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Abstract
We introduce super Yangians of gl(V ), sl(V ) (in the new Drinfeld realization) associ-
ated with all Dynkin diagrams. We show that all of them are isomorphic to the super
Yangians introduced by Nazarov (Lett Math Phys 21(2), 123–131, 1991), by iden-
tifying them with the corresponding RTT super Yangians. However, their “positive
halves” are not pairwise isomorphic, and we obtain the shuffle algebra realizations
for all of those in spirit of Tsymbaliuk (PBWD bases and shuffle algebra realiza-
tions for Uv(Lsln),Uv1,v2(Lsln),Uv(Lsl(m|n)) and their integral forms, preprint,
arXiv:1808.09536). We adapt the latter to the trigonometric setup by obtaining the
shuffle algebra realizations of the “positive halves” of type A quantum loop superal-
gebras associated with arbitrary Dynkin diagrams.

Keywords Super Yangian · Shuffle algebra · quantum affine superalgebra

Mathematics Subject Classification 17B37 · 81R10

1 Introduction

1.1 Summary

Recall that a novel feature of Lie superalgebras (in contrast to Lie algebras) is that
they admit several non-isomorphic Dynkin diagrams. The isomorphism of the Lie
superalgebras corresponding to different Dynkin diagrams of finite/affine type has
been obtained by Serganova in the Appendix to [16]. Likewise, onemay define various
quantizations of universal enveloping superalgebras starting from different Dynkin
diagrams, and establishing their isomorphism is a non-trivial question. In the case of
quantum finite/affine superalgebras, this question has been addressed 20 years ago by
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Yamane [26]. However, an answer to a similar question for super Yangians seems to
be missing in the literature.

In this short note, we study type A super Yangians and their shuffle realizations.
We define those in the Drinfeld realization, generalizing the construction of [24] for a
distinguished Dynkin diagram. Following [1,13,22], we obtain their RTT realization
and thus identify all of them with the super Yangian of Nazarov [19]. We also describe
their centers, following [13].

However, the “positive halves” of these algebras, denoted by Y+
�
, do essentially

depend on the choice of Dynkin diagrams. In the second part of this note, we obtain
the shuffle algebra realizations of all such Y+

�
and their Drinfeld-Gavarini dual Y+

�
.

We also establish the trigonometric (aka q-deformed) counterparts of these results.
This note is a companion to [25] (the shuffle realizations were announced in

[25, §8.2]).

1.2 Outline of the paper

• In Sect. 2.2, we introduce the Drinfeld super Yangians Y (gl(V )) associated with
arbitrary Dynkin diagrams of gl(V ), where V = V0̄ ⊕ V1̄ is a finite-dimensional
superspace. For the distinguished Dynkin diagram, this recovers the super Yan-
giansYm|n(1) of [19], due to [13],while for a generalDynkin diagram, this recovers
the construction of [22]. The key result of this section, Theorem 2.18, establishes
that Y (gl(V )) is independent (up to isomorphisms) of the choice of Dynkin dia-
grams. The latter may be viewed as a rational counterpart of a similar statement
for quantum affine superalgebras, due to [26], see Remark 2.19.
Our proof of Theorem 2.18 is crucially based on the identification of Y (gl(V ))

with the RTT superYangians Y rtt(gl(V )) introduced in Sect. 2.3, see Theorem 2.32
and Lemma 2.24.
In Sect. 2.4, we introduce the RTT super Yangians Y rtt(sl(V )) following the clas-
sical approach of [18]. For dim(V0̄) �= dim(V1̄), we obtain a decomposition
Y rtt(gl(V )) � Y rtt(sl(V ))⊗ ZY rtt(gl(V )), Theorem 2.48(a), similar to [18]. Here,
ZY rtt(gl(V )) denotes the center of Y rtt(gl(V )), which is a polynomial algebra in
the coefficients of the quantum Berezinian b(z) defined in (2.41), Theorem 2.43
(for the distinguishedDynkin diagram,b(z) coincideswith the quantumBerezinian
of [19], due to [12, Theorem 1]). In contrast, ZY rtt(gl(V )) ⊂ Y rtt(sl(V )) if
dim(V0̄) = dim(V1̄), Theorem 2.48(b), and we introduce the RTT super Yan-
gian Y rtt(A(V )) as the corresponding central reduction of Y rtt(sl(V )).
In Sect. 2.5, we introduce the Drinfeld super Yangians Y (sl(V )) associated
with arbitrary Dynkin diagrams of gl(V ) and construct superalgebra embeddings
Y (sl(V )) ↪→ Y (gl(V )) and isomorphisms Y (sl(V )) ∼−→ Y rtt(sl(V )), Theo-
rem 2.67. The latter implies that super Yangians Y (sl(V )) associated with various
Dynkin diagrams are pairwise isomorphic, Theorem 2.69.
In Sect. 2.6, we recall the PBW theorem and the triangular decomposition for
Y (sl(V )), Theorem 2.72 and Proposition 2.73.
In Sect. 2.7, we introduce aC[�]-version Y�(sl(V )) and its Drinfeld-Gavarini dual
subalgebra Y�(sl(V )). They can be viewed as Rees algebras (2.83) of Y (sl(V ))
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with respect to two standard filtrations on it defined via (2.84), Remark 2.82. The
PBW Theorems for Y�(sl(V )) and Y�(sl(V )), Theorems 2.79 and 2.81, follow
from [11, Theorem B.3, Theorem A.7].

• In Sect. 3.1, we introduce the rational shuffle (super)algebra W̄ V , Definition 3.6,
which may be viewed as a rational super counterpart of the elliptic shuffle alge-
bras of Feigin–Odesskii, [7–9]. It is related to the “positive half” Y+

�
(sl(V )) of the

super Yangian Y�(sl(V )) via an explicit homomorphism � : Y+
�

(sl(V )) → W̄ V

of Proposition 3.7. The injectivity of � is established in Corollary 3.26. The key
results of Sect. 3 describe the images of Y+

�
(sl(V )) and its Drinfeld-Gavarini dual

subalgebra Y+
�
(sl(V )) under �, Theorems 3.30, 3.9. The latter is used to obtain a

new proof of the PBW property for Y+
�
(sl(V )), Theorem 3.10.

In Sect. 3.2, we establish the key result in the simplest case dim(V ) = 2, Theo-
rem 3.11.
In Sect. 3.3, we introduce our key technical tool in the study of the shuffle alge-
bras, the specializationmapsφd (3.15). Their twomainproperties are established in
Lemmas 3.17, 3.18, which immediately imply the injectivity of�, Corollary 3.26.
In Sect. 3.4, we finally describe the images of Y+

�
(sl(V )) and its subalgebra

Y+
�
(sl(V )), Theorems 3.30, 3.9. The former consists of all good shuffle elements,

Definition 3.27, while the latter consists of all integral shuffle elements, Defini-
tion 3.8. We also prove Theorem 3.10.

• In Sect. 4, we recall the definition of U>
v (Lgl(V )), the “positive half” of the

quantum loop superalgebra of gl(V ), and obtain its shuffle algebra realization,
Theorem 4.14. This provides the trigonometric counterpart of Theorem 3.30 and
generalizes [25, Theorem 5.17], where this result was established for the distin-
guished Dynkin diagram of gl(V ).

2 Type A super Yangians

2.1 Setup and notations

Consider a superspace V = V0̄ ⊕ V1̄ with a C-basis v1, . . . , vn such that each vi is
either even (vi ∈ V0̄) or odd (vi ∈ V1̄). We set n+ := dim(V0̄), n− := dim(V1̄), and

n := n+ + n− = dim(V ). For 1 ≤ i ≤ n, define i ∈ Z2 via i =
{
0̄, if vi ∈ V0̄
1̄, if vi ∈ V1̄

.

Consider a free Z-module P := ⊕n
i=1Zεi with the bilinear form determined by

(εi , ε j ) = δi j (−1)i (we set (−1)0̄ := 1 and, (−1)1̄ := −1). For 1 ≤ i < n, let
αi := εi − εi+1 ∈ P be the simple roots of gl(V ), and �+ := {ε j − εi }1≤ j<i≤n ⊂ P
be the set of positive roots of gl(V ). Let I = {1, 2, . . . , n − 1} and set |αi | :=
i + i + 1 ∈ Z2 for i ∈ I . Finally, let (ci j )i, j∈I be the associated Cartan matrix, that
is, ci j := (αi , α j ).

For a superalgebra A and its two homogeneous elements x, x ′, we define

[x, x ′] := xx ′ − (−1)|x |·|x ′|x ′x and {x, x ′} := xx ′ + (−1)|x |·|x ′|x ′x, (2.1)

where |x | denotes the Z2-grading of x (that is, x ∈ A|x |).
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Given two superspaces A = A0̄ ⊕ A1̄ and B = B0̄ ⊕ B1̄, their tensor product
A ⊗ B is also a superspace with (A ⊗ B)0̄ = A0̄ ⊗ B0̄ ⊕ A1̄ ⊗ B1̄ and (A ⊗ B)1̄ =
A0̄ ⊗ B1̄ ⊕ A1̄ ⊗ B0̄. Furthermore, if A and B are superalgebras, then A ⊗ B is made
into a superalgebra, the graded tensor product of the superalgebras A and B, via the
following multiplication:

(x ⊗ y)(x ′ ⊗ y′) = (−1)|y|·|x ′|(xx ′) ⊗ (yy′)
for any x ∈ A|x |, x ′ ∈ A|x ′|, y ∈ B|y|, y′ ∈ B|y′|.

(2.2)

We will use only graded tensor products of superalgebras throughout this paper.

2.2 The Drinfeld super Yangian of gl(V)

Following [1,3,13,22], define the Drinfeld super Yangian of gl(V ),
denoted by Y (gl(V )), to be the associative C-superalgebra generated by
{d(s)

j , d̃(s)
j , e(r)

i , f (r)
i }r≥1,s≥0

1≤i<n,1≤ j≤n with the Z2-grading |d(r)
j | = |d̃(r)

j | = 0̄, |e(r)
i | =

| f (r)
i | = |αi |, and subject to the following defining relations:

d(0)
j = 1, d̃(0)

j = 1,
r∑

t=0

d̃(t)
i d(r−t)

i = δr ,0, (2.3)

[d(r)
i , d(s)

j ] = 0, (2.4)

[d(r)
i , e(s)

j ] = (−1)i (δi, j − δi, j+1)

r−1∑
t=0

d(t)
i e(r+s−t−1)

j , (2.5)

[d(r)
i , f (s)

j ] = (−1)i (−δi, j + δi, j+1)

r−1∑
t=0

f (r+s−t−1)
j d(t)

i , (2.6)

[e(r)
i , f (s)

j ] = −(−1)i+1δi, j

r+s−1∑
t=0

d̃(t)
i d(r+s−t−1)

i+1 , (2.7)

[e(r)
i , e(s)

j ] = 0 if ci j = 0,

[e(r)
i , e(s+1)

i+1 ] − [e(r+1)
i , e(s)

i+1] = −(−1)i+1e(r)
i e(s)

i+1, (2.8)

[e(r)
i , e(s)

i ] = (−1)i
s−1∑
t=1

e(t)
i e(r+s−t−1)

i − (−1)i
r−1∑
t=1

e(t)
i e(r+s−t−1)

i if |αi | = 0̄,

[ f (r)
i , f (s)

j ] = 0 if ci j = 0,

[ f (s+1)
i+1 , f (r)

i ] − [ f (s)
i+1, f (r+1)

i ] = −(−1)i+1 f (s)
i+1 f

(r)
i , (2.9)

[ f (r)
i , f (s)

i ] = (−1)i
r−1∑
t=1

f (r+s−t−1)
i f (t)

i − (−1)i
s−1∑
t=1

f (r+s−t−1)
i f (t)

i if |αi | = 0̄,
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as well as cubic Serre relations

[e(r)
i , [e(s)

i , e(t)
j ]] + [e(s)

i , [e(r)
i , e(t)

j ]] = 0 if j = i ± 1 and |αi | = 0̄, (2.10)

[ f (r)
i , [ f (s)

i , f (t)
j ]] + [ f (s)

i , [ f (r)
i , f (t)

j ]] = 0 if j = i ± 1 and |αi | = 0̄, (2.11)

and quartic Serre relations

[[e(r)
j−1, e

(1)
j ], [e(1)

j , e(s)
j+1]] = 0 if |α j | = 1̄ and |α j−1| = |α j+1| = 0̄, (2.12)

[[ f (r)
j−1, f (1)

j ], [ f (1)
j , f (s)

j+1]] = 0 if |α j | = 1̄ and |α j−1| = |α j+1| = 0̄. (2.13)

Remark 2.14 (a) The cubic Serre relations (2.10, 2.11) are also valid for |αi | = 1̄,
but in that case, they already follow from [e(r)

i , e(s)
i ] = 0 = [ f (r)

i , f (s)
i ], due to

quadratic relations (2.8, 2.9).
(b) The quartic Serre relations (2.12, 2.13) are also valid for any other parities of

α j−1, α j , α j+1, but in those cases, they already follow from the quadratic and
cubic relations (2.8–2.11).

(c) Generalizing the quartic Serre relations (2.12, 2.13), the following relations also
hold:

[[e(r)
j−1, e

(k)
j ], [e(l)

j , e(s)
j+1]] + [[e(r)

j−1, e
(l)
j ], [e(k)

j , e(s)
j+1]] = 0, (2.15)

[[ f (r)
j−1, f (k)

j ], [ f (l)
j , f (s)

j+1]] + [[ f (r)
j−1, f (l)

j ], [ f (k)
j , f (s)

j+1]] = 0, (2.16)

cf. Remark 2.61(b) and the explanations therein. We note that these relations
(2.15, 2.16) play a crucial role in the recent paper [23].

As pointed out to us by Peng, the above definition of Y (gl(V )) is actually equivalent
to the one from [21]. In the particular case (associated with the distinguished Dynkin
diagram)

v1, . . . , vn+ ∈ V0̄ and vn++1, . . . , vn ∈ V1̄ (2.17)

(so that |αn+| = 1̄ and |αi �=n+| = 0̄), the defining relations (2.3–2.13) first appeared
in [13, Theorem 3],1 where it was shown that the corresponding super Yangian is
isomorphic to the superYangianY rtt(gln+|n−)first introduced in [19] (thus generalizing
[1, Theorem 5.2]). The same arguments can be used to establish the following result
(mentioned first in [21]):

Theorem 2.18 The superalgebra Y (gl(V )) depends only on (n+, n−), up to an iso-
morphism.

This is a direct consequence of Theorem 2.32 and Lemma 2.24 (see Remark 2.35).

1 We note the following typos in [13]: j ≤ m + 1 should be replaced by j ≥ m + 1 in the third line of (39),

the sign (−1) j should be replaced by (−1) j+1 in the right-hand sides of (44, 45).
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Remark 2.19 The quantum affine superalgebras corresponding to different Dynkin
diagrams of the same affine Lie superalgebra are known to be pairwise isomorphic,
due to [26].A similar statement for superYangians seems to bemissing in the literature.
Thus, Theorem 2.18 and its sl(V )-counterpart, Theorem 2.69, fill this gap at least in
type A.

2.3 The RTT super Yangian of gl(V)

Let P : V⊗V →V⊗V be the permutation operator given by P :=∑
i, j (−1) j Ei j⊗E ji ,

so that P(v j ⊗ vi ) = (−1)i · jvi ⊗ v j . Consider the rational R-matrix Rrat(z) =
1 − 1

z P ∈ (End V )⊗2.
Following [10,17,19,21], define the RTT super Yangian of gl(V ), denoted by

Y rtt(gl(V )), to be the associative C-superalgebra generated by {t (r)i j }r≥1
1≤i, j≤n with the

Z2-grading |t (r)i j | = i + j and subject to the following defining relation:

Rrat(z − w)T1(z)T2(w) = T2(w)T1(z)Rrat(z − w). (2.20)

Here, T (z) is the series in z−1 with coefficients in the algebra Y rtt(gl(V )) ⊗ End V ,
defined by

T (z) =
∑
i, j

(−1) j(i+1)ti j (z) ⊗ Ei j with ti j (z) := δi, j +
∑
r≥1

t (r)i j z−r . (2.21)

Remark 2.22 Here, we identify the operator
∑n

i, j=1(−1) j(i+1)ti j (z) ⊗ Ei j with the
matrix (ti j (z))ni, j=1. Evoking themultiplication (2.2) on the graded tensor products, we

see that the extra sign (−1) j(i+1) ensures that the product of twomatrices is calculated
in the usual way.

Multiplying both sides of (2.20) by z − w, we obtain an equality of series in z, w
with coefficients in Y rtt(gl(V )) ⊗ (End V )⊗2. Thus, relation (2.20) is equivalent to
the following relations:

(z − w)[ti j (z), tkl(w)] = (−1)i · j+i ·k+ j ·k (
tk j (z)til(w) − tk j (w)til(z)

)
(2.23)

for all 1 ≤ i, j, k, l ≤ n.
In the particular case (2.17), we recover the super Yangian Y rtt(gln+|n−) of [19]

(denoted by Yn+|n−(1) in [19]), while for a general case, we actually get isomorphic
algebras, due to the following simple result:

Lemma 2.24 The superalgebra Y rtt(gl(V )) depends only on (n+, n−), up to an iso-
morphism. In particular, Y rtt(gl(V )) is isomorphic to the super Yangian Y rtt(gln+|n−)

of [19].

Proof Let V ′ be another superspacewith aC-basis v′
1, . . . , v

′
n such that each v

′
i is either

even or odd and n′+ = n+, n′− = n−. Pick a permutation σ ∈ 
n , such that vi ∈ V
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and v′
σ(i) ∈ V ′ have the same parity for all i . Then, the assignment t (r)i j → t (r)σ (i),σ ( j)

is compatible with the defining relations (2.23), thus giving rise to an isomorphism
Y rtt(gl(V )) ∼−→ Y rtt(gl(V ′)). ��

Wealsohave two standard relations betweenY rtt(gl(V )) andU (gl(V )) (cf. [13,22]):

Lemma 2.25 (a) The assignment Ei j → (−1)i t (1)i j gives rise to a superalgebra
embedding

ι : U (gl(V )) ↪→ Y rtt(gl(V )).

(b) The assignment t (r)i j → (−1)iδr ,1Ei j gives rise to a superalgebra epimorphism

ev : Y rtt(gl(V )) � U (gl(V )).

Proof Straightforward. ��

The superalgebra Y rtt(gl(V )) is also endowed with two different filtrations, defined
via

deg1(t
(r)
i j ) = r and deg2(t

(r)
i j ) = r − 1. (2.26)

Let gr1Y
rtt(gl(V )), gr2Y

rtt(gl(V )) denote the corresponding associated graded super-
algebras.

Lemma 2.27 (a) The assignment t (r)i j → t(r)i j gives rise to a superalgebra isomor-
phism

gr1Y
rtt(gl(V )) ∼−→ C[{t(r)i j }r≥1

1≤i, j≤n] (2.28)

with the polynomial superalgebra in the variables t(r)i j with theZ2-grading |t(r)i j | =
i + j .

(b) The assignment t (r)i j → (−1)i Ei j · tr−1 gives rise to a superalgebra isomorphism

gr2Y
rtt(gl(V )) ∼−→U (gl(V )[t]) (2.29)

with the universal enveloping of gl(V )[t] = gl(V ) ⊗ C[t].

Proof Analogous to [13, Theorem 1, Corollary 1], cf. [22, Proposition 2.2, Corol-
lary 2.3]. ��
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Let us now relate Y rtt(gl(V )) to Y (gl(V )). Consider the Gauss decomposition of
T (z):

T (z) = F(z) · D(z) · E(z).

Here, F(z), D(z), E(z) ∈ (
Y rtt(gl(V )) ⊗ End V

) [[z−1]] are of the form

F(z) =
∑
i

Eii +
∑
j<i

(−1) j̄(ī+1)Fi j (z) ⊗ Ei j , D(z) =
∑
i

Di (z) ⊗ Eii ,

E(z) =
∑
i

Eii +
∑
j<i

(−1)ī( j̄+1)E ji (z) ⊗ E ji ,

cf. Remark 2.22. Define the elements {D(s)
k , D̃(s)

k , E (r)
j i , F (r)

i j }r≥1,s≥0
1≤ j<i≤n,1≤k≤n of

Y rtt(gl(V )) via

E ji (z) =
∑
r≥1

E (r)
j i z

−r , Fi j (z) =
∑
r≥1

F (r)
i j z−r ,

Dk(z) =
∑
s≥0

D(s)
k z−s, Dk(z)

−1 =
∑
s≥0

D̃(s)
k z−s .

For 1 ≤ i < n and r ≥ 1, set E (r)
i := E (r)

i,i+1 and F (r)
i := F (r)

i+1,i . Due to
[22, Lemma 3.3] (generalizing [1, (5.5)] in the classical setup as well as [13, (10)] for
the distinguished Dynkin diagram), we have:

Lemma 2.30 For any 1 ≤ j < i−1 < n, the following equalities hold in Y rtt(gl(V )):

E (r)
j i = (−1)i−1[E (r)

j,i−1, E
(1)
i−1], F (r)

i j = (−1)i−1[F (1)
i−1, F

(r)
i−1, j ].

Corollary 2.31 Y rtt(gl(V )) is generated by {D(s)
j , D̃(s)

j , E (r)
i , F (r)

i }r≥1,s≥0
1≤i<n,1≤ j≤n.

Similar to [1,4,13,22], we have the following result:

Theorem 2.32 There is a unique superalgebra isomorphism

ϒ : Y (gl(V )) ∼−→ Y rtt(gl(V )) (2.33)

defined by e(r)
i → E (r)

i , f (r)
i → F (r)

i , d(s)
j → D(s)

j , d̃(s)
j → D̃(s)

j .

Proof The proof is completely analogous to that in the classical case (when n− = 0)
presented in [1, §5]; see [13, Theorem 3] for the particular case of (2.17). ��
Remark 2.34 The presence of the quartic Serre relations (2.12, 2.13) is solely due to
the fact that they also appear among the defining relations of the Lie superalgebra
gl(V ) via the Chevalley generators [16] (see the argument right after [13, (59)]).

Remark 2.35 Theorem 2.32 together with Lemma 2.24 implies Theorem 2.18.
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2.4 The RTT super Yangians of sl(V),A(V)

For any formal power series f (z) ∈ 1 + z−1
C[[z−1]], the assignment

μ f : T (z) → f (z)T (z) (2.36)

defines a superalgebra automorphism μ f of Y rtt(gl(V )). Following [18], define
the RTT super Yangian of sl(V ), denoted by Y rtt(sl(V )), as the C-subalgebra of
Y rtt(gl(V )) via

Y rtt(sl(V )) := {y ∈ Y rtt(gl(V ))|μ f (y) = y for all f }. (2.37)

In the particular case (2.17), this recovers the super Yangian Y rtt(sln+|n−) of [13, §8].
In view of Lemma 2.24, we immediately obtain:

Corollary 2.38 The superalgebra Y rtt(sl(V )) depends only on (n+, n−), up to an iso-
morphism. In particular, Y rtt(sl(V )) is isomorphic to the super Yangian Y rtt(sln+|n−)

of [13].

Explicitly, this subalgebra can be described as follows:

Lemma 2.39 Y rtt(sl(V )) is generated by coefficients of Di (z)−1Di+1(z), Ei,i+1(z),
Fi+1,i (z).

Proof Completely analogous to the proof of [13, Lemma 7] for the particular case
of (2.17). ��
Definition 2.40 Define the charge c(V ) ∈ Z of V via

c(V ) := n+ − n− = dim(V0̄) − dim(V1̄).

If V has a nonzero charge, then Y rtt(sl(V )) also may be realized as a quotient of
Y rtt(gl(V )). For the latter construction, let us first obtain an explicit description of the
center ZY rtt(gl(V )) of Y rtt(gl(V )). Following [12], define the quantum Berezinian
b(z) ∈ Y rtt(gl(V ))[[z−1]] via

b(z) := 1 +
∑
r≥1

br z
−r = D′

1(z1)D
′
2(z2) · · · D′

n(zn), (2.41)

whereD′
i (z) :=

{
Di (z), if i= 0̄

Di (z)−1, if i= 1̄
,while z1= z and zi+1=

{
zi + ci,i+1, if |αi |= 0̄

zi , if |αi |= 1̄
.

Remark 2.42 For the distinguished Dynkin diagram, that is for (2.17), this defini-
tion recovers the original quantum Berezinian of [19, §2], due to the main result
(Theorem 1) of [12].
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Theorem 2.43 (a) The elements {br }r≥1 are central.
(b) The elements {br }r≥1 are algebraically independent and generate the center

ZY rtt(gl(V )). In other words, we have an algebra isomorphism
ZY rtt(gl(V )) � C[b1, b2, . . .].

Proof (a) To prove that all br are central, it suffices to verify that [b(z), Ei (w)] =
0 = [b(z), Fi (w)] for any 1 ≤ i < n. We shall check only the first equality (the
second is analogous).

Case 1: |αi | = 0̄.
Due to the isomorphism of Theorem 2.32 and the relation (2.5), we have

(u − v)Ei (v)Di (u) = (u − v − (−1)i )Di (u)Ei (v) + (−1)i Di (u)Ei (u),

(2.44)

(w − v)Ei (v)Di+1(w) = (w − v + (−1)i+1)Di+1(w)Ei (v) − (−1)i+1Di+1(w)Ei (w).

(2.45)

Plugging v = u, w = u − (−1)i into (2.45) and using i = i + 1 (as |αi | = 0̄), we
get

Ei (u)Di+1(u − (−1)i ) = Di+1(u − (−1)i )Ei (u − (−1)i ). (2.46)

Due to (2.44–2.46):

(u − v)Ei (v)Di (u)Di+1(u − (−1)i ) = (u − v)Di (u)Di+1(u − (−1)i )Ei (v).

Hence, [b(z), Ei (w)] = 0 as ci,i+1 = −(−1)i+1 = −(−1)i and [Ei (v), Dj (u)] =
0 for j �= i, i + 1.
Case 2: |αi | = 1̄.

In this case, (−1)i+1 = −(−1)i and the equality (2.45) is equivalent to

(w − v)Di+1(w)−1Ei (v) = (w − v − (−1)i )Ei (v)Di+1(w)−1 + (−1)i Ei (w)Di+1(w)−1.

(2.47)

Combining the equalities (2.44, 2.47), we immediately obtain

(u − v)Ei (v)Di (u)Di+1(u)−1 = (u − v)Di (u)Di+1(u)−1Ei (v).

Hence, [b(z), Ei (w)] = 0 as [Ei (v), Dj (u)] = 0 for j �= i, i + 1.
This completes the proof of part (a).

(b) The proof of part (b) is analogous to that of [18, Theorem 2.13] and
[1, Theorem 7.2] in the classical case (when n− = 0), and of [13, Theorem 4] for
the particular case (2.17). ��
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Similar to the classical case (when n− = 0) treated in [18] as well as the particular
case (2.17) treated in [13], we have:

Theorem 2.48 (a) If c(V ) �= 0, then we have a superalgebra isomorphism

Y rtt(gl(V )) � Y rtt(sl(V )) ⊗ ZY rtt(gl(V )). (2.49)

(b) If c(V ) = 0, then ZY rtt(gl(V )) ⊂ Y rtt(sl(V )).

Proof (a) Analogous to the proof of [13, Proposition 3] for the particular case of (2.17).
(b) If n+ = n−, then zi defined after (2.41) satisfy {zi |i = 0̄} = {zi |i = 1̄}. Hence,

μ f (b(z)) = b(z) for all automorphisms (2.36). Thus, ZY rtt(gl(V )) ⊂ Y rtt(sl(V ))

by Theorem 2.43. ��
Corollary 2.50 If c(V ) �= 0, then the isomorphism (2.49) gives rise to a natural epi-
morphism π : Y rtt(gl(V )) � Y rtt(sl(V )) with Ker(π) = (b1, b2, . . .).

Recall that the classical Lie superalgebra A(n+ − 1, n− − 1) coincides with
sl(n+|n−) for n+ �= n−, and with the quotient sl(n+|n−)/(I ) for n+ = n−, where
I = ∑n

i=1 Eii is the central element. Motivated by this and Theorem 2.48(b), if
c(V ) = 0, define the RTT super Yangian of A(V ), denoted by Y rtt(A(V )), via
Y rtt(A(V )) := Y rtt(sl(V ))/(b1, b2, . . .), cf. [13, (67)].

Corollary 2.51 Y rtt(A(V )) depends only on n+ = n−, up to an isomorphism.

Proof Similar to [13, Corollary 2], the center ZY rtt(sl(V )) of Y rtt(sl(V )) is a poly-
nomial algebra in {br }∞r=1. Combining this with Corollary 2.38 implies the result.

��

2.5 The Drinfeld super Yangian of sl(V)

Following [3] (cf. [24]2 and [13]), define theDrinfeld super Yangian of sl(V ), denoted
by Y (sl(V )), to be the associative C-superalgebra generated by {hi,r , x±

i,r }r≥0
1≤i<n with

theZ2-grading |hi,r | = 0̄, |x±
i,r | = |αi |, and subject to the following defining relations:

[hi,r , h j,s] = 0, (2.52)

[hi,0, x±
j,s] = ±ci jx

±
j,s, (2.53)

[hi,r+1, x
±
j,s] − [hi,r , x±

j,s+1] = ±ci j
2

{hi,r , x±
j,s} unless i = j and |αi | = 1̄, (2.54)

[hi,r , x±
i,s] = 0 if |αi | = 1̄, (2.55)

[x+
i,r , x

−
j,s] = δi, j hi,r+s, (2.56)

[x±
i,r+1, x

±
j,s] − [x±

i,r , x
±
j,s+1] = ±ci j

2
{x±

i,r , x
±
j,s} unless i = j and |αi | = 1̄, (2.57)

[x±
i,r , x

±
j,s] = 0 if ci j = 0, (2.58)

2 As noticed in [13], the relation (2.62) should replace thewrong quartic Serre relations of [24, Definition 2].
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as well as cubic Serre relations

[x±
i,r , [x±

i,s, x
±
j,t ]] + [x±

i,s, [x±
i,r , x

±
j,t ]] = 0 if j = i ± 1 and |αi | = 0̄, (2.59)

and quartic Serre relations

[[x±
j−1,r , x

±
j,0], [x±

j,0, x
±
j+1,s]] = 0 if |α j | = 1̄ and |α j−1| = |α j+1| = 0̄. (2.60)

Remark 2.61 (a) Similar to Remark 2.14, Serre relations (2.59) and (2.60) also hold
for all other parities, but in those cases, they already follow from (2.57, 2.58)
and (2.57, 2.58, 2.59).

(b) Generalizing the quartic Serre relations (2.60), the following relations also hold:

[[x±
j−1,r , x

±
j,k], [x±

j,l , x
±
j+1,s]] + [[x±

j−1,r , x
±
j,l ], [x±

j,k, x
±
j+1,s]] = 0. (2.62)

One way to prove this is to use the classical argument of deducing all Serre
relations from the basic ones by commuting the latter with certain Cartan ele-
ments. Let Q±

j (r; k, l; s) denote the left-hand side of (2.62). Our goal is to prove
Q±

j (r; k, l; s) = 0 for any r , k, l, s ≥ 0, while we know it only for k = l = 0

and r , s ≥ 0, due to (2.60) and Remark 2.61(a). Define the elements {ti,r }r≥0
1≤i<n

of Y (sl(V )) via

∑
r≥0

ti,r u
−r−1 = log

⎛
⎝1 +

∑
r≥0

hi,r u
−r−1

⎞
⎠ , (2.63)

cf. (2.52). The relations (2.53, 2.54) imply the following commutation relations:

[ti,r , x±
j,s] = ±ci j

[r/2]∑
l=0

(
r

2l

)
(ci j/2)2l

2l + 1
x±
j,r+s−2l , (2.64)

cf. [14, Remark of §2.9]. Commuting both sides of the equality Q±
j (r; 0, 0; s) = 0

with t j−1,k and using (2.64), one obtains Q±
j (r; k, 0; s) = 0 by an induction in

k. Commuting the latter equality with t j−1,l , one derives the desired equality
Q±

j (r; k, l; s) = 0 by an induction in l.
Another way to prove (2.62) is to verify the corresponding equality on the shuffle
side, see Sect. 3 (though we set � = 1 for the current purpose). According to
Corollary 3.26, it suffices to prove �(Q+

j (r; k, l; s)) = 0. The latter follows
from the obvious equality

�(Q+
j (r; k, l; s)) = (xkj,1x

l
j,2 + xlj,1x

k
j,2)�(Q+

j (r; 0, 0; s)) (2.65)

in the notations of loc.cit., combined with Q+
j (r; 0, 0; s) = 0.
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Let us now relate Y (sl(V )) to Y (gl(V )) of Sect. 2.2. Define u1, . . . , un−1 via

u1 := u and ui+1 = ui + ci,i+1

2
= ui − (−1)i+1

2
. (2.66)

Consider the generating series ei (u), fi (u), d j (u) with coefficients in Y (gl(V )),
defined via

ei (u) :=
∑
r≥1

e(r)
i u−r , fi (u) :=

∑
r≥1

f (r)
i u−r , d j (u) := 1 +

∑
r≥1

d(r)
j u−r .

We also introduce the elements {X±
i,r , Hi,r }r≥0

1≤i<n of Y (gl(V )) via

∑
r≥0

X+
i,r u

−r−1 = fi (ui ),
∑
r≥0

X−
i,r u

−r−1 = (−1)i ei (ui ),

1 +
∑
r≥0

Hi,r u
−r−1 = di (ui )

−1di+1(ui ).

Theorem 2.67 The assignment x±i,r → X±
i,r , hi,r → Hi,r gives rise to a superalgebra

embedding

j : Y (sl(V )) ↪→ Y (gl(V )). (2.68)

Moreover, the superalgebra isomorphism ϒ : Y (gl(V )) ∼−→ Y rtt(gl(V )) of Theo-
rem 2.32 gives rise to a superalgebra isomorphism ϒ : Y (sl(V )) ∼−→ Y rtt(sl(V )).

Proof The compatibility of the assignment x±
i,r → X±

i,r , hi,r → Hi,r with the defining
relations (2.52–2.60) is straightforward (cf. [1, Remark 5.12]). Hence, we obtain a
superalgebra homomorphism j : Y (sl(V )) → Y (gl(V )). Its image coincides with the
pre-image of Y rtt(sl(V )) under ϒ , due to Lemma 2.39. Finally, the injectivity of j is
established in the same way as it was proved in [13, Proposition 5] for the particular
case of Y (gln+|n−) (the proof crucially uses the construction of PBW bases for the
Yangians of [15,24], recalled in Theorem 2.72). ��

As an immediate corollary of Theorem 2.67 and Corollary 2.38, we obtain:

Theorem 2.69 The superalgebra Y (sl(V )) depends only on (n+, n−), up to an iso-
morphism.

2.6 The PBW theorem and the triangular decomposition for Y(sl(V))

Let Y±(sl(V )) and Y 0(sl(V )) be the subalgebras of Y (sl(V )) generated by {x±
i,r }

and {hi,r }, respectively. Likewise, let Ỹ±(sl(V )) and Ỹ 0(sl(V )) be the associative
C-superalgebras generated by {x±

i,r }r≥0
1≤i<n and {hi,r }r≥0

1≤i<n , respectively, with the Z2-

grading |hi,r | = 0̄, |x±
i,r | = |αi |, and subject to the defining relations (2.57–2.60)
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and (2.52), respectively. The assignments x±
i,r → x±

i,r and hi,r → hi,r clearly give

rise to epimorphisms Ỹ±(sl(V )) � Y±(sl(V )) and Ỹ 0(sl(V )) � Y 0(sl(V )) (which
are actually isomorphisms, due to Proposition 2.73(a)).

Pick any total ordering � on �+ × N. For every (β, r) ∈ �+ × N, we choose:

(1) a decomposition β = αi1 + . . . + αi p such that [· · · [eαi1
, eαi2

], · · · , eαi p
] is a

nonzero root vector eβ of sl(V ) (here, eαi denotes the standard Chevalley gener-
ator of sl(V ));

(2) a decomposition r = r1 + . . . + rp with ri ∈ N.

Define the PBW basis elements x±
β,r of Y

±(sl(V )) or Ỹ±(sl(V )) via

x±
β,r := [· · · [[x±

i1,r1
, x±

i2,r2
], x±

i3,r3
], · · · , x±

i p,rp
]. (2.70)

Let H denote the set of all functions h : �+ × N → N with finite support and such
that h(β, r) ≤ 1 if |β| = 1̄ (we set | ± (α j + . . . + αi )| := |α j | + . . . + |αi | ∈ Z2).
The monomials

x±
h :=

→∏
(β,r)∈�+×N

x±
β,r

h(β,r)
with h ∈ H (2.71)

will be called the ordered PBW monomials of Y±(sl(V )) or Ỹ±(sl(V )).
The following PBW result for Yangians is originally due to [15]3 (cf.

[1, Theorem 5.11] and [13, proof of Proposition 5]):

Theorem 2.72 (a) The ordered PBW monomials {x±h }h∈H form a C-basis of
Ỹ±(sl(V )).

(b) The ordered (in any way) monomials in {hi,r }r≥0
1≤i<n form a C-basis of Ỹ 0(sl(V )).

(c) The products of ordered PBW monomials {x−h }h∈H , {x+h′ }h′∈H , and the ordered

monomials in {hi,r }r≥0
1≤i<n form a C-basis of Y (sl(V )).

As an important corollary, we obtain the triangular decomposition for Y (sl(V )):

Proposition 2.73 (a) The assignments x±i,r → x±i,r and hi,r → hi,r give rise to iso-
morphisms

Ỹ±(sl(V )) ∼−→ Y±(sl(V )) and Ỹ 0(sl(V )) ∼−→ Y 0(sl(V )).

(b) The multiplication map

m : Y−(sl(V )) ⊗ Y 0(sl(V )) ⊗ Y+(sl(V )) −→ Y (sl(V ))

is an isomorphism of C-vector superspaces.

3 The original proof of [15] contains a substantial gap, see [11, Appendix B] for an alternative proof.
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Remark 2.74 In Sect. 3, we will use a particular total ordering � on �+ × N:

(β, r) � (β ′, r ′) iff β ≺ β ′ or β = β ′, r ≤ r ′, (2.75)

where the total ordering � on �+ is as follows:

α j + α j+1 + · · · + αi � α j ′ + α j ′+1 + · · · + αi ′ iff j < j ′ or j = j ′, i ≤ i ′. (2.76)

2.7 The super Yangians Y�(sl(V)) and Y�(sl(V))

For the sake of the next section, let us introduce a C[�]-version of Y (sl(V )) by
homogenizing the defining relations of the latter. More precisely, let Y�(sl(V )) be
the associative C[�]-superalgebra generated by {hi,r , x±

i,r }r≥0
1≤i<n with the Z2-grading

|hi,r | = 0̄, |x±
i,r | = |αi |, and subject to (2.52, 2.53, 2.55, 2.56, 2.58, 2.59, 2.60) and

the following modifications of (2.54, 2.57):

[hi,r+1, x
±
j,s] − [hi,r , x±

j,s+1] = ±ci j�

2
{hi,r , x±

j,s} unless i = j and |αi | = 1̄, (2.77)

[x±
i,r+1, x

±
j,s] − [x±

i,r , x
±
j,s+1] = ±ci j�

2
{x±

i,r , x
±
j,s} unless i = j and |αi | = 1̄. (2.78)

The algebra Y�(sl(V )) is N-graded via deg(hi,r ) = deg(x±
i,r ) = r , deg(�) = 1.

Following Sect. 2.6, let Y±
�

(sl(V )) and Y 0
�
(sl(V )) be the C[�]-subalgebras of

Y�(sl(V )) generated by {x±
i,r } and {hi,r }, respectively. We also define the PBW basis

elements {x±
β,r }r∈N

β∈�+ and theorderedPBWmonomials {x±
h }h∈H ofY�(sl(V ))via (2.70)

and (2.71), respectively. We have the following counterparts of Theorem 2.72(c) and
Proposition 2.73 (cf. [11]):

Theorem 2.79 (a) The products of ordered PBW monomials {x−h }h∈H , {x+h′ }h′∈H ,
and the ordered monomials in {hi,r }r≥0

1≤i<n form a basis of a free C[�]-module
Y�(sl(V )).

(b) The multiplication map m : Y−
�

(sl(V )) ⊗C[�] Y 0
�
(sl(V )) ⊗C[�] Y+

�
(sl(V )) →

Y�(sl(V )) is an isomorphism of C[�]-modules.
(c) Y±

�
(sl(V )) are isomorphic to the associative C[�]-superalgebras generated by

{x±i,r }r≥0
1≤i<n with the Z2-grading |x±i,r | = |αi | and subject to the defining rela-

tions (2.58–2.60, 2.78).

The Drinfeld-Gavarini dual Y�(sl(V )) is the C[�]-subalgebra of Y�(sl(V )) gener-
ated by

Hi,r := � · hi,r and X±
β,r := �x±

β,r for i ∈ I , β ∈ �+, r ∈ N. (2.80)

For h ∈ H (Sect. 2.6), set X±
h :=

→∏
(β,r)∈�+×N

X±
β,r

h(β,r)
. The following is

[11, Theorem A.7]:
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Theorem 2.81 (a) The subalgebra Y�(sl(V )) is independent of all our choices
in (2.70).

(b) The products of ordered PBW monomials {X−
h }h∈H , {X+

h′ }h′∈H , and the ordered

monomials in {Hi,r }r≥0
1≤i<n form a basis of a free C[�]-module Y�(sl(V )).

Let Y+
�
(sl(V )) be the C[�]-subalgebra of Y+

�
(sl(V )) generated by {X+

β,r }r∈N

β∈�+ . A

new proof of Theorem 2.81 but with Y+
�
(sl(V )) in place of Y�(sl(V )) is provided in

the next section.

Remark 2.82 (a) In view of Theorems 2.79 and 2.81, the algebras Y�(sl(V )) and
Y�(sl(V )) may be defined as the Rees algebras:

Y�(sl(V )) = ReesF∗Y (sl(V )) and Y�(sl(V )) = ReesF
′∗Y (sl(V )). (2.83)

Here, F ′∗Y (sl(V )) and F∗Y (sl(V )) are the two algebra filtrations on Y (sl(V )),
defined by specifying the degrees of PBW basis elements {x±

β,r , hi,r }r≥0
β∈�+,1≤i<n

as follows:

deg1(x
±
β,r ) = deg1(hi,r ) = r + 1 and deg2(x

±
β,r ) = deg2(hi,r ) = r . (2.84)

They are pre-images of the filtrations (2.26) under the embedding
ϒ : Y (sl(V )) ↪→ Y rtt(gl(V )).

(b) For a ∈ C
×:

Y�(sl(V ))/(� − a)Y�(sl(V )) � Y�(sl(V ))/(� − a)Y�(sl(V )) � Y (sl(V )),

but Y�(sl(V ))/�Y�(sl(V )) � U (sl(V )⊗ C[t]), while Y�(sl(V ))/�Y�(sl(V )) is
supercommutative.

3 Shuffle algebra realizations of Y+
�
(sl(V)) and Y+

�
(sl(V))

In this section, we obtain shuffle algebra realizations4 of the superalgebras Y+
�

(sl(V ))

and Y+
�
(sl(V )) of Sect. 2.7, generalizing [25, Theorems 7.15, 7.16] for the particular

case of (2.17).

3.1 The rational shuffle algebraWV and its integral formWV

Wefollow the notations of [25, §7.2]. Let
k denote the symmetric group in k elements,
and set 
(k1,...,kn−1) := 
k1 × · · · × 
kn−1 for k1, . . . , kn−1 ∈ N. Consider an N

I -
graded C[�]-module W̄

V = ⊕
k=(k1,...,kn−1)∈NI W̄

V
k , where W̄

V
(k1,...,kn−1)

consists of

rational functions from C[�]({xi,r }1≤r≤ki
i∈I ) which are supersymmetric in {xi,r }kir=1 for

any i ∈ I , that is, symmetric if |αi | = 0̄ and skew-symmetric if |αi | = 1̄.

4 These are rational super counterparts of the elliptic shuffle algebras of Feigin–Odesskii [7–9].

123



Shuffle algebra realizations of type A super Yangians and…

We fix an I × I matrix of rational functions (ζi, j (z))i, j∈I ∈ Mat I×I (C[�](z)) via

ζi, j (z) = (−1)
δi> j δ|αi |,1̄δ|α j |,1̄

(
1 + ci j�

2z

)
. (3.1)

Let us now introduce the bilinear shuffle product � on W̄
V : given F ∈ W̄

V
k and

G ∈ W̄
V
l , define F�G ∈ W̄

V
k+l via

(F�G)(x1,1, . . . , x1,k1+l1 ; . . . ; xn−1,1, . . . , xn−1,kn−1+ln−1 ) := k! · l!×

SSym
k+l

⎛
⎜⎝F

(
{xi,r }1≤r≤ki

i∈I
)
G

(
{xi ′,r ′ }

ki ′<r ′≤ki ′+li ′
i ′∈I

)
·
i ′∈I∏
i∈I

r ′>ki ′∏
r≤ki

ζi,i ′ (xi,r − xi ′,r ′ )

⎞
⎟⎠ .

(3.2)

Here, k! = ∏
i∈I ki !, and for f ∈ C({xi,1, . . . , xi,mi }i∈I ) we define its supersym-

metrization via

SSym
m
( f )({xi,1, . . . , xi,mi }i∈I ) :=

∑
(σ1,...,σn−1)∈
m

(−1)
∑

i∈I �(σi )|αi | f ({xi,σi (1), . . . , xi,σi (mi )})
m! .

This endows W̄
V with a structure of an associative unital algebra with the unit

1 ∈ W̄
V
(0,...,0).

We will be interested only in the submodule of W̄
V defined by the pole and wheel

conditions:

• We say that F ∈ W̄
V
k satisfies the pole conditions if

F = f (x1,1, . . . , xn−1,kn−1)∏n−2
i=1

∏r ′≤ki+1
r≤ki

(xi,r − xi+1,r ′)
, f ∈ C[�][{xi,r }1≤r≤ki

i∈I ], (3.3)

where the polynomial f is supersymmetric in {xi,r }kir=1 for all i ∈ I .
• We say that F ∈ W̄

V
k satisfies the first kind wheel conditions if

F({xi,r }) = 0 once xi,r1 = xi+ε,s + �/2 = xi,r2 + � for some ε, i, r1, r2, s, (3.4)

where ε ∈ {±1}, i, i + ε ∈ I , 1 ≤ r1, r2 ≤ ki , 1 ≤ s ≤ ki+ε and |αi | = 0̄.
• We say that F ∈ W̄

V
k satisfies the second kind wheel conditions if

F({xi,r }) = 0 once xi−1,s = xi,r1 + �/2 = xi+1,s′ = xi,r2 − �/2

for some i, r1, r2, s, s
′,

(3.5)

where i, i − 1, i + 1 ∈ I , 1 ≤ r1, r2 ≤ ki , 1 ≤ s ≤ ki−1, 1 ≤ s′ ≤ ki+1 and
|αi | = 1̄.
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Let W̄ V
k ⊂ W̄

V
k denote theC[�]-submodule of all elements F satisfying these three

conditions and set W̄ V := ⊕
k∈NI W̄ V

k . It is straightforward to check that W̄ V ⊂ W̄
V

is �-closed.

Definition 3.6 The algebra
(
W̄ V , �

)
shall be called the rational shuffle (super)algebra.

This algebra is related to Y+
�

(sl(V )) of Sect. 2.7 via the following construction:

Proposition 3.7 The assignment x+
i,r → xri,1 (i ∈ I , r ∈ N) gives rise to a C[�]-

algebra homomorphism � : Y+
�

(sl(V )) → W̄ V .

Proof The assignment x+
i,r → xri,1 (i ∈ I , r ∈ N) is compatible with the defining

relations (2.58–2.60, 2.78) of Y+
�

(sl(V )), due to Theorem 2.79(c). Hence, it gives rise
to a C[�]-algebra homomorphism � : Y+

�
(sl(V )) → W̄ V . ��

The injectivity of � will be proved in Corollary 3.26, while its image will be
identified with the submodule WV of good elements, see Definition 3.27 and The-
orem 3.30 (in particular, the cokernel of � is an �-torsion module), resulting in the
algebra isomorphism Y+

�
(sl(V )) ∼−→WV . This constitutes the first main result of this

section.
Recall the C[�]-subalgebra Y+

�
(sl(V )) of Y+

�
(sl(V )), generated by {X+

β,r }r∈N

β∈�+
of (2.80). Our second key result of this section provides an explicit description of the
image �(Y+

�
(sl(V ))).

Definition 3.8 F ∈ W̄ V
k is integral if F is divisible by �

k1+...+kn−1 .

SetWV := ⊕
k∈NI

WV
k , whereW

V
k ⊂ W̄ V

k denotes theC[�]-submodule of all integral

elements. The following is the second main result of this section:

Theorem 3.9 The C[�]-algebra homomorphism � : Y+
�

(sl(V )) → W̄ V gives rise to

a C[�]-algebra isomorphism � : Y+
�
(sl(V )) ∼−→WV .

As a corollary, we will also obtain a new proof of the following result (cf. Theo-
rem 2.81):

Theorem 3.10 (a) The subalgebra Y+
�
(sl(V )) is independent of all our choices

in (2.70).
(b) The ordered PBW monomials {X+

h }h∈H form a basis of a free C[�]-module
Y+

�
(sl(V )).

3.2 The image of Y+
�
(sl(V)) for dim(V) = 2

In the simplest case dim(V ) = 2, all shuffle elements are good (Definition 3.27), that
is WV = W̄ V (see Remark 3.28(a)). Therefore, Theorem 3.30 is equivalent to

Theorem 3.11 If dim(V ) = 2, then � : Y+
�

(sl(V )) → W̄ V is an algebra isomor-
phism.
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There are two cases to consider: 1̄ �= 2̄ (so that |x+
1,r | = 1̄) and 1̄ = 2̄ (so that

|x+
1,r | = 0̄). First, assume 1̄ �= 2̄. Due to Theorem 2.79, the following result implies

Theorem 3.11:

Lemma 3.12 The ordered products {xr1�xr2� · · · �xrk }0≤r1<···<rk
k∈N

form a C[�]-basis
of W̄ V .

Proof This follows from the C[�]-algebra isomorphism W̄ V � ⊕
k �k , where �k

denotes the C[�]-module of skew-symmetric C[�]-polynomials in k variables, while
the algebra structure on the direct sum arises via the standard skew-symmetrization
maps �k ⊗ �l → �k+l . ��

Next, assume 1̄ = 2̄. Due to Theorem 2.79, the following result implies Theo-
rem 3.11:

Lemma 3.13 The ordered products {xr1�xr2� · · · �xrk }0≤r1≤···≤rk
k∈N

form a C[�]-basis
of W̄ V .

Proof Recall from [25, Lemma 6.22] that the k-th power of xr ∈ W̄ V
1 (k ≥ 1, r ≥ 0)

equals xr� · · · �xr = k · (x1 · · · xk)r . Therefore, for any ordered collection

0 ≤ r1 = · · · = rk1 < rk1+1 = · · · = rk1+k2 < · · · < rk1+...+kl−1+1 = · · · = rk=k1+...+kl ,

it is clear that xr1� · · · �xrk is a symmetric polynomial of the form

νrm(r1,...,rk )(x1, . . . , xk) +
∑

νr ′mr ′(x1, . . . , xk).

Here, mr (x1, . . . , xk) are the monomial symmetric polynomials, the sum is over r ′ =
(r ′

1 ≤ · · · ≤ r ′
k) satisfying r1 ≤ r ′

1 ≤ r ′
k ≤ rk , νr ′ ∈ C[�], and νr = ∏l

i=1 ki .
This completes the proof of Lemma 3.13 as {m(s1,...,sk )(x1, . . . , xk)}0≤s1≤···≤sk form

a C[�]-basis of C[�][{xr }kr=1]
k � W̄ V
k . ��

Combining Lemmas 3.12 and 3.13, we obtain the proof of Theorem 3.11.

3.3 The specializationmaps and the injectivity of9

For an ordered PBW monomial x+
h (h ∈ H), define its degree deg(x+

h ) =
deg(h)∈ N

n(n−1)
2 as a collection of dβ := ∑

r∈N
h(β, r) (β ∈ �+) ordered with

respect to the total ordering (2.76) on �+. We consider the lexicographical ordering

on the collections d = {dβ}β∈�+ of N
n(n−1)

2 :

{dβ}β∈�+ < {d ′
β}β∈�+ iff there is γ ∈ �+such that dγ > d ′

γ and dβ = d ′
β for all β < γ.

In what follows, we shall need an explicit formula for �(x+
β,r ):
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Lemma 3.14 For 1 ≤ j < i < n and r ∈ N, we have

�(x+
α j+α j+1+...+αi ,r ) = �

i− j p(x j,1, . . . , xi,1)

(x j,1 − x j+1,1) · · · (xi−1,1 − xi,1)
,

where p(x j,1, . . . , xi,1) is a degree r monomial, up to a sign.

Proof Straightforward computation. ��
For β = α j + α j+1 + . . . + αi , define j(β) := j, i(β) := i , and let [β] denote

the integer interval [ j(β); i(β)]. Consider a collection of the intervals {[β]}β∈�+
each taken with a multiplicity dβ ∈ N and ordered with respect to (2.76) (the
order inside each group is irrelevant), denoted by ∪β∈�+[β]dβ . Define l ∈ N

I via
l := ∑

β∈�+ dβ [β]. Let us now define the specialization map

φd : W̄ V
l −→ C[�][{yβ,s}1≤s≤dβ

β∈�+ ]. (3.15)

Split the variables {xi,r }1≤r≤li
i∈I into

∑
β∈�+ dβ groups corresponding to the above

intervals, and specialize the variable xk,∗ in the s-th copy of [β] to yβ,s+ c12+...+ck−1,k
2 �

(so that the x∗,∗-variables in the s-th copy of the interval [β] are specialized to various
�-shifts of the same new variable yβ,s). For F = f (x1,1,...,xn−1,ln−1 )∏n−2

i=1
∏1≤r ′≤ki+1

1≤r≤ki
(xi,r−xi+1,r ′ )

∈ W̄ V
l ,

we finally define φd(F) as the corresponding specialization of its numerator f .

Remark 3.16 Note that φd(F) is independent of our splitting of the variables

{xi,r }1≤r≤li
i∈I into groups and is supersymmetric in {yβ,s}dβ

s=1 for each β ∈ �+ (recall
|β| = |α j(β)| + . . . + |αi(β)|).

The key properties of the specialization maps φd are summarized in the next two
lemmas.

Lemma 3.17 If deg(h) < d, then φd(�(x+
h )) = 0.

Proof The above condition guarantees that φd -specialization of any summand of the
supersymmetrization appearing in�(x+

h ) contains among all the ζ -factors at least one
factor of the form ζi,i+1(− ci,i+1

2 �) = 0; hence, it is zero. The result follows. ��

Lemma 3.18 The specializations {φd(�(x+h ))}deg(h)=d
h∈H are linearly independent

over C[�].

Proof Consider the image of x+
h =

→∏
(β,r)∈�+×N

x+
β,r

h(β,r)
under �. It is a sum of

(
∑

β∈�+ dβ)! terms, and as in the proof of Lemma 3.17, most of them specialize
to zero under φd , d := deg(h). The summands which do not specialize to zero are
parametrized by
d := ∏

β∈�+ 
dβ . More precisely, given (σβ)β∈�+ ∈ 
d , the asso-
ciated summand corresponds to the case when for all β ∈ �+ and 1 ≤ s ≤ dβ ,
the (

∑
β ′<β dβ ′ + s)-th factor of the corresponding term of �(x+

h ) is evaluated at
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{yβ,σβ(s) + c12+...+ck−1,k
2 �} j(β)≤k≤i(β). Similar to [25, Lemma 3.15], the image of

this summand under φd may be written in the form
∏β<β ′

β,β ′∈�+ Gβ,β ′ · ∏
β∈�+ Gβ ·∏

β∈�+ G
(σβ)

β (up to a sign) with the factors Gβ,β ′ ,Gβ,G
(σβ)

β to be specified below.
The factor Gβ,β ′ (β < β ′) arises as a product of the specializations of the ζ -factors

(note that we ignore the denominator z in ζk,k±1(z), but not in ζk,k(z)) among two
variables, which are getting specialized to �-shifts of yβ,∗ and yβ ′,∗. Explicitly, we
have

Gβ,β ′ =
1≤s′≤dβ′∏
1≤s≤dβ

i(β)∏
k= j(β)

{
(yβ,s − yβ ′,s′)

δk, j(β′)−1−δk,i(β′)

×(yβ,s − yβ ′,s′ − (−1)k�)
δk−1∈[β′ ](yβ,s − yβ ′,s′ + δ|αk |,0̄(−1)k�)

δk∈[β′ ]
}
.

(3.19)

In particular, the total power of (yβ,s − yβ ′,s′) in Gβ,β ′ is nonnegative and equals

#{k|[β] � k ∈ [β ′], |αk | = 1̄} + δ j(β)< j(β ′)δi(β)+1∈[β ′]. (3.20)

Likewise, the total factor Gβ · G(σβ)

β arises as a product of:

1) the specializations of �(x+
β,∗),

2) the specializations of the ζ -factors (note that we ignore the denominator z in
ζk,k±1(z), but not in ζk,k(z)) among two variables, which are getting specialized
to �-shifts of yβ,∗.

Due to Lemma 3.14, the total contribution of the specializations in 1) equals

�
dβ(i(β)− j(β)) ·

dβ∏
s=1

pβ,rβ(h,s)(yβ,σβ(s)), (3.21)

where the collection {rβ(h, 1), . . . , rβ(h, dβ)} is obtained by listing every r ∈ N with
multiplicity h(β, r) > 0 in the non-decreasing order and pβ,r (y) are degree r monic
polynomials (obtained by evaluating themonomials p of Lemma 3.14 at �-shifts of y).
On the other hand, the total contribution of the specializations in 2) equals

∏
1≤s<s′≤dβ

∏
j(β)< j≤i(β)

(
(yβ,σβ (s) − yβ,σβ (s′) − �)(yβ,σβ (s) − yβ,σβ (s′) + �)

)δ|α j |,0̄ ×

∏
1≤s<s′≤dβ

∏
j(β)< j≤i(β)

(
(yβ,σβ (s) − yβ,σβ (s′) − (−1) j̄�)(yβ,σβ (s) − yβ,σβ (s′))

)δ|α j |,1̄ × (3.22)

∏
1≤s<s′≤dβ

⎛
⎝ yβ,σβ (s) − yβ,σβ (s′) + (−1) j(β)

�

yβ,σβ (s) − yβ,σβ (s′)

⎞
⎠

δ|α j(β)|,0̄
.

While the product of the factors Gβ and G
(σβ)

β equals the product of expres-
sions (3.21, 3.22), we define each of them separately as follows:
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Gβ = �
dβ (i(β)− j(β)) ·

∏
1≤s �=s′≤dβ

(yβ,s − yβ,s′ )
� odd(β)

2 �
(yβ,s − yβ,s′ + �)

even(β)+� odd(β)−1
2 �

,

(3.23)

G
(σβ )

β =
dβ∏
s=1

pβ,rβ (h,s)(yβ,σβ (s)) ·

⎧⎪⎨
⎪⎩

∏
s<s′

yβ,σβ (s)−yβ,σβ (s′)+(−1) j(β)
�

yβ,σβ (s)−yβ,σβ (s′) , if |β| = 0̄

(−1)σβ , if |β| = 1̄

, (3.24)

where

even(β) := #{k ∈ [β]||αk | = 0̄} and odd(β) := #{k ∈ [β]||αk | = 1̄}.

It is straightforward to verify that the products of (3.23, 3.24) and (3.21, 3.22) indeed
coincide.

Note that the factors {Gβ,β ′ }β<β ′ ∪ {Gβ}β of (3.19, 3.23) are independent of
(σβ)β∈�+ ∈ 
d . Therefore, the specialization φd(�(x+

h )) has the following form:

φd(�(x+
h )) = ±

β<β ′∏
β,β ′∈�+

Gβ,β ′ ·
∏

β∈�+
Gβ ·

∏
β∈�+

⎛
⎜⎝ ∑

σβ∈
dβ

G
(σβ)

β

⎞
⎟⎠ . (3.25)

For β ∈ �+, consider a two-dimensional superspace V ′
β with basis vectors v′

1 and

v′
2 having the parity j(β) and i(β), respectively. Then, the sum

∑
σβ∈
dβ

G
(σβ)

β coin-

cides with the value of the shuffle element pβ,rβ (h,1)(x)� · · · �pβ,rβ (h,dβ)(x) ∈ W̄
V ′

β

dβ

evaluated at {yβ,s}dβ

s=1. The latter elements are linearly independent (they form a basis

of W̄
V ′

β

dβ
), due to Lemmas 3.12 and 3.13.

Thus, (3.25) together with the above observation completes our proof of
Lemma 3.18. ��
Corollary 3.26 The homomorphism � : Y+

�
(sl(V )) → W̄ V is injective.

Proof Assume the contrary, that there is a nonzero x ∈ Y+
�

(sl(V )) such that�(x) = 0.
Due to Theorem 2.79, x may be written in the form x = ∑

h∈H chx
+
h , where all but

finitely many of ch ∈ C[�] are zero. Define d := max{deg(h)|ch �= 0}. Applying
the specialization map φd to �(x) = 0, we get

∑deg(h)=d
h∈H chφd(�(x+

h )) = 0 by
Lemma 3.17. Furthermore, we get ch = 0 for all h ∈ H with deg(h) = d, due to
Lemma 3.18. This contradicts our choice of d .

This completes our proof of the injectivity of �. ��

3.4 Proofs of themain results

In this section, we describe the images of Y+
�

(sl(V )) and Y+
�
(sl(V )) under �. To

present the former, we make the following definition:
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Definition 3.27 F ∈ W̄ V
k is good if φd(F) is divisible by �

∑
β∈�+ dβ(i(β)− j(β)) for any

degree vector d = {dβ}β∈�+ such that k = ∑
β∈�+ dβ [β].

Set WV := ⊕
k∈NI W V

k , where WV
k ⊂ W̄ V

k denotes the C[�]-submodule of all
good elements.

Remark 3.28 (a) For dim(V ) = 2, we have WV = W̄ V .
(b) WV ⊆ WV as any integral shuffle element is obviously good.

Lemma 3.29 �(Y+
�

(sl(V ))) ⊆ WV .

Proof The proof is completely analogous to that of [25, Lemma 6.19] for the particular
case of (2.17). For any β ∈ �+, 1 ≤ s ≤ dβ and j(β) ≤ k < i(β), ζ -factors between
the variables xk,∗ and xk+1,∗ that are specialized to �-shifts of yβ,s always specialize
under φd to a multiple of �. It remains to note that the total number of such pairs is
exactly

∑
β∈�+ dβ(i(β) − j(β)). ��

The following is the first key result of this section:

Theorem 3.30 The C[�]-algebra embedding � : Y+
�

(sl(V )) ↪→ W̄ V gives rise to a

C[�]-algebra isomorphism � : Y+
�

(sl(V )) ∼−→WV .

Proof We need to show that any good element F ∈ WV
k belongs to the submodule

M ∩WV
k , where M ⊂ WV denotes the C[�]-submodule spanned by {�(x+

h )}h∈H . Let
Tk denote a finite set consisting of all degree vectors d = {dβ}β∈�+ ∈ N

n(n−1)
2 such

that
∑

β∈�+ dβ [β] = k. We order Tk with respect to the lexicographical ordering on

N
n(n−1)

2 . In particular, the minimal element dmin = {dβ}β∈�+ ∈ Tk is characterized by
dβ = 0 for all non-simple roots β ∈ �+.

The proof is crucially based on the following result:

Lemma 3.31 If φd ′(F) = 0 for all d ′ ∈ Tk such that d ′ > d, then there exists an
element Fd ∈ M such that φd(F) = φd(Fd) and φd ′(Fd) = 0 for all d ′ > d.

Proof of Lemma 3.31 Consider the following total ordering on the set {(β, s)}1≤s≤dβ

β∈�+ :

(β, s) ≤ (β ′, s′) iff β < β ′ or β = β ′, s ≤ s′. (3.32)

First, we note that the wheel conditions (3.4, 3.5) for F guarantee that φd(F)

(which is a polynomial in {yβ,s}) vanishes up to appropriate orders under the following
specializations:

(i) yβ,s = yβ ′,s′ + � for (β, s) < (β ′, s′),
(ii) yβ,s = yβ ′,s′ − � for (β, s) < (β ′, s′).

The orders of vanishing are computed similarly to [25, Remark 5.24], cf. [5,20]. Let us
view the specialization appearing in the definition ofφd as a step-by-step specialization
in each interval [β]. As we specialize the variables in the new interval, we count
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only those wheel conditions that arise from the non-specialized yet variables. Varying
different orderings of the intervals, we pick the maximal order of vanishing for each
of the linear terms yβ,s − yβ ′,s′ ± �. We claim that the resulting orders of vanishing
under the specializations (i) and (ii) exactly equal the powers of yβ,s − yβ ′,s′ ∓ � in
Gβ,β ′ (if β < β ′) or in Gβ (if β = β ′). More precisely:

– if i(β) < i(β ′), then specializing first in the s-th copy of [β] and then in the s′-th
copy of [β ′], the orders of vanishing under (i, ii) equal the powers of yβ,s−yβ ′,s′ ∓�

in Gβ,β ′ ;
– if i(β) > i(β ′), then specializing first in the s′-th copy of [β ′] and then in the s-th
copy of [β], the orders of vanishing under (i, ii) equal the powers of yβ,s− yβ ′,s′ ∓�

in Gβ,β ′ ;
– if i(β) = i(β ′) (or β ′ = β), specializing first in the s-th copy of [β] and then in
the s′-th copy of [β ′], the orders of vanishing under (i, ii) differ from the powers
of yβ,s − yβ ′,s′ ∓ � in Gβ,β ′ or Gβ (if β ′ = β) by an absence of a single factor

yβ,s − yβ ′,s′ + (−1)i(β)+1
�. Reversing the order of specializations, we end up

missing only one factor yβ ′,s′ − yβ,s + (−1)i(β)+1
�. Hence, picking the maximal

order of vanishing for each of yβ,s − yβ ′,s′ ∓ � achieves the result.

Second, we claim that φd(F) vanishes under the following specializations:

(iii) yβ,s = yβ ′,s′ for (β, s) < (β ′, s′) such that j(β) < j(β ′) and i(β) + 1 ∈ [β ′].
Indeed, if j(β) < j(β ′) and i(β)+ 1 ∈ [β ′], there are positive roots γ, γ ′ ∈ �+ such
that j(γ ) = j(β), i(γ ) = i(β ′), j(γ ′) = j(β ′), i(γ ′) = i(β). Consider the degree
vector d ′ ∈ Tk given by d ′

α = dα + δα,γ + δα,γ ′ − δα,β − δα,β ′ . Then, d ′ > d and thus
φd ′(F) = 0. The result follows.

Finally, we also note that the skew-symmetry of the elements of WV with respect
to the variables {xk,∗} with |αk | = 1̄ implies that φd(F) vanishes under the following
specializations:

(iv) yβ,s = yβ ′,s′ for (β, s) < (β ′, s′)
and vanishing order is #{k|[β] � k ∈ [β ′], |αk | = 1̄}.

For β < β ′ and any s, s′, combining (iii) and (iv), we see that the order of vanishing of
φd(F) at yβ,s = yβ ′,s′ exactly equals the power of yβ,s − yβ ′,s′ in Gβ,β ′ as computed
in (3.20). Similar, for β ′ = β and 1 ≤ s < s′ ≤ dβ , combining (iii) and (iv), we see
that the order of vanishing of φd(F) at yβ,s = yβ,s′ equals the power of yβ,s − yβ,s′
in Gβ of (3.23) plus one if |β| = 1̄.

Combining the above vanishing conditions for φd(F) with F being good, we see
that φd(F) is divisible exactly by the product

∏
β<β ′ Gβ,β ′ · ∏

β Gβ of (3.19, 3.23).
Therefore, we have

φd(F) =
β<β ′∏

β,β ′∈�+
Gβ,β ′ ·

∏
β∈�+

Gβ · G (3.33)
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for some supersymmetric polynomial

G ∈ C[�][{yβ,s}1≤s≤dβ

β∈�+ ]
d �
⊗

β∈�+
C[�][{yβ,s}dβ

s=1]
dβ , (3.34)

whereC[�][{yβ,s}dβ

s=1]
dβ denotes the submodule of symmetric (resp. skew-symmetric)

polynomials in {yβ,s}dβ

s=1 if |β| = 0̄ (resp. |β| = 1̄).
Combining this observation with formula (3.25) and the discussion after it, we see

that there is a linear combination Fd = ∑deg(h)=d
h∈H chx

+
h such that φd(F) = φd(Fd),

due to our proof of Lemma 3.18. The equality φd ′(Fd) = 0 for d ′ > d is due to
Lemma 3.17.

This completes our proof of Lemma 3.31. ��
Let dmax and dmin denote themaximal and theminimal elements of Tk , respectively.

The condition of Lemma 3.31 is vacuous for d = dmax. Therefore, Lemma 3.31
applies. Applying it iteratively, we will eventually find an element F̃ ∈ M such that
φd(F) = φd(F̃) for all d ∈ Tk . In the particular case of d = dmin, this yields F = F̃
(as the specialization map φdmin

essentially does not change the function). Hence,
F ∈ M .

This completes our proof of Theorem 3.30. ��
Using the same arguments, let us now prove Theorem 3.9.

Proof of Theorem 3.9 The proof proceeds in two steps: first, we establish the inclusion
�(Y+

�
(sl(V ))) ⊆ WV , and then, the opposite inclusion �(Y+

�
(sl(V ))) ⊇ WV .

Lemma 3.35 �(Y+
�
(sl(V ))) ⊆ WV .

Proof According to Lemma 3.14, �(X+
β,r ) is divisible by �

i(β)− j(β)+1. It remains to
note that ∑

β∈�+
dβ(i(β) − j(β) + 1) =

∑
i∈I

li , (3.36)

where l = (l1, . . . , ln−1) ∈ N
I is defined via (l1, . . . , ln−1) := ∑

β∈�+ dβ [β]. ��

The proof of the opposite inclusion�(Y+
�
(sl(V ))) ⊇ WV is completely analogous

to our proof of Theorem 3.30 and Lemma 3.31. Indeed, it suffices to note that the factor
�
dβ(i(β)− j(β)) in the definition ofGβ (3.23) shall be replaced by�

dβ (i(β)− j(β)+1), which
does not affect (3.33), due to (3.36) (as we replaced “F being good” by “F being
integral”). ��

We conclude this section with a new proof of Theorem 3.10.

Proof of Theorem 3.10 (a) Since � : Y+
�

(sl(V )) → WV is injective and the image
of Y+

�
(sl(V )), the submodule WV , is independent of any choices of x+

β,r , Theo-
rem 3.10(a) follows.
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(b) Following the proofs of Theorems 3.9 and 3.30, we have already established that
WV isC[�]-spanned by the images of the ordered PBWmonomials {�(X+

h )}h∈H .
Combining this with the injectivity of � and Theorem 2.79, completes the proof
of Theorem 3.10(b). ��

4 Generalization to type A quantum affine superalgebras

In this section,we briefly discuss the trigonometric counterparts of the previous results.
The quantum affine superalgebras were first studied 20 years ago by Yamane [26]. In
the loc.cit., both the Drinfeld–Jimbo and the new Drinfeld realizations were proposed
and the isomorphism between those was obtained. Also, the isomorphisms between
the Drinfeld–Jimbo quantum (affine) superalgebras corresponding to different Dynkin
diagrams were constructed.

Remark 4.1 Such isomorphisms in the type A toroidal setup, which does not admit the
Drinfeld–Jimbo realization, have been recently constructed in [2].

In this section, we obtain the shuffle algebra realizations of the “positive halves” of
the quantum affine superalgebras of gl(V ) corresponding to different Dynkin diagrams
of gl(V ).

Let v be a formal variable. Define the “positive half” of the quantum loop super-
algebra of gl(V ), denoted by U>

v (Lgl(V )), to be the associative C(v)-superalgebra
generated by {ei,r }r∈Z

i∈I with the Z2-grading |ei,r | = |αi |, and subject to the following
defining relations:

(z − vci j w)ei (z)e j (w) = (−1)|αi |·|α j |(vci j z − w)e j (w)ei (z), (4.2)

[ei (z), e j (w)] = 0 if ci j = 0, (4.3)

as well as cubic v-Serre relations

[ei (z1), [ei (z2), e j (w)]v−1 ]v + [ei (z2), [ei (z1), e j (w)]v−1 ]v = 0 if j = i ± 1 and |αi | = 0̄,

(4.4)

and quartic v-Serre relations

[[[ei−1(w), ei (z1)]v−1 , ei+1(u)]v, ei (z2)] + [[[ei−1(w), ei (z2)]v−1 , ei+1(u)]v, ei (z1)] = 0

if |αi | = 1̄ and |αi−1| = |αi+1| = 0̄, (4.5)

where ei (z) := ∑
r∈Z

ei,r z−r , [a, b]x := ab− (−1)|a|·|b|x ·ba for homogeneous a, b.

Remark 4.6 The superalgebra U>
v (Lgl(V )) is N

I -graded via deg(ei,r ) = 1i =
(0, . . . , 1, . . . , 0) with 1 at the i-th spot. Given elements a, b ∈ U>

v (Lgl(V )) with
deg(a) = k and deg(b) = l, we set (a, b) := ∑

i, j∈I ki l j ci j . Following [26, §6.7], we
define [[a, b]] := ab − (−1)|a|·|b|v(a,b) · ba.
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(a) The cubic v-Serre relations (4.4) can be written in the form

[[ei (z1), [[ei (z2), e j (w)]]]] + [[ei (z2), [[ei (z1), e j (w)]]]] = 0. (4.7)

The relation (4.7) is also valid for |αi | = 1̄, but in that case, it already follows
from (4.3).

(b) The quartic v-Serre relations (4.5) can be written in the form

[[[[[[ei−1(w), ei (z1)]], ei+1(u)]], ei (z2)]] + [[[[[[ei−1(w), ei (z2)]], ei+1(u)]], ei (z1)]] = 0.

(4.8)

The relation (4.8) is also valid for any other parities of αi−1, αi , αi+1, but in those
cases, it already follows from the quadratic and cubic relations (4.2–4.4).

(c) We finally note that (4.8) may be replaced by the following equivalent relations:

[[[[ei−1(w), ei (z1)]], [[ei+1(u), ei (z2)]]]] + [[[[ei−1(w), ei (z2)]], [[ei+1(u), ei (z1)]]]] = 0.

(4.9)

This is an affinization of the quartic v-Serre relations of [6] for finite quantum
superalgebras.

Let us now define the trigonometric shuffle (super)algebra
(
SV , �

)
analogously to

the rational shuffle (super)algebra
(
W̄ V , �

)
of Sect. 3.1 with the following modifica-

tions:

(1) All rational functions F ∈ SV are defined over C(v);
(2) The analogue of (3.1) is the matrix (ζi, j (z))i, j∈I ∈ Mat I×I (C(v)(z)) defined via

ζi, j (z) = (−1)
δi> j δ|αi |,1̄δ|α j |,1̄(z − v−ci j )/(z − 1); (4.10)

(3) The shuffle product is defined via (3.2) with ζi,i ′(xi,r − xi ′,r ′) replaced by
ζi,i ′(xi,r/xi ′,r ′);

(4) The pole conditions (3.3) for F ∈ SVk are modified as follows:

F = f (x1,1, . . . , xn−1,kn−1)∏n−2
i=1

∏r ′≤ki+1
r≤ki

(xi,r − xi+1,r ′)
, (4.11)

where f ∈ (C(v)[{x±1
i,r }1≤r≤ki

i∈I ])
k is a supersymmetric Laurent polynomial;

(5) The first kind wheel conditions (3.4) for F ∈ SV are modified as follows:

F({xi,r }) = 0 once xi,r1 = vxi+ε,s = v2xi,r2 for some ε, i, r1, r2, s, (4.12)

with |αi | = 0̄;
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(6) The second kind wheel conditions (3.5) for F ∈ SV are modified as follows:

F({xi,r }) = 0 once xi−1,s = vxi,r1 = xi+1,s′ = v−1xi,r2 for some i, r1, r2, s, s
′, (4.13)

with |αi | = 1̄.

The following is the main result of this section (announced in [25, §8.2]), general-
izing [25, Theorem 5.17] for the particular case of (2.17):

Theorem 4.14 The assignment ei,r → xri,1 (i ∈ I , r ∈ Z) gives rise to an algebra
isomorphism

� : U>
v (Lgl(V )) ∼−→ SV . (4.15)

The proof of this theorem is completely analogous to our proof of Theorem 3.30.

Remark 4.16 We note that [25, Theorems 3.34, 8.8] providing the shuffle algebra
realizations of the RTT and Lusztig/Grojnowski/Chari-Pressley integral forms of
U>
v (Lgln) can be straightforwardly generalized to the case of U>

v (Lgl(V )). The
former has potential applications to the geometric representation theory (cf. [11, Propo-
sition 4.12, Remark 4.16] for n− = 0).
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