucially based on the above Lemmas H.5 and H.6.

H(ii).e Compatibility with (Û5)

Due to relations (Û1, Û4, Û5) for both Usc
0,μ1

,Usc
0,μ2

, we immediately obtain

the equalities �(ψ+i,0)�(fj,r ) = v−cij �(fj,r )�(ψ+i,0), �(ψ−i,bi )�(fj,r ) =
vcij �(fj,r )�(ψ

−
i,bi
) for b1,j ≤ r ≤ 1.

Let us now verify [�(hi,−1),�(fj,r )] = −[cij ]v ·�(fj,r−1) for b1,j+1 ≤ r ≤ 1.

Case b1,j + 1 < r < 1 The verification in this case follows immediately from
relation (Û5) for Usc

0,μ1
combined with Lemma H.13 below.

Lemma H.13 For any 1 ≤ a < b ≤ n, b1,j + 1 < r < 1, we have [E(−1)
ab , fj,r ] =

0 in Usc
0,μ1

.

Case r = b1,j + 1 Due to relation (Û5) for Usc
0,μ1

, we have

[�(hi,−1),�(fj,b1,j+1)] = −[cij ]v · fj,b1,j ⊗ 1+ (v2 − v−2)[E(−1)
i,i+1, fj,b1,j+1] ⊗ F

(0)
i+1,i−

(v − v−1)
∑
l>i+1

[E(−1)
i+1,l , fj,b1,j+1] ⊗ F

(0)
l,i+1 − (v − v−1)

∑
k<i

vi−k−1[E(−1)
ki , fj,b1,j+1] ⊗ F̃

(0)
ik −

v2(v − v−1)
∑
l>i+1

[E(−1)
il , fj,b1,j+1] ⊗ [F (0)

l,i+1, F
(0)
i+1,i ]v−3+

(v − v−1)
∑
k<i

vi+1−k[E(−1)
k,i+1, fj,b1,j+1] ⊗ [F̃ (0)

ik , F
(0)
i+1,i ]v−3−

(v − v−1)2
k<i∑
l>i+1

vi−k[E(−1)
kl , fj,b1,j+1] ⊗ (F̃

(0)
i+1,kF

(0)
l,i+1 − F̃

(0)
ik F

(0)
li ).

Using this formula and Lemma H.14 below, it is straightforward to check that we
obtain [�(hi,−1),�(fj,b1,j+1)] = −[cij ]v · (fj,b1,j ⊗1+ψ−j,b1,j

⊗fj,0) = −[cij ]v ·
�(fj,b1,j ).
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Lemma H.14 For any 1 ≤ a < b ≤ n, we have [E(−1)
ab , fj,b1,j+1] =

−δjaδj,b−1

v−v−1 ψ−j,b1,j
in Usc

0,μ1
.

Case r = 1 According to the next step, we have �(fj,1) = −[2]−1
v ·

[�(hj,1),�(fj,0)]. Apply the Jacobi identity to get [2]v · [�(hi,−1),�(fj,1)] =
[�(hj,1), [�(hi,−1),�(fj,0)]] − [�(fj,0), [�(hi,−1),�(hj,1)]]. The second sum-
mand is zero as [�(hi,−1),�(hj,1)] = 0 by above. Due to the r = 0 case considered
above, we have [�(hi,−1),�(fj,0)] = −[cij ]v · �(fj,−1). It remains to apply
[�(hj,1),�(fj,−1)] = −[2]v ·�(fj,0) as proved below.

Let us now verify [�(hi,1),�(fj,r )] = −[cij ]v ·�(fj,r+1) for b1,j ≤ r ≤ 0.

Case b1,j < r < 0 The verification in this case follows immediately from
relation (Û5) for Usc

0,μ1
combined with Lemma H.15 below.

Lemma H.15 For 1 ≤ a < b ≤ n, b1,j < r < 0, we have [E(0)ab , fj,r ] =
[Ẽ(0)ab , fj,r ] = 0 in Usc

0,μ1
.

Case r = 0 For i = j , the verification of [�(hj,1),�(fj,0)] = −[2]v ·
�(fj,1) coincides with our proof of formula (10.5), sketched in Appendix G. To
prove the claim for i �= j , we can either perform similar long computations
or we can rather deduce from the aforementioned case i = j . To achieve
the latter, we apply the Jacobi identity to get −[2]v · [�(hi,1),�(fj,0)] =
[�(hj,1), [�(hi,1),�(fj,−1)]] − [�(fj,−1), [�(hi,1),�(hj,1)]]. The second sum-
mand is zero as [�(hi,1),�(hj,1)] = 0 by above. Due to the r = −1 case
considered above, we have [�(hi,1),�(fj,−1)] = −[cij ]v · �(fj,0). It remains to
apply the aforementioned equality [�(hj,1),�(fj,0)] = −[2]v ·�(fj,1).
Case r = b1,j The verification of [�(hi,1),�(fj,b1,j )] = −[cij ]v · fj,b1,j+1 ⊗ 1
is similar to our proof of formula (10.5), sketched in Appendix G. To this end, we
note that the computations of [�(hi,1), fj,b1,j ⊗ 1] and [�(hi,1), ψ−j,b1,j

⊗ fj,0] are
straightforward and are crucially based on the above Lemmas H.8 and H.9.

H(ii).f Compatibility with (Û6)

We need to verify

[�(ei,r ),�(fj,s)] = δij ·

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

�(ψ+i,0)�(hi,1) if r + s = 1,

�(ψ−i,bi )�(hi,−1) if r + s = bi − 1,
�(ψ+i,0)
v−v−1 if r + s = 0,
−�(ψ−i,bi )

v−v−1 if r + s = bi,

0 otherwise,
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for b2,i − 1 ≤ r ≤ 0, b1,j ≤ s ≤ 1, where we set bi := b1,i + b2,i as before.

Cases b2,i − 1 < r ≤ 0, b1,j ≤ s < 1 Obviously follows from (Û4, Û5, Û6) for
both Usc

0,μ1
,Usc

0,μ2
.

Case b2,i ≤ r < −1, s = 1 In this case, we get [�(ei,r ),�(fj,1)] = 0, due to
Lemma H.10.

Case r = −1, s = 1 Applying Lemma H.11 from above, it is straightforward to
see that we get [�(ei,−1),�(fj,1)] = δij

v−v−1ψ
+
i,0 ⊗ ψ+i,0 = δij

v−v−1�(ψ
+
i,0).

Case r = b2,i − 1, s = 1 According to relation (Û4) verified above, we
have �(ei,b2,i−1) = [2]−1

v · [�(hi,−1),�(ei,b2,i )]. Applying the Jacobi iden-
tity, we get [2]v · [�(ei,b2,i−1),�(fj,1)] = [�(hi,−1), [�(ei,b2,i ),�(fj,1)]] −
[�(ei,b2,i ), [�(hi,−1),�(fj,1)]]. However, both summands in the right-hand side
are zero, due to the above cases and relation (Û5) established above.

Case r = b2,i−1, b1,j+1 < s < 1 In this case, we get [�(ei,b2,i−1),�(fj,s)] = 0,
due to Lemma H.13.

Case r = b2,i − 1, s = b1,j + 1 Applying Lemma H.14 from above, it is

straightforward to see that we get [�(ei,b2,i−1),�(fj,b1,j+1)] = − δij

v−v−1ψ
−
i,b1,i

⊗
ψ−i,b2,i

= − δij

v−v−1�(ψ
−
i,bi
).

Case r = 0, s = 1 Consider the homomorphism j+μ1,0
⊗ j+0,μ2

: U+v ⊗ U+v →
U

sc,+
0,μ1,0

⊗U
sc,+
0,0,μ2

. Comparing the formulas of Theorems 10.13, 10.16 and applying
Lemma H.3, we get

[�μ1,μ2 (ei,0),�μ1,μ2 (fj,1)] = [j+μ1,0
⊗ j+0,μ2

(�(ei,0)), j
+
μ1,0

⊗ j+0,μ2
(�(fj,1))] =

j+μ1,0
⊗ j+0,μ2

([�(ei,0),�(fj,1)]) = j+μ1,0
⊗ j+0,μ2

(δij�(ψ
+
i,0)�(hi,1)) = δij�μ1,μ2 (ψ

+
i,0)�μ1,μ2 (hi,1),

where the subscripts in�μ1,μ2 are used this time to distinguish it from the Drinfeld-
Jimbo coproduct � on Uv(Lsln).

Case r = b2,i − 1, s = b1,j Consider the homomorphism j−μ1,0
⊗ j−0,μ2

: U−v ⊗
U−v → U

sc,−
0,μ1,0

⊗ U
sc,−
0,0,μ2

. Comparing the formulas of Theorems 10.13, 10.16 and
applying Lemma H.3, we get

[�μ1,μ2 (ei,b2,i−1),�μ1,μ2 (fj,b1,j )] = [j−μ1,0
⊗ j−0,μ2

(�(ei,−1)), j
−
μ1,0

⊗ j−0,μ2
(�(fj,0))] =

j−μ1,0
⊗ j−0,μ2

([�(ei,−1),�(fj,0)]
) = j−μ1,0

⊗ j−0,μ2
(δij�(ψ

−
i,0)�(hi,−1)) =

δij�μ1,μ2 (ψ
−
i,bi
)�μ1,μ2 (hi,−1).
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H(ii).g Compatibility with (Û7)

Utilizing the homomorphism j+μ1,0
⊗j+0,μ2

: U+v ⊗U+v → U
sc,+
0,μ1,0

⊗U
sc,+
0,0,μ2

as above,
we get

[�μ1,μ2(ei,0), [�μ1,μ2(ei,0), · · · , [�μ1,μ2(ei,0),�μ1,μ2(ej,0)]vcij · · · ]v−cij−2 ]v−cij =
j+μ1,0

⊗ j+0,μ2
([�(ei,0), [�(ei,0), · · · , [�(ei,0),�(ej,0)]vcij · · · ]v−cij−2 ]v−cij ) =

j+μ1,0
⊗ j+0,μ2

(�([ei,0, [ei,0, · · · , [ei,0, ej,0]vcij · · · ]v−cij−2 ]v−cij )) = 0,

where the last equality is due to the Serre relation in U+v (cf. Remark 5.4).

H(ii).h Compatibility with (Û8)

Due to relation (Û8) for Usc
0,μ1

, we have

[�μ1,μ2(fi,0), [�μ1,μ2(fi,0), · · · , [�μ1,μ2(fi,0),�μ1,μ2(fj,0)]vcij · · · ]v−cij−2 ]v−cij =
[fi,0, [fi,0, · · · , [fi,0, fj,0]vcij · · · ]v−cij−2 ]v−cij ⊗ 1 = 0.

H(ii).i Compatibility with (Û9)

Applying the homomorphisms j±μ1,0
⊗ j±0,μ2

, we see that it suffices to prove the
equalities:

[hi,1, [fi,1, [hi,1, ei,0]]] = 0 in U+v , [hi,−1, [ei,−1, [hi,−1, fi,0]]] = 0 in U−v .

These follow from [hi,±1, ψ
±
i,±2] = 0 in U±v .

This completes our proof of Theorem 10.16.

H(iii) Relation Between � and �μ1,μ2

The following result completes our discussion of Remark 10.17.

Proposition H.16 The following diagram is commutative:
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Proof To simplify our computations, we will assume that μ1, μ2 are strictly
antidominant.

(a) To prove the commutativity of the above diagram in the ‘+’ case, it suf-
fices to verify that j+μ1,0

⊗ j+0,μ2
(�(X)) = �μ1,μ2(j

+
μ1,μ2

(X)) for X ∈
{ei,0, (ψ+i,0)±1, F

(1)
n1 }n−1

i=1 . The only non-obvious verification is the one for X =
F
(1)
n1 .

The computation of �(F (1)
n1 ) is based on the computation of �rtt(f̃

(1)
n1 ).

Comparing the coefficients of z−1 in the equality

�rtt(T +n1(z)) = T +n1(z)⊗ T +11(z)+ T +nn(z)⊗ T +n1(z)+
∑

1<i<n

T +ni (z)⊗ T +i1 (z),

we get �rtt(f̃
(1)
n1 g̃

+
1 ) = f̃

(1)
n1 g̃

+
1 ⊗ g̃+1 + g̃+n ⊗ f̃

(1)
n1 g̃

+
1 , so that �rtt(f̃

(1)
n1 ) =

f̃
(1)
n1 ⊗1+g̃+n (g̃+1 )−1⊗f̃ (1)n1 . Applyingϒ−1 of Theorem G.2 and formula (G.12),

we finally find

�(F
(1)
n1 ) = F

(1)
n1 ⊗ 1+ ψ+1,0 · · ·ψ+n−1,0 ⊗ F

(1)
n1 .

Therefore, j+μ1,0
⊗ j+0,μ2

(�(F
(1)
n1 )) = F

(1)
n1 ⊗ 1+ ψ+1,0 · · ·ψ+n−1,0 ⊗ F

(1)
n1 .

On the other hand, we have �μ1,μ2(j
+
μ1,μ2

(F
(1)
n1 )) = �μ1,μ2(F

(1)
n1 ) and

�μ1,μ2(F
(1)
n1 ) = [· · · [�μ1,μ2(f1,1),�μ1,μ2(f2,0)]v, · · · ,�μ1,μ2(fn−1,0)]v.

Let us first note that [E(0)2l , f2,0] = v−1E
(0)
3l ψ

+
2,0, where we set E(0)33 := v

v−v−1 .
Combining this with relation (U5) and the formula

�μ1,μ2(f1,1) = f1,1 ⊗ 1+ ψ+1,0 ⊗ f1,1 + v−1(v − v−1)
∑
l>2

E
(0)
2l ψ

+
1,0 ⊗ F

(1)
l1 ,

we find

[�μ1,μ2(f1,1),�μ1,μ2 (f2,0)]v = [f1,1, f2,0]v⊗1+v−1(v−v−1)
∑
l>2

E
(0)
3l ψ

+
1,0ψ

+
2,0⊗F (1)

l1 .

Further v-commuting this with �μ1,μ2(f3,0), . . . ,�μ1,μ2(fn−1,0), we finally
obtain

�μ1,μ2(F
(1)
n1 ) = F

(1)
n1 ⊗ 1+ ψ+1,0 · · ·ψ+n−1,0 ⊗ F

(1)
n1 .

This completes our verification of j+μ1,0
⊗ j+0,μ2

(�(F
(1)
n1 )) =

�μ1,μ2(j
+
μ1,μ2

(F
(1)
n1 )).

(b) The proof of the commutativity in the ‘−’ case is completely analogous. ��
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Appendix I Proof of Theorem 10.19

Our proof of Theorem 10.19 proceeds in three steps. First, we reduce the problem
to its unshifted counterpart, see Theorem I.1. To prove this theorem, we recall the
shuffle realization of U>

v , see Theorem I.3. In the last and final step, we apply a
simple result Proposition I.4.

I(i) Reduction to an Unshifted Case

Given μ ∈ � and ν1, ν2 ∈ �−, recall the shift homomorphisms ιμ,ν1,ν2 : Usc
0,μ →

Usc
0,μ+ν1+ν2

introduced in Lemma 10.18. Note that ιμ,ν1,ν2 gives rise to the homo-
morphisms (restrictions)

ι>μ,ν1,ν2
: Usc,>

0,μ → U
sc,>
0,μ+ν1+ν2

, ι<μ,ν1,ν2
: Usc,<

0,μ → U
sc,<
0,μ+ν1+ν2

, ι0μ,ν1,ν2
: Usc,0

0,μ → U
sc,0
0,μ+ν1+ν2

.

Moreover, evoking the triangular decomposition of Proposition 5.1(a) for both alge-
bras Usc

0,μ and Usc
0,μ+ν1+ν2

, we see that ιμ,ν1,ν2 is “glued” from the aforementioned

three homomorphisms ι>μ,ν1,ν2
, ι<μ,ν1,ν2

, ι0μ,ν1,ν2
. Hence, Theorem 10.19 is equivalent

to the injectivity of these restrictions ι>μ,ν1,ν2
, ι<μ,ν1,ν2

, ι0μ,ν1,ν2
. The injectivity of

ι0μ,ν1,ν2
is clear. On the other hand, according to Proposition 5.1(b), we have

U
sc,>
0,μ � U>

v � U
sc,>
0,μ+ν1+ν2

,U
sc,<
0,μ � U<

v � U
sc,<
0,μ+ν1+ν2

, where U>
v , U

<
v denote

the corresponding subalgebras of Uv(Lsln). As such, the injectivity of ι>μ,ν1,ν2
(resp.

ι<μ,ν1,ν2
) is equivalent to the injectivity of ι>ν1

: U>
v → U>

v (resp. ι<ν2
: U<

v → U<
v )

given by ei(z) �→ (1− z−1)−α∨i (ν1)ei(z) (resp. fi(z) �→ (1− z−1)−α∨i (ν2)fi(z)) for
i ∈ I .

Thus, we have reduced Theorem 10.19 to its unshifted counterpart:

Theorem I.1

(a) The homomorphism ι>ν : U>
v → U>

v is injective for any ν ∈ �−.
(b) The homomorphism ι<ν : U<

v → U<
v is injective for any ν ∈ �−.

Our proof of part (a) is crucially based on the shuffle realization of U>
v , which

we recall next (the proof of part (b) is completely analogous).

I(ii) Shuffle Algebra (of Type An−1)

Consider an NI -graded C(v)-vector space S = ⊕
k=(k1,...,kn−1)∈NI

Sk, where

S(k1,...,kn−1) consists of
∏

Ski -symmetric rational functions in the variables

{xi,r }1≤r≤kii∈I . We also fix an I × I matrix of rational functions (ζi,j (z))i,j∈I ∈
MatI×I (C(z)) by setting ζi,j (z) = z−v

−cij
z−1 , where (cij )

n−1
i,j=1 is the Cartan matrix
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of sln as before. Let us now introduce the bilinear * product on S: given F ∈ Sk and
G ∈ Sl , define F * G ∈ Sk+l by

(F * G)(x1,1, . . . , x1,k1+l1; . . . ; xn−1,1, . . . , xn−1,kn−1+ln−1) :=
∏n−1

i=1
ki ! · li !×

Sym∏Ski+li

⎛⎝F({xi,r}1≤r≤kii∈I )G({xi′,r ′ }ki′<r
′≤ki′+li′

i′∈I ) ·
i′∈I∏
i∈I

r ′>ki′∏
r≤ki

ζi,i′(xi,r/xi′,r ′)

⎞⎠ .
Here and afterwards, given a function f ∈ C({xi,1, . . . , xi,mi }i∈I ), we define

Sym∏Smi
(f ) :=

∏
i∈I

1

mi ! ·
∑

(σ1,...,σn−1)∈Sm1×...×Smn−1

f ({xi,σi (1), . . . , xi,σi (mi)}i∈I ).

This endows S with a structure of an associative unital algebra with the unit
1 ∈ S(0,...,0). We will be interested only in a certain subspace of S, defined by the
pole and wheel conditions:

• We say that F ∈ Sk satisfies the pole conditions if and only if

F = f (x1,1, . . . , xn−1,kn−1)∏n−2
i=1

∏r ′≤ki+1
r≤ki (xi,r − xi+1,r ′)

, where f ∈ (C(v)[x±1
i,r ]1≤r≤kii∈I )

∏
Ski .

• We say that F ∈ Sk satisfies the wheel conditions if and only if

F({xi,r}) = 0 once xi,r1 = vxi+ε,l = v2xi,r2 for some ε, i, r1, r2, l,

where ε ∈ {±1}, i, i + ε ∈ I, 1 ≤ r1, r2 ≤ ki, 1 ≤ l ≤ ki+ε .

Let Sk ⊂ Sk be the subspace of all elements F satisfying these two conditions
and set S := ⊕

k∈NI
Sk. It is straightforward to check that the subspace S ⊂ S is

*-closed.

Definition I.2 The algebra (S, *) is called the shuffle algebra (of An−1-type).

The following key result, identifying this algebra with U>
v , is due to [53]12 (see

also [63]).

Theorem I.3 There is a unique C(v)-algebra isomorphism� : U>
v

∼−→ S such that
ei,r �→ xri,1 for any i ∈ I, r ∈ Z.

12To be more precise, [53, Theorem 1.1] establishes such a shuffle realization for the half of the
quantum toroidal algebra of sln. Since the latter naturally contains U>

v as a subalgebra, we get the
claimed result.
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I(iii) Proof of Theorem I.1(a)

The following result is straightforward:

Proposition I.4

(a) For any ν ∈ �−, there is a unique algebra homomorphism ι′ν : S → S such

that f ({xi,r }1≤r≤kii∈I ) �→ ∏1≤r≤ki
i∈I (1− x−1

i,r )
−α∨i (ν) · f ({xi,r}1≤r≤kii∈I ) for any f ∈

S(k1,...,kn−1).
(b) The homomorphisms ι>ν and ι′ν are compatible: ι′ν(�(X)) = �(ι>ν (X)) for any

X ∈ U>
v .

(c) ι′ν is injective.

Combining Theorem I.3 and Proposition I.4 immediately yields Theorem I.1(a).

This completes our proof of Theorem 10.19.

Appendix J Proof of Proposition 11.18

Consider the n = 0 case of Sect. 11.4. Let ẽ±(z), f̃±(z), g̃±1 (z), g̃
±
2 (z) be

the currents entering the Gauss decomposition of T ±(z), and set ψ̃±(z) :=
g̃±2 (z)(g̃

±
1 (z))

−1. According to [17] (see also Theorem G.2) there is a C(v)-algebra
isomorphism

ϒ : U ad
v (Lsl2)

∼−→Urtt
0,0/(t

±
11[0]t∓11[0] − 1),

defined by

e±(z) �→ ẽ±(vz)
v − v−1 , f

±(z) �→ f̃±(vz)
v − v−1 , ψ

±(z) �→ ψ̃±(vz), φ± �→ t∓11[0]
(J.1)

(a slight modification of ϒ0,0). The isomorphism ϒ intertwines coproducts �rtt :=
�rtt

0,0 and �ad. In particular, the restriction of the pull-back of �rtt to the subalgebra

Uv(Lsl2) of U ad
v (Lsl2) recovers the Drinfeld-Jimbo coproduct � on Uv(Lsl2).

J(i) Computation of �(e±(z)) and �(f ±(z))

The verification of formulas (11.10) and (11.11) is based on the following result.

Lemma J.1 We have T ±11(z)
−1T ±21(z) = vf̃±(v2z), T ±12(z)T

±
11(z)

−1 =
v−1ẽ±(v2z).
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Proof Comparing the matrix coefficients 〈v1⊗ v2| · · · |v1⊗ v1〉 of both sides of the
equality Rtrig(z/w)(T

±(z)⊗1)(1⊗T ±(w)) = (1⊗T ±(w))(T ±(z)⊗1)Rtrig(z/w),

we get

(z− w)T ±11(z)T
±
21(w)+ (v − v−1)zT ±21(z)T

±
11(w) = (vz− v−1w)T ±21(w)T

±
11(z).

Plugging w = v2z into this identity, we obtain the first equality:

T ±11(z)
−1T ±21(z) = vT ±21(v

2z)T ±11(v
2z)−1 = vf̃±(v2z).

Likewise, comparing the matrix coefficients 〈v1⊗v1| · · · |v1⊗v2〉, we get the second
equality. ��
• We have ẽ±(z) = (T ±11(z))

−1T ±12(z). Hence,

�rtt(ẽ±(z)) = (T ±11(z)⊗ T ±11(z)+ T ±12(z)⊗ T ±21(z)
)−1 (

T ±11(z)⊗ T ±12(z)+ T ±12(z)⊗ T ±22(z)
) =(

1+ T ±11(z)
−1T ±12(z)⊗ T ±11(z)

−1T ±21(z)
)−1 (

1⊗ ẽ±(z)+ ẽ±(z)⊗ T ±11(z)
−1T ±22(z)

)
=( ∞∑

r=0

(−v)r ẽ±(z)r ⊗ f̃±(v2z)r

)(
1⊗ ẽ±(z)+ ẽ±(z)⊗ (vf̃±(v2z)ẽ±(z)+ g̃±1 (z)

−1g̃±2 (z))
)
=

1⊗ ẽ±(z)+
∞∑
r=0

(−v)r · ẽ±(z)r+1 ⊗ f̃±(v2z)r ψ̃±(z),

where we used Lemma J.1 twice in the third equality. Applying ϒ−1, we
recover (11.10).

• We have f̃±(z) = T ±21(z)(T
±
11(z))

−1. Hence,

�rtt(f̃±(z)) = (T ±21(z)⊗ T ±11(z)+ T ±22(z)⊗ T ±21(z)
) (
T ±11(z)⊗ T ±11(z)+ T ±12(z)⊗ T ±21(z)

)−1 =(
f̃±(z)⊗ 1+ T ±22(z)T

±
11(z)

−1 ⊗ f̃±(z)
) (

1+ T ±12(z)T
±
11(z)

−1 ⊗ f̃±(z)
)−1 =(

f̃±(z)⊗ 1+ (v−1f̃±(z)ẽ±(v2z)+ g̃±2 (z)g̃
±
1 (z)

−1)⊗ f̃±(z)
)
×( ∞∑

r=0

(−v)−r ẽ±(v2z)r ⊗ f̃±(z)r
)
= f̃±(z)⊗ 1+

∞∑
r=0

(−v)−r · ψ̃±(z)ẽ±(v2z)r ⊗ f̃±(z)r+1,

where we used Lemma J.1 twice in the third equality. Applying ϒ−1, we
recover (11.11).
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J(ii) Computation of �(ψ±(z))

We have ψ̃±(z) = g̃±(z)−1g̃±2 (z) = T ±11(z)
−1T ±22(z) − vf̃±(v2z)ẽ±(z), due

to Lemma J.1. Evaluating �rtt(T ±11(z)
−1T ±22(z)) as before, we get the following

formula:

�rtt(ψ̃±(z)) =
∞∑
r=0

(−1)r+1vr+2ẽ±(z)r [ẽ±(z), f̃±(v2z)] ⊗ f̃±(v2z)r+1ẽ±(z)+

∞∑
r=0

(−1)r (vr+1ẽ±(z)r ψ̃±(z)− v1−r ψ̃±(v2z)ẽ±(v4z)r )⊗ f̃±(v2z)r+1ẽ±(z)+

∞∑
r=0

(−1)rvr+1[ẽ±(z)r , f̃±(v2z)]ẽ±(z)⊗ f̃±(v2z)r ψ̃±(z)+

∞∑
r=0

(−1)rvr ẽ±(z)r ψ̃±(z)⊗ f̃±(v2z)r ψ̃±(z)+

∞∑
r,s=0

(−1)r+s+1v−r+s+1ψ̃±(v2z)ẽ±(v4z)r ẽ±(z)s+1 ⊗ f̃±(v2z)r+s+1ψ̃±(z).

(J.2)

To simplify the right-hand side of this equality, we need the following result.

Lemma J.2 We have:

(a) [ẽ±(z), f̃±(w)] = (v−v−1)z
w−z · (ψ̃±(z)− ψ̃±(w)).

(b) [ẽ±(z), f̃±(v2z)] = ψ̃±(z)−ψ̃±(v2z)
v

.

(c) (z− v2w)ψ̃±(z)ẽ±(w) = (v2z− w)ẽ±(w)ψ̃±(z)± w · [ẽ0, ψ̃
±(z)]v2 .

(d) ψ̃±(z)ẽ±(v2z) = v2ẽ±(v−2z)ψ̃±(z) = ẽ±(z)ψ̃±(z)+ψ̃±(z)ẽ±(z)
1+v−2 .

(e) (z − v2w)ẽ±(z)ẽ±(w) − z · [ẽ0, ẽ
±(w)]v2 = (v2z − w)ẽ±(w)ẽ±(z) + w ·

[ẽ0, ẽ
±(z)]v2 .

(f) ẽ±(v2z)2 − (1+ v2)ẽ±(z)ẽ±(v2z)+ v2ẽ±(z)2 = 0.

Proof Parts (a, c, e) follow from the corresponding relations for
e±(z), f±(z), ψ±(z), established in Lemma B.1(c, f1, d1), respectively.

Part (b) is obtained by specializing w = v2z in (a). Part (d) is obtained by
comparing the specializations of (c) at w = v2z,w = v−2z, and w = z. Part
(f) is obtained by comparing the specializations of (e) at w = v2z and w = z. ��
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The first two sums of (J.2) add up to zero, due to Lemma J.2(b, d). Applying
Lemma J.2(b) to the third sum of (J.2) and Lemma J.2(d) to the last sum of (J.2), we
get

�rtt(ψ̃±(z)) =
∞∑
r=0

(−v)rAr(z)⊗ f̃±(v2z)r ψ̃±(z) (J.3)

with

Ar(z) = ẽ±(z)r ψ̃±(z)+ ẽ±(z)r−1ψ̃±(z)ẽ±(z)+ . . .+ ẽ±(z)ψ̃±(z)ẽ±(z)r−1+ ψ̃±(z)ẽ±(z)r .

Finally, a simple induction argument based on Lemma J.2(d, f) yields the equality

Ar(z) = ψ̃±(z)ẽ±(v2z)r (1+v−2+v−4+. . .+v−2r ) = v−r [r+1]v ·ψ̃±(z)ẽ±(v2z)r .

Plugging this into (J.3) and applying ϒ−1, we recover (11.12).

This completes our proof of Proposition 11.18.
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Comm. Math. Phys. 156 (1993), no. 2, 277–300.

18. P. Di Francesco, R. Kedem, Quantum Q-systems: from cluster algebras to quantum current
algebras, Lett. Math. Phys 107 (2017), no. 2, 301–341.

19. P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, Amer.
Math. Soc. Transl. Ser. 2 194 (1999), 9–25.

20. S. Evens, J.-H. Lu, Poisson geometry of the Grothendieck resolution of a complex semisimple
group, Moscow Math. Journal 7 (2007), no. 4, 613–642.

21. L. Faybusovich, M. Gekhtman, Elementary Toda orbits and integrable lattices, J. Math.
Phys. 41 (2000), no. 5, 2905–2921.

22. B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin, Fermionic formulas for eigenfunctions
of the difference Toda Hamiltonian, Lett. Math. Phys. 88 (2009), no. 1–3, 39–77; correction
to “Fermionic formulas for eigenfunctions of the difference Toda Hamiltonian”, Lett. Math.
Phys. 108 (2018), no. 7, 1779–1781.

23. B. Feigin, M. Finkelberg, A. Negut, L. Rybnikov, Yangians and cohomology rings of Laumon
spaces, Selecta Math. (N.S.) 17 (2011), no. 3, 573–607.

24. M. Finkelberg, J. Kamnitzer, K. Pham, L. Rybnikov, A. Weekes, Comultiplication for shifted
Yangians and quantum open Toda lattice, Adv. Math. 327 (2018), 349–389.

25. M. Finkelberg, A. Kuznetsov, L. Rybnikov, Towards a cluster structure on trigonometric
zastava (with appendix by Galyna Dobrovolska), Selecta Math. (N.S.) 24 (2018), no. 1, 187–
225.

26. V. Fock, A. Marshakov, A note on quantum groups and relativistic Toda theory, Nuclear
Phys. B Proc. Suppl. 56B (1997), 208–214.

27. V. Futorny, A. Molev, S. Ovsienko, Gelfand-Tsetlin bases for representations of finite
W-algebras and shifted Yangians, in “Lie theory and its applications in physics VII”,
(H. D. Doebner and V. K. Dobrev, Eds), Proceedings of the VII International Workshop, Varna,
Bulgaria, June 2007. Heron Press, Sofia (2008), 352–363.



Multiplicative Slices, Relativistic Toda and Shifted Quantum Algebras 303

28. L. Faddeev, L. Takhtajan, The quantum method for the inverse problem and the XYZ Heisenberg
model, Russian Math. Surveys 34 (1979), no. 5, 11–68.

29. M. Finkelberg, A. Tsymbaliuk, Shifted quantum affine algebras: integral forms in type A (with
appendices by Alexander Tsymbaliuk and Alex Weekes), Arnold Mathematical Journal (2019),
https://doi.org/10.1007/s40598-019-00118-7; arXiv:1811.12137.

30. A. Gerasimov, S. Kharchev, D. Lebedev, S. Oblezin, On a class of representations of the
Yangian and moduli space of monopoles, Comm. Math. Phys. 260 (2005), no. 3, 511–525.

31. A. Gerasimov, S. Kharchev, D. Lebedev, S. Oblezin, On a class of representations of quan-
tum groups, Noncommutative geometry and representation theory in mathematical physics,
Contemp. Math. 391, Amer. Math. Soc., Providence, RI (2005), 101–110.

32. L. Gow, A. Molev, Representations of twisted q-Yangians, Selecta Math. (N.S.) 16 (2010), no.
3, 439–499.

33. N. Guay, H. Nakajima, C. Wendlandt, Coproduct for Yangians of affine Kac-Moody algebras,
Adv. in Math. 338 (2018), 865–911.

34. M. Gekhtman, M. Shapiro, A. Vainshtein, Generalized Bäcklund-Darboux transformations for
Coxeter–Toda flows from a cluster algebra perspective, Acta Math. 206 (2011), no. 2, 245–310.

35. R. Gonin, A. Tsymbaliuk, On Sevostyanov’s construction of quantum difference Toda lattices,
IMRN (2019), https://doi.org/10.1093/imrn/rnz083; arXiv:1804.01063.

36. M. Haiman, Cherednik algebras, Macdonald polynomials and combinatorics, ICM 2006
Proceedings 3, European Math. Soc. (2006), 843–872.

37. D. Hernandez, Representations of quantum affinizations and fusion product, Transform.
Groups 10 (2005), no. 2, 163–200.

38. T. Hoffmann, J. Kellendonk, N. Kutz, N. Reshetikhin, Factorization dynamics and Coxeter–
Toda lattices, Comm. Math. Phys. 212 (2000), no. 2, 297–321.

39. X. He, G. Lusztig, A generalization of Steinberg’s cross section, J. Amer. Math. Soc. 25 (2012),
no. 3, 739–757.

40. M. Jimbo, A q-analogue of U(gl(N +1)), Hecke algebra, and the Yang-Baxter equation, Lett.
Math. Phys. 11 (1986), no. 3, 247–252.

41. N. Jing, On Drinfeld realization of quantum affine algebras, in Monster and Lie Algebras,
Columbus, OH, 1996 (Ohio State University Mathematical Research Institute Publications, de
Gruyter, Berlin, 1998), Vol. 7, 195–206.

42. A. Joseph, Quantum groups and their primitive ideals, Ergebnisse der Mathematik und ihrer
Grenzgebiete (3) 29, Springer-Verlag, Berlin (1995).

43. V. Kuznetsov, A. Tsyganov, Quantum relativistic Toda chains, Journal of Math. Sciences 80
(1996), no. 3, 1802–1810.

44. J. Kamnitzer, P. Tingley, B. Webster, A. Weekes, O. Yacobi, Highest weights for truncated
shifted Yangians and product monomial crystals, preprint, arXiv:1511.09131.

45. J. Kamnitzer, B. Webster, A. Weekes, O. Yacobi, Yangians and quantizations of slices in the
affine Grassmannian, Algebra Number Theory 8 (2014), no. 4, 857–893.

46. G. Laumon, Un analogue global du cône nilpotent, Duke Math. Journal 57 (1988), no. 2,
647–671.

47. S. Levendorskii, On generators and defining relations of Yangians, Journal of Geometry and
Physics 12 (1993), no. 1, 1–11.

48. J.-H. Lu, Hopf algebroids and quantum groupoids, International J. Math. 7 (1996), no. 1,
47–70.

49. G. Lusztig, Coxeter orbits and eigenspaces of Frobenius, Invent. Math. 38 (1976), no. 2,
101–159.

50. G. Lusztig, Introduction to quantum groups, Progress in Math. 110 (1993).
51. A. Molev, Yangians and classical Lie algebras, Mathematical Surveys and Monographs, 143,

American Mathematical Society, Providence, RI (2007).
52. A. Malkin, V. Ostrik, M. Vybornov, The minimal degeneration singularities in the affine

Grassmannians, Duke Math. J. 126 (2005), no. 2, 233–249.
53. A. Negut, Quantum toroidal and shuffle algebras, preprint, arXiv:1302.6202.



304 M. Finkelberg and A. Tsymbaliuk

54. M. Nazarov, V. Tarasov, Yangians and Gel’fand-Zetlin bases, Publ. RIMS Kyoto Univ. 30
(1994), no. 3, 459–478.

55. G. Pappas, M. Rapoport, Twisted loop groups and their affine flag varieties, Adv. Math. 219
(2008), no. 1, 118–198.

56. A. Sevostyanov, Quantum deformation of Whittaker modules and the Toda lattice, Duke Math.
J. 105 (2000), no. 2, 211–238.

57. A. Sevostyanov, Conjugacy classes in Weyl groups and q-W algebras, Adv. Math. 228 (2011),
no. 3, 1315–1376.

58. R. Steinberg, Regular elements of semisimple algebraic groups, Inst. Hautes Études
Sci. Publ. Math. 25 (1965), 49–80.

59. M. Semenov-Tian-Shansky, Poisson Lie groups, quantum duality principle, and the quantum
double, Contemp. Math. 175 (1994), 219–248.

60. M. Semenov-Tian-Shansky, A. Sevostyanov, Drinfeld-Sokolov reduction for difference opera-
tors and deformations of W-algebras. II. The general semisimple case, Comm. Math. Phys.
192 (1998), no. 3, 631–647.

61. A. Tsymbaliuk, Quantum affine Gelfand–Tsetlin bases and quantum toroidal algebra via K-
theory of affine Laumon spaces, Selecta Math. (N.S.) 16 (2010), no. 2, 173–200; for a corrected
version refer to arXiv:0903.0917v3.

62. A. Tsymbaliuk, The affine Yangian of gl1 revisited, Adv. Math. 304 (2017), 583–645.
63. A. Tsymbaliuk, PBWD bases and shuffle algebra realizations for Uv(Lsln), Uv1,v2 (Lsln),

Uv(Lsl(m|n)) and their integral forms, preprint, arXiv:1808.09536.
64. M. Varagnolo, E. Vasserot, Double affine Hecke algebras and affine flag manifolds, I. Affine

flag manifolds and principal bundles, Trends in Mathematics, Birkhäuser/Springer, Basel
(2010), 233–289.

65. M. Varagnolo, E. Vasserot, Double affine Hecke algebras at roots of unity, Representation
Theory 14 (2010), 510–600.


